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   Abstract—One  of  challenging  issues  on  stability  analysis  of
time-delay  systems  is  how  to  obtain  a  stability  criterion  from  a
matrix-valued  polynomial  on  a  time-varying  delay.  The  first
contribution of this paper is to establish a necessary and sufficient
condition on a matrix-valued polynomial inequality over a certain
closed  interval.  The  degree  of  such  a  matrix-valued  polynomial
can  be  an  arbitrary  finite  positive  integer.  The  second
contribution  of  this  paper  is  to  introduce  a novel Lyapunov-
Krasovskii  functional,  which  includes  a  cubic  polynomial  on  a
time-varying  delay,  in  stability  analysis  of  time-delay  systems.
Based  on  the  novel  Lyapunov-Krasovskii  functional  and  the
necessary  and  sufficient  condition  on  matrix-valued  polynomial
inequalities, two stability criteria are derived for two cases of the
time-varying delay. A well-studied numerical example is given to
show  that  the  proposed  stability  criteria  are  of  less
conservativeness than some existing ones.
    Index Terms—Bessel-Legendre  inequality,  matrix-valued  polyno-
mial inequalities, stability, time-varying delay, time-delay systems.
 

I.  Introduction

T IME-DELAY  systems  have  received  considerable
attention in the field of control during the past two decades.

On the one hand, time-delay systems have found more and more
applications  in  industrial  control.  For  example,  networked
control  systems  [1]  including  active  control  systems  for
unmanned marine vehicles and offshore platforms in network
environments  [2],  [3]  can be modeled as  time-delay systems.
The problem of  coordination  and formation control  of  multi-
agent systems can be solved by employing time-delay system
theory [4].  On the other hand,  although it  is  well  known that
time-delays  usually  play  the  negative  effects  on  a  control
system, their potential positive effects are often disclosed. It is
proven  that  for  networked  harmonic  oscillators,
synchronization cannot be reached using current position data,
but  can  be  achieved  using  delayed  position  data  [5].  For
offshore platforms, by intentionally introducing a small time-
delay  into  the  feedback  channel,  oscillation  amplitudes  and
control forces can be reduced significantly [3]. Therefore, time-

delay  systems are  still  an  important  topic  to  research  both  in
theory and in practice.

V(t)
d(t) ∈ [0, h̄]

Delay-dependent  stability  of  time-delay  systems  has  been
studied  for  a  long  time,  see,  e.g.  [6]–[11].  Its  objective  is  to
derive a stability condition such that the allowable delay upper
bound is as large as possible. To achieve this goal, a number of
notable  methods  (techniques)  have  been  proposed,  such  as  a
free-weighting  matrix  approach,  an  integral  inequality
approach, a quadratic convex approach, a reciprocally convex
combination inequality and a Wirtinger-based inequality [12],
see the survey paper [13]. Since 2013, boosted by the Wirtinger-
based  inequality,  much  progress  has  been  made  on  delay-
dependent  stability  analysis  of  time-delay  systems.  One  can
obtain some less conservative stability criteria using a Bessel-
Legendre  inequality,  which  is  an  extension  of  the  Wirtinger-
based inequality. However, when a Bessel-Legendre inequality
is  used,  the  time-derivative  of  some  certain  Lyapunov-
Krasovskii functional  may be estimated as a polynomial
with respect to the time-varying delay , that is
 

V̇(t) ≤ ξT (t) f (d(t))ξ(t), f (d(t)) ≜ Σm
i=0di(t)Mi, (1)

Mi (i = 0,1, · · · ,m) m ≥ 2
d(t) ξ(t)

h̄

f (d(t)) < 0 d(t) ∈ [0, h̄]
f (d(t)) < 0 m = 2 d(t) ∈ [0, h̄]

where  with  are  symmetric  real
matrices irrespective of ;  is a state-related vector, and
 is  a  positive  constant.  Then  a  hard  nut  to  crack  is  how  to

derive  a  stability  criterion  from  the  matrix  inequality
 for .  Although  some  sufficient

conditions  on  with  for  are
presented in [14], [15], a necessary and sufficient condition on
such  a  matrix  inequality  has  not  been  reported  yet,  which
motivates the current study.

f (d(t)) < 0 f (d(t)) > 0 d(t) ∈ [0, h̄]

d(t)

d3(t)P3+d2(t)P2+d(t)P1+P0
d(t)

ξT (t) f̄ (d(t))ξ(t) f̄ (d(t))∑4
j=0 d j(t)Φ j Φ j ( j = 0,1, . . . ,4)

d(t)

In  this  paper,  we  first  establish  a  necessary  and  sufficient
condition on  (or ) for . Then,
the  obtained  necessary  and  sufficient  condition  is  applied  to
stability  analysis  of  time-delay  systems.  If  the  time-varying
delay  is  differentiable,  and  its  derivative  function  is
bounded from below and above, a novel Lyapunov-Krasovskii
functional  with  a  cubic  matrix-valued  polynomial  like

 is  introduced.  If  the  time-
varying delay  is just continuous while not differentiable, a
novel  Lyapunov-Krasovskii  functional  is  also  introduced.  A
common  feature  of  these  novel  Lyapunov-Krasovskii
functionals  is  that  their  time-derivatives  are  estimated  as

,  where  is  a quartic matrix-valued
polynomial  as  with  being
symmetric  real  matrices  irrespective  of .  The  obtained
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f̄ (d(t)) < 0 d(t) ∈ [0, h̄]necessary and sufficient condition  for  is
utilized  to  deliver  some  less  conservative  stability  criteria,
which  is  demonstrated  through  a  well-studied  numerical
example.

diag{· · · } col{· · · }
Sn(Sn

+)

Rn×n He{X} = X+XT

Notations: The notations throughout this paper are standard.
 and  denote  a  block-diagonal  matrix  and  a

block-column  matrix  (vector),  respectively.  The  set 
represents the set of symmetric (positive definite) matrices of

. . 

II.  Necessary and Sufficient Condition on
Matrix-valued Polynomial Inequalities

Consider the following matrix-valued polynomial described
by
 

Fm(s) = s2mΦ2m+ s2m−1Φ2m−1+ · · ·+Φ0 (2)
m ≥ 1 s ∈ [0, h̄] h̄

Φ j ∈ Sq×q ( j = 0,1,2, · · · ,2m) Φ2m = 0
where  is  an  integer,  and  with  being  a
constant; and . If ,
 

Fm(s) = s2m−1Φ2m−1+ s2m−2Φ2m−2+ · · ·+Φ0

Φ2m−1 , 0which is an odd matrix-valued polynomial on s if .
Thus,  (2)  represents  both  even  and  odd  matrix-valued
polynomials.

m = 1 F1(s) Φ2 = 0 s ∈ [0, h̄]
F1(s) Φ2 , 0 s ∈ [0, h̄]

F1(s) Φ2 , 0 ∀s ∈ [0, h̄]

Fm(s) < 0 ∀s ∈ [0, h̄]

For ,  with  is convex on . However,
 with  is not necessarily convex on . Thus,

an emerging topic in recent years is to seek conditions such that
 with  is strictly less than zero for , see,

e.g.  [14],  [15].  In  the  following,  we  present  a  necessary  and
sufficient condition on  for . To begin with,
we introduce a key lemma as follows.

Ω ∈ Sp H1,H2 ∈ Rk×p

p > k
Lemma  1: For  given  matrices ,  with

, the following statements are equivalent:
1) ζTΩζ < 0

ζ ∈ Rp (H2−δH1)ζ = 0 δ

|δ| ≤ 1

 The  inequality  holds  for  all  nonzero  vectors
 that satisfy  for some real scalar  such

that .
2) D ∈ Sk

+

G ∈ Rk×k
 There exist a matrix  and a skew-symmetric matrix

 such that
 [H1

H2

]T [ D G
GT −D

] [H1
H2

]
+Ω < 0. (3)

3) X ∈ Rp×k There exists  such that
 

X(H2+H1)+ (H2+H1)T XT +Ω < 0 (4)
 

X(H2−H1)+ (H2−H1)T XT +Ω < 0 (5)
4) εi ∈ R (i = 1,2) There exist  such that

 

Ω−ε1(H2+H1)T (H2+H1) < 0 (6)
 

Ω−ε2(H2−H1)T (H2−H1) < 0 (7)
Proof: The equivalence between 1), 2) and 3) can be found

in [16]. The equivalence between 3) and 4) is derived from the
Finsler Lemma [17].

ζ = col{I, sI, · · · , smI}ζ0 ∀ζ0 ∈ Rq ζ0 , 0
fm(s) := ζT

0 Fm(s)ζ0

Let  with  and .  Then
 can be rewritten as

 

fm(s) = ζT
0 Fm(s)ζ0 = ζ

TΩmζ, (8)

where 

Ωm =



Φ0
1
2Φ1 · · · 0 0

1
2Φ1 Φ2

. . . 0 0
...

...
. . .

. . .
...

0 0 · · · Φ2m−2
1
2Φ2m−1

0 0 · · · 1
2Φ2m−1 Φ2m


(9)

■
By applying Lemma 1, we have the following result.

Fm(s)Theorem 1: For the matrix-valued polynomial  in (2),
then

i) Fm(s) < 0 ∀s ∈ [0, h̄]
X ∈ Smq

+ S ∈ Rmq×mq
  for  if  and  only  if  there  exist  an

 and a skew-symmetric matrix  such that
 

Ωm+

[
H1

H2

]T [ X S
S T −X

] [H1

H2

]
< 0; (10)

ii) Fm(s) > 0 ∀s ∈ [0, h̄]
X ∈ Smq

+ S ∈ Rmq×mq
  for  if  and  only  if  there  exist  an

 and a skew-symmetric matrix  such that
 

Ωm−
[
H1

H2

]T [ X S
S T −X

] [H1

H2

]
> 0, (11)

Ωmwhere  is given in (9); and
 

H1 =


h̄I 0

h̄I 0
. . .

...

h̄I 0


mq×(m+1)q

H2 =


h̄I −2I

h̄I −2I
. . .

. . .

h̄I −2I


mq×(m+1)q

Proof: i) Note that
 

(H2−δH1)ζ =


[h̄(1−δ)−2s]I
s[h̄(1−δ)−2s]I

...
sm−1[h̄(1−δ)−2s]I

ζ0.

(H2−δH1)ζ = 0 δ

|δ| ≤ 1 s ∈ [0, h̄]
Then  for  some  real  scalar  such  that

 if and only if . In fact
 

(H2−δH1)ζ = 0 ⇐⇒ h̄δ = h̄−2s.

Then it is not difficult to verify that
 

|h̄δ| = |h̄−2s| ≤ h̄ ⇐⇒ 0 ≤ s ≤ h̄.
fm(s) < 0 ∀s ∈ [0, h̄]

X ∈ Smq
+

S ∈ Rmq×mq

Applying  Lemma  1,  for  if  and  only  if
there  exist  an  and  a  skew-symmetric  real  matrix

 such  that  (10)  is  satisfied,  which  completes  the
proof of i).

F̃m(s) = −Fm(s)ii)  Set .  Then  the  proof  is  straightforward
from the proof of i). ■

Fm(s) < 0
Fm(s) > 0 ∀s ∈ [0, h̄]

m = 1 F1(s) = s2Φ2+ sΦ1+Φ0 < 0 ∀s ∈ [0, h̄]
X ∈ Sq

+

S ∈ Rq×q

Remark  1: Theorem  1  provides  necessary  and  sufficient
conditions on matrix-valued polynomial inequalities 
and  for ,  respectively.  Specifically,  for

,  for  if and only if
there  exist  an  and  a  skew-symmetric  real  matrix

 such that 
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[
Φ0

1
2Φ1

1
2Φ1 Φ2

]
+

[
h̄I 0
h̄I −2I

]T [ X S
S T −X

] [
h̄I 0
h̄I −2I

]
<0.

which is equivalent to that in [18].
In the next section, we are to establish some novel stability

criteria  for  time-delay  systems  by  using  Theorem  1.  To  end
this  section,  we  introduce  a  canonical  Bessel-Legendre
inequality as follows [19], [20].

N ≥ 0 a b
b > a n×n R > 0
x : [a,b]→ Rn

Lemma  2: For  an  integer ,  two  scalars  and  with
, an  real matrix , and a differentiable function

 such  that  the  integrations  below  are  well
defined, then
 

−(b−a)
w b

a
ẋT (s)Rẋ(s)ds ≤ −ϖT

NΛ
T
NΘ

T
NRNΘNΛNϖN

where
 

RN = diag
{
R,3R, · · · , (2N +1)R

}
ΘN =


I 0 · · · 0
I (−1)1

(
1
1

) (
2
1

)
I · · · 0

...
...

...
...

I (−1)1
(

N
1

) (N+1
1

)
I · · · (−1)N

(N
N

) (
2N
N

)
I

 (12)

 

ΛN =


I −I 0 0 · · · 0
0 −I I 0 · · · 0
0 −I 0 2I · · · 0
...

...
...

...
...

...
0 −I 0 0 · · · NI

 (13)

 

ϖN = col
{
x(b), x(a),γ1(a,b), . . . ,γN(a,b)

}
γk(a,b) =

w b

a

(b− s)k−1

(b−a)k x(s)ds, (k = 1,2, . . . ,N).
 

III.  Application to Stability Analysis of
Time-delay Systems

Consider the following time-delay system described by
 {

ẋ(t) = Ax(t)+Bx(t−d(t))
ϕ(θ) = ϕ0, θ ∈ [−h̄,0]

(14)

x(t) ∈ Rn ϕ0

A,B ∈ Rn×n d(t)
where  is  the  system  state  and  is  the  initial
condition; .  Suppose  that  the  time  delay 
satisfies one of two cases as

d(t)Case 1:  is a differentiable function satisfying
 

0 ≤ d(t) ≤ h̄, µ1 ≤ ḋ(t) ≤ µ2 (15)
d(t)Case 2:  is a continuous function satisfying

 

0 ≤ d(t) ≤ h̄ (16)
h̄, µ1 µ2 µ1 < 0 µ2 > 0where  and  are constants with  and .

 

A.  Stability Criteria for the System (14) in Case 1
To begin with, we denote

 {
ν1(t) = col{ν11(t), ν12(t), ν13(t), ν14(t)}
ν2(t) = col{ν21(t), ν22(t), ν23(t), ν24(t)} (17)

where 

ν1i(t) =
w t

t−d(t)

(t− s)i−1x(s)
di(t)

ds

ν2i(t) =
w t−d(t)

t−h̄

(t−d(t)− s)i−1x(s)
(h̄−d(t))i

ds

Construct  the  following  Lyapunov-Krasovskii  functional
candidate as
 

V(t, xt) = V1(t, xt)+V2(t, xt)+V3(t, xt) (18)
where
 

V1(t, xt) = ψT
1 (t)P(d(t))ψ1(t)

V2(t, xt) =
w t

t−d(t)
ψT

2 (s, t)Q1ψ2(s, t)ds

+
w t−d(t)

t−h̄
ψT

3 (s, t)Q2ψ3(s, t)ds

V3(t, xt) = h̄
w t

t−d(t)
(h̄− t+ s)ẋT (s)R1 ẋ(s)ds

+ h̄
w t−d(t)

t−h̄
(h̄− t+ s)ẋT (s)R2 ẋ(s)ds

Q1 > 0,Q2 > 0,R1 > 0,R2 > 0where  and
 

P(d(t)) = d3(t)P3+d2(t)P2+d(t)P1+P0

ψ1(t) = col{ψ0(t),d(t)ν1(t), (h̄−d(t))ν2(t)}
ψ0(t) = col{x(t), x(t−d(t)), x(t− h̄)}

ψ2(s, t) = col
{
ẋ(s), x(s), x(t),

w s

t−d(t)
x(θ)dθ,

w t

s
x(θ)dθ,w s

t−d(t)
(s− θ)x(θ)dθ,

w t

s
(θ− s)x(θ)dθ

}
ψ3(s, t) = col

{
ẋ(s), x(s), x(t),

w s

t−h̄
x(θ)dθ,

w t−d(t)

s
x(θ)dθ,w s

t−h̄
(s− θ)x(θ)dθ,

w t−d(t)

s
(θ− s)x(θ)dθ

}
(19)

Pi ∈ S11nwith .
V(t, xt)

P(d(t))
V1(t, xt) V1(t, xt)

d(t)
P(d(t)) ∀d(t) ∈ [0, h̄] Pi (i = 0,1,2,3)

P(d(t)) > 0
∀d(t) ∈ [0, h̄] X > 0

S

Remark  2: The  Lyapnuv-Krasovskii  functional  is
different  from some existing  ones  published  in  the  literature.
On the one hand, a cubic matrix-valued polynomial  in
(19) is introduced in ,  leading to the fact that 
is  a  cubic  polynomial  on .  The  positive  finiteness  of

 for  does  not  need  all  to
be  positive  definite.  By  Theorem  1  (ii),  for

 if  and  only  if  there  exist  an  and  a  skew-
symmetric real matrix  such that
 

P0
1
2 P1 0

1
2 P1 P2

1
2 P3

0 1
2 P3 0

−
[
H̃1

H̃2

]T [ X S
S T −X

] [H̃1

H̃2

]
> 0

ϵi ∈ R (i = 1,2)
which,  by  Lemma  1,  is  equivalent  to  that  there  exist

 such that
 

P0
1
2 P1 0

1
2 P1 P2

1
2 P3

0 1
2 P3 0

+ ϵ1(H̃2+ H̃1)T (H̃2+ H̃1) > 0 (20)

 
P0

1
2 P1 0

1
2 P1 P2

1
2 P3

0 1
2 P3 0

+ ϵ2(H̃2−H̃1)T (H̃2−H̃1) > 0 (21)

where 
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H̃1 =

[
h̄I 0 0
0 h̄I 0

]
, H̃2 =

[
h̄I −2I 0
0 h̄I −2I

]
.

r s
t−d(t)(s− θ)x(θ)dθ

r t
s (θ− s)

x(θ)dθ
r s

t−h̄(s− θ)x(θ)dθ
r t−d(t)

s (θ− s)x(θ)dθ
V2(t, xt)

On the other hand, four vectors , 
,  and  are  included

in ,  which  brings  more  information  on  past  system
states into the derivative of the Lyapnuv-Krasovskii functional.

V(t, xt)Based  on  the  Lyapnuv-Krasovskii  functional ,  we
now state and establish the following result.

µ1,µ2 h̄

Qi > 0 Ri > 0 P0,P1,P2,P3,Zi
Yi

ϵi, εi1, εi2 (i = 1,2)

Proposition 1: For given constants , and , the system
described  by  (14)  and  (15)  is  asymptotically  stable  if  there
exist , , symmetric real matrices ,
real  matrices  with  appropriate  dimensions  and  scalars

 such that (20), (21) and
 [R1−Z1 Y1

YT
1 R2

]
≥ 0,

[R1 Y2

YT
2 R2−Z2

]
≥ 0 (22)

 

Φ(µi)−εi1(H2+H1)T (H2+H1) < 0 (23)
 

Φ(µi)−εi2(H2−H1)T (H2−H1) < 0, i = 1,2 (24)
Ri = diag{Ri,3Ri,5Ri,7Ri,9Ri} (i = 1,2)where , and

 

H1 =

[
h̄I 0 0

0 h̄I 0

]
, H2 =

[
h̄I −2I 0
0 h̄I −2I

]
,

Φ(ḋ(t)) =


Φ0

1
2Φ1 0

1
2Φ1 Φ2

1
2Φ3

0 1
2Φ3 Φ4

 ,
where
 

Φ0 = He{CT
11P0C2}+ ḋ(t)CT

11P1C11+CT
31Q1C31

−CT
41Q2C41+ (1−ḋ(t))(CT

61Q2C61−CT
51Q1C51)

+He
{
ℵT

11Q1D10+

3∑
j=1

ℵT
2 jQ2D(3+ j)0

}
+ h̄2CT

0 R1C0+ h̄2(1− ḋ(t))eT
4 (R2−R1)e4

−CT
7 (R1+Z1)C7−CT

8R2C8−He
{
CT

7 Y2C8
}

Φ1 = He{(CT
11P1+CT

12P0)C2+ ḋ(t)CT
11P1C12}

+He{CT
31Q1C32−CT

41Q2C42}+2ḋ(t)CT
11P2C11

+ (1− ḋ(t))He{CT
61Q2C62−CT

51Q1C52}

+He
{ 3∑

j=1

[
ℵT

1 jQ1D j1+ℵT
2 jQ2D(3+ j)1

] }
+ 1

h̄

[
CT

7 Z1C7−CT
8 Z2C8−He

{
CT

7 (Y1−Y2)C8
} ]

− h̄(1− ḋ(t))eT
4 (R2−R1)e4

Φ2 = He{(CT
11P2+CT

12P1)C2+2ḋ(t)CT
11P2C12}

+He{CT
31Q1C33−CT

41Q2C43}+CT
32Q1C32

−CT
42Q2C42+ ḋ(t)(3CT

11P3C11+CT
12P1C12)

+ (1− ḋ(t))He{CT
61Q2C63−CT

51Q1C53}
+ (1− ḋ(t))(CT

62Q2C62−CT
52Q1C52)

+He
{ 3∑

j=1

[
ℵT

1 jQ1D j2+ℵT
2 jQ2D(3+ j)2

] }
 

Φ3 = He{(CT
11P3+CT

12P2)C2+3ḋ(t)CT
11P3C12}

+He{CT
32Q1C33−CT

42Q2C43}+2ḋ(t)CT
12P2C12

+ (1− ḋ(t))He{CT
62Q2C63−CT

52Q1C53}

+He
{ 3∑

j=1

[
ℵT

1 jQ1D j3+ℵT
2 jQ2D(3+ j)3

] }
Φ4 = He{CT

12P3C2}+3ḋ(t)CT
12P3C12+CT

33Q1C33

−CT
43Q2C43+ (1− ḋ(t))(CT

63Q2C63−CT
53Q1C53)

+He
{ 3∑

j=2

[
ℵT

1 jQ1D j4+ℵT
2 jQ2D(3+ j)4

] }
C0 = Ae1+Be2 col{e1,e2,e3,e4,e5,e6,e7}

13×13 e6 = col{e61,e62,e63,e64}
e7 = col{e71,e72,e73,e74}

with ,  and  being  a
 identity  matrix  with  and

; and
 

C11 = col{e1,e2,e3,0, h̄e7}, C12 = col{0,0,0,e6,−e7}
C2 = col{C0, (1−ḋ(t))e4,e5,Γ1(ḋ(t)),Γ2(ḋ(t))}
Γ1(ḋ(t)) = col{e1− (1− ḋ(t))e2, ℓ11, ℓ12, ℓ13}
Γ2(ḋ(t)) = col{(1− ḋ(t))e2− e3, ℓ21, ℓ22, ℓ23}
ℓ1i = −(1− ḋ(t))e2+ i[e6i− ḋ(t)e6(i+1)]

ℓ2i = −e3+ i[(1− ḋ(t))e7i+ ḋ(t)e7(i+1)]
C31 = col{C0,e1,e1,e40}, C32 = col{e30,e61,e30},
C33 = col{e50,e62,0}, C42 = col{e40,−e71,0,−2h̄ρ1},
C41 = col{e5,e3,e1,0, h̄e71,0, h̄2ρ1}, C43 = col{e60,ρ1},
C51 = col{e4,e2,e1,e40},C52 = col{e40,e61,e20},
C53 = col{e60,σ1}, C61 = col{e4,e2,e1, h̄e71,0, h̄2e72,0},
C62 = col{e30,−e71,0,−2h̄e72,0}, C63 = col{e50,e72,0}
C7 = Θ4Λ4col{e1,e2,e6}, C8 = Θ4Λ4col{e2,e3,e7}
ℵ11 = col{e20,C0,−(1− ḋ(t))e2,e1,e20},
ℵ12 = col{e50, (1− ḋ(t))e2,0}, ℵ13 = col{e60,e1}
ℵ21 = col{e20,C0,−e3, (1− ḋ(t))e2,e20},
ℵ22 = col{e60, (1− ḋ(t))e2}, ℵ23 = col{e50,e3,0}
Θ4 Λ4 N = 4

e j0 = 0 jn×13n ( j ≥ 2)
where  and  are  defined  in  (12)  and  (13)  with ,
respectively; and ; and
 

D10 = col{e1− e2,e60}, D11 = col{0,e61,e1,e40}
D12 = col{e30,e62,σ1,e20}, D13 = col{e50,

1
2 e63,σ2}

D21 = col{e61− e1,e60}, D22 = col{0,−σ1,− 1
2 e1,e40}

D23 = col{e30,σ3,−σ2,e20}, D24 = col{e50,σ5,σ4}
D31 = col{σ7,e60}, D32 = col{0,e62,

1
2 e1,e40}

D33 = col{e30,
1
2 e63,σ6,e20}, D34 = col{e50,

1
6 e64,σ8}

D40 = col{e2− e3, h̄e71, h̄e1, h̄2e72, h̄2ρ1,
1
2 h̄3e73, h̄3ρ2}

D41 = −col{0,e71,e1,2h̄e72,2h̄ρ1,
3
2 h̄2e73,3h̄2ρ2}

D42 = col{e30,e72,ρ1,
3
2 h̄e73,3h̄ρ2}

D43 = col{e50,− 1
2 e73,−ρ2}

D50 = col{h̄ρ0, h̄2e72,
1
2 h̄2e1,

1
2 h̄3e73, h̄3ρ6,

1
6 h̄4e74, h̄4ρ8}

D51 = −col{ρ0,2h̄e72, h̄e1,
3
2 h̄2e73,3h̄2ρ6,

2
3 h̄3e74,4h̄3ρ8}

D52 = col{0,e72,
1
2 e1,

3
2 h̄e73,3h̄ρ6, h̄2e74,6h̄2ρ8}

D53 = −col{e30,
1
2 e73,ρ6,

2
3 h̄e74,4h̄ρ8}

D54 = col{e50,
1
6 e74,ρ8}, D64 = col{e50,ρ5,ρ4}
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D60 = col{h̄ρ7,−h̄2ρ1,− 1
2 h̄2e1, h̄3ρ3,−h̄3ρ2, h̄4ρ5, h̄4ρ4}

D61 = col{−ρ7,2h̄ρ1, h̄e1,−3h̄2ρ3,3h̄2ρ2,−4h̄3ρ5,−4h̄3ρ4}
D62 = col{0,−ρ1,− 1

2 e1,3h̄ρ3,−3h̄ρ2,6h̄2ρ5,6h̄2ρ4}
D63 = col{e30,−ρ3,ρ2,−4h̄ρ5,−4h̄ρ4}

ρ0 = e71− e3with  and
 

σ1 = e61− e62, σ2 =
1
2 (e63−2e62+ e61)

σ3 =
1
2 (e63−2e62), σ4 =

1
6 (e64−3e63+3e62− e61)

σ5 =
1
6 (e64−3e63), σ6 =

1
2 (e61− e63)

σ7 = e61− e2, σ8 =
1
6 (e64−3e62+2e61)

ρ1 = e71− e72, ρ2 =
1
2 (e73−2e72+ e71)

ρ3 =
1
2 (e73−2e72), ρ4 =

1
6 (e74−3e73+3e72− e71)

ρ5 =
1
6 (e74−3e73), ρ6 =

1
2 (e71− e73)

ρ7 = e71− e2, ρ8 =
1
6 (e74−3e72+2e71).

P(d(t)) ∀d(t) ∈ [0, h̄]
V(t, xt)

V(t, xt)

Proof: First, the conditions (20) and (21) ensure that the real
matrix  is  positive  definite  for .  Thus,

 constructed  in  (18)  is  a  Lyapunov-Krasovskii
functional  candidate.  Then,  we  take  the  derivative  of 
along with the trajectory of the system (14) to obtain
 

V̇(t, xt) = V̇1(t, xt)+ V̇2(t, xt)+ V̇3(t, xt) (25)
where
 

V̇1(t, xt) = 2ψT
1 (t)P(d(t))ψ̇1(t)+ψT

1 (t)Ṗ(d(t))ψ1(t)

V̇2(t, xt) = ψT
2 (t, t)Q1ψ2(t, t)−ψT

3 (t− h̄, t)Q2ψ3(t− h̄, t)

− (1− ḋ(t))ψT
2 (t−d(t), t)Q1ψ2(t−d(t), t)

+ (1− ḋ(t))ψT
3 (t−d(t), t)Q2ψ3(t−d(t), t)

+
w t

t−d(t)
2ψT

2 (s, t)Q1
∂

∂t
ψ2(s, t)ds

+
w t−d(t)

t−h̄
2ψT

3 (s, t)Q2
∂

∂t
ψ3(s, t)ds

V̇3(t, xt) = h̄2 ẋT (t)R1 ẋ(t)+ h̄(1− ḋ(t))(h̄−d(t))
× ẋT (t−d(t))(R2−R1)ẋ(t−d(t))
+I1(t)+I2(t)

I1(t) = −h̄
r t

t−d(t) ẋT (s)R1 ẋ(s)ds I2(t) = −h̄
r t−d(t)

t−h̄
ẋT (s)R2 ẋ(s)ds
where  and 

. Denote
 

ξ(t) = col
{
x(t), x(t−d(t)), x(t− h̄), ẋ(t−d(t)),

ẋ(t− h̄), ν1(t), ν2(t)
}

ν1(t) ν2(t)where  and  are defined in (17). Note that
 

d
dt

[d(t)ν1(t)] = Γ1(ḋ(t))ξ(t)

d
dt

[(h̄−d(t))ν2(t)] = Γ2(ḋ(t))ξ(t)

Γ1(·) Γ2(·)where  and  are defined in Proposition 1.  Hereafter,
the  notations  used  are  also  defined  in  Proposition  1  without
declaration. Then
 

ψ1(t) =C1ξ(t), ψ̇1(t) =C2ξ(t)

C1 =C11+d(t)C12where . Hence, we have that
 

V̇1(t, xt) = ξT (t)Ψ1(d(t), ḋ(t))ξ(t) (26)

where
 

Ψ1(d(t), ḋ(t)) = ḋ(t)CT
1

[
3d2(t)P3+2d(t)P2+P1

]
C1

+He
{
CT

1 P(d(t))C2
}

Some algebraic manipulations follow that
 

ψ2(t, t) =C3ξ(t),ψ3(t− h̄, t) =C4ξ(t)
ψ2(t−d(t), t) =C5ξ(t),ψ3(t−d(t), t) =C6ξ(t)

where
 

C j =C j1+d(t)C j2+d2(t)C j3, j = 3,4,5,6

Since
 

∂

∂t
ψ2(s, t) = [ℵ11+g1(s)ℵ12+ (t− s)ℵ13]ξ(t)

∂

∂t
ψ3(s, t) = [ℵ21+g1(s)ℵ22+g2(s)ℵ23]ξ(t)

g1(s) = t−d(t)− s g2(s) = t− h̄− swhere  and . Then
 w t

t−d(t)
2ψT

2 (s, t)Q1
∂

∂t
ψ2(s, t)ds

= 2ξT (t)ℵT
11Q1

w t

t−d(t)
ψ2(s, t)ds

+2ξT (t)ℵT
12Q1

w t

t−d(t)
g1(s)ψ2(s, t)ds

+2ξT (t)ℵT
13Q1

w t

t−d(t)
(t− s)ψ2(s, t)ds,

and
 w t−d(t)

t−h̄
2ψT

3 (s, t)Q2
∂

∂t
ψ3(s, t)ds

= 2ξT (t)ℵT
21Q2

w t−d(t)

t−h̄
ψ3(s, t)ds

+2ξT (t)ℵT
22Q2

w t−d(t)

t−h̄
g1(s)ψ3(s, t)ds

+2ξT (t)ℵT
23Q2

w t−d(t)

t−h̄
g2(s)ψ3(s, t)ds

Note that
 w t

t−d(t)
ψ2(s, t)ds =D1(d(t))ξ(t) =

3∑
i=0

di(t)D1iξ(t)

w t

t−d(t)
g1(s)ψ2(s, t)ds =D2(d(t))ξ(t) =

4∑
i=1

di(t)D2iξ(t)

w t

t−d(t)
(t− s)ψ2(s, t)ds =D3(d(t))ξ(t) =

4∑
i=1

di(t)D3iξ(t)

w t−d(t)

t−h̄
ψ3(s, t)ds =D4(d(t))ξ(t) =

3∑
i=0

di(t)D4iξ(t)

w t−d(t)

t−h̄
g1(s)ψ3(s, t)ds =D5(d(t))ξ(t) =

4∑
i=0

di(t)D5iξ(t)

w t−d(t)

t−h̄
g2(s)ψ3(s, t)ds =D6(d(t))ξ(t) =

4∑
i=0

di(t)D6iξ(t),

which lead to
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V̇2(t, xt) + V̇3(t, xt) = ξT (t)Ψ2(d(t), ḋ(t))ξ(t)
+I1(t)+I2(t) (27)

where
 

Ψ2(d(t), ḋ(t)) = (1− ḋ(t))(CT
6 Q2C6−CT

5 Q1C5)

+He
{ 3∑

j=1

[
ℵT

1 jQ1D j(d(t))+ℵT
2 jQ2D3+ j(d(t))

] }
+CT

3 Q1C3−CT
4 Q2C4+ h̄2CT

0 R1C0

+ h̄(1− ḋ(t))(h̄−d(t))eT
4 (R2−R1)e4

For the integral term in (27), applying Lemma 2, one has
 

I1(t) ≤ − 1
α
ξT (t)CT

7R1C7ξ(t)

I2(t) ≤ − 1
1−αξ

T (t)CT
8R2C8ξ(t)

α = d(t)/h̄where ; and
 

C7 = Θ4Λ4col{e1,e2,e6}, C8 = Θ4Λ4col{e2,e3,e7}.
Use the improved reciprocally convex inequality [21] to get

 

I1(t)+I2(t) ≤ ξT (t)Ψ3(d(t))ξ(t) (28)
Ψ3(d(t)) = Ψ31+d(t)Ψ32where  with

 

Ψ31 = −CT
7 (R1+Z1)C7−CT

8R2C8−He
{
CT

7 Y2C8
}

Ψ32 =
1
h̄

[
CT

7 Z1C7−CT
8 Z2C8−He

{
CT

7 (Y1−Y2)C8
} ]

Substituting (28) into (27) and into (25) yields
 

V̇(t, xt) ≤ ξT (t)Ψ(d(t), ḋ(t))ξ(t) (29)
where
 

Ψ(d(t), ḋ(t)) = Ψ1(d(t), ḋ(t))+Ψ2(d(t), ḋ(t))+Ψ3(d(t))

=

4∑
i=0

di(t)Φi (30)

Ψ(d(t), ḋ(t)) ḋ(t) ∈ [µ1,µ2] Ψ(d(t), ḋ(t))
< 0 ḋ(t) ∈ [µ1,µ2] Ψ(d(t),µ1) < 0
Ψ(d(t),µ2) < 0 Ψ(d(t),µ1) < 0
Ψ(d(t),µ2) < 0 L1 > 0,L2 > 0

T1 T2

Since  is  linear  on , 
 for  if  and  only  if  and

.  By  Theorem  1,  and
 are equivalent to that there exist 

and skew-symmetric real matrices  and  such that
 

Φ(µ1)+HT
[
L1 T1

T T
1 −L1

]
H < 0 (31)

 

Φ(µ2)+HT
[
L2 T2

T T
2 −L2

]
H < 0 (32)

i = 1
i = 2

ε0 > 0
V̇(t, xt) ≤ −ε0ξ

T (t)ξ(t) ≤ −ε0xT (t)x(t)

which,  respectively,  are  equivalent  to  (23)  and (24)  for ,
and  (23)  and  (24)  for .  Thus,  if  the  conditions  in
(20)–(24)  are  satisfied,  there  exists  a  scalar  such  that

,  which  means  that  the
system (14) subject to (15) is asymptotically stable. ■

∑3
i=0 di(t)Pi∑4

i=0 di(t)Φi

Remark 3: The proof of Proposition 1 presents an approach
to  stability  analysis  of  time-delay  systems.  The  defining
feature of it lies in that: i) A cubic matrix-valued polynomial,
i.e.  (see  (19),  is  introduced  in  the  Lyapunov-
Krasovskii functional; ii) A quartic matrix-valued polynomial,
i.e.  (see (30)), is produced in the derivative of the

∑3
i=0 di(t)Pi > 0

∑4
i=0 di(t)Φi < 0 d(t) ∈ [0, h̄]

Lyapunov-Krasovskii  functional;  and  iii)  Theorem  1  is
employed  to  obtain  two necessary  and  sufficient  conditions
such that  and  for ,
respectively.  If  we  do  not  employ  Theorem  1,  some  other
methods  should  be  used  to  estimate  them,  which  definitely
yields  conservative  stability  criteria.  Moreover,  it  should  be
mentioned that, to the best of the authors' knowledge, there is
no  effective  method  available  to  estimate  such  cubic  and
quartic polynomials on the time-varying delay. A well-studied
numerical example in Section IV shows that Proposition 1 can
deliver  some  larger  delay  upper  bounds  than  some  existing
ones.
 

B.  Stability Criteria for the System (14) in Case 2
In  Case  2,  since  information  on  delay-derivative  is

unknown,  the  Lyapunov-Krasovskii  functional  candidate  is
chosen as
 

Ṽ(t, xt) = ψ̃T
1 (t)Pψ̃1(t)+ Ṽ1(t, xt)+ Ṽ2(t, xt) (33)

where
 

Ṽ1(t, xt) =
w t

t−h̄
ψ̃T

2 (s, t)Qψ̃2(s, t)ds

Ṽ2(t, xt) = h̄
w t

t−h̄
(h̄− t+ s)ẋT (s)Rẋ(s)ds.

P > 0,Q > 0,R > 0with ; and
 

ψ̃1(t) = col{x(t),
w t

t−h̄
x(s)ds,

w t

t−h̄
(t− s)x(s)ds}

ψ̃2(s, t) = col
{
x(s), x(t),

w s

t−h̄
x(θ)dθ,

w t

s
x(θ)dθ,w s

t−h̄
(s− θ)x(θ)dθ,

w t

s
(θ− s)x(θ)dθ

}
.

h̄ > 0
P > 0

Q > 0 R > 0 Z1,Z2
Y1,Y2 ε1 ε2

Proposition 2: For a given , the system (14) with (16)
is  asymptotically  stable  if  there  exist  real  matrices ,

, ,  symmetric  real  matrices ,  real  matrices
 with appropriate  dimensions and two scalars  and 

such that
 [R−Z1 Y1

YT
1 R

]
≥ 0,

[ R Y2

YT
2 R−Z2

]
≥ 0 (34)

 

Φ̃−ε1(H̄2+ H̄1)T (H̄2+ H̄1) < 0 (35)
 

Φ̃−ε2(H̄2−H̄1)T (H̄2−H̄1) < 0 (36)
R = diag{R,3R,5R,7R,9R}where , and

 

H̄1 =

[
h̄I 0 0
0 h̄I 0

]
, H̄2 =

[
h̄I −2I 0
0 h̄I −2I

]
,

Φ̃ =


Φ̃0

1
2 Φ̃1 0

1
2 Φ̃1 Φ̃2

1
2 Φ̃3

0 1
2 Φ̃3 Φ̃4

 ,
where
 

Φ̃0 = h̄2C̃T
0 RC̃0+ C̃T

30QC̃30− C̃T
40QC̃40− C̃T

6RC̃6

− C̃T
5 (R+Z1)C̃5+He{Σ3

j=1ℵ
T
j QD̃ j0}

+He{C̃T
10PC̃20− C̃T

5 Y2C̃6}
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Φ̃1 = He{C̃T
10PC̃21+ C̃T

11PC̃20+Σ
3
j=1ℵ

T
j QD̃ j1}

+ 1
h̄

[
C̃T

5 Z1C̃5− C̃T
6 Z2C̃6−He

{
C̃T

5 (Y1−Y2)C̃6
}]

+He{C̃T
30QC̃31− C̃T

40QC̃41}
Φ̃2 = He{C̃T

11PC̃21+ C̃T
12PC̃20+ C̃T

30QC̃32− C̃T
40QC̃42}

+ C̃T
31QC̃31− C̃T

41QC̃41+He{Σ3
j=1ℵ

T
j QD̃ j2}

Φ̃3 = He{C̃T
12PC̃21+C̃T

31QC̃32−C̃T
41QC̃42+Σ

3
j=1ℵ

T
j QD̃ j3}

Φ̃4 = He{ℵT
2 QD̃24+ℵT

3 QD̃34}+ C̃T
32QC̃32− C̃T

42QC̃42

C̃0 = Aẽ1+Bẽ2where ; and
 

C̃10 = col{ẽ1, h̄ẽ51, h̄2ẽ52}, C̃11 = col{0, ρ̃1, h̄ρ̃3}
C̃12 = col{ẽ20, ρ̃2}, C̃20 = col{C̃0, ẽ1− ẽ3, h̄(ẽ51− ẽ3)}
C̃21 = col{ẽ20, ρ̃1}, C̃30 = col{ẽ1, ẽ1, h̄ẽ51,0, h̄2ẽ52,0}
C̃31 = col{ẽ20, ρ̃1,0, h̄ρ̃3,0}, C̃32 = col{ẽ40, ρ̃2,0}
C̃40 = col{ẽ3, ẽ1,0, h̄ẽ51,0, h̄2ρ̃4}
C̃41 = col{ẽ30, ρ̃1,0, h̄(ẽ41−2ρ̃4)}, C̃42 = col{ẽ50,−ρ̃2}
C̃5 = Θ4Λ4col{ẽ1, ẽ2, ẽ4}, C̃6 = Θ4Λ4col{ẽ2, ẽ3, ẽ5}
D̃10 = col{h̄ẽ51, h̄ẽ1, h̄2ẽ52, h̄2ρ̃4,

1
2 h̄3ẽ53,

1
2 h̄3ρ̃8}

D̃11 = col{ρ̃1,0, h̄ρ̃3, h̄(ρ̃1− ρ̃3), 1
2 h̄2ρ̃5,

1
2 h̄2ρ̃9}

D̃12 = col{ẽ20, ρ̃2,−ρ̃2,
1
2 h̄ρ̃6,

1
2 h̄ρ̃10}

D̃13 = col{ẽ40,
1
2 ρ̃7,

1
2 ρ̃7}, D̃20 = col{−h̄2ρ̃4,− 1

2 h̄2ẽ1,

1
2 h̄3(ρ̃8− ẽ51),− 1

2 h̄3ρ̃8,
1
6 h̄4(ẽ54−3ẽ53), 1

6 h̄4ρ̃14}
D̃21 = col{h̄(ρ̃3− ρ̃1),0, 1

2 h̄2(ρ̃9− ρ̃1),− 1
2 h̄2ρ̃9,

1
6 h̄3(ρ̃11−3ρ̃5),− 1

6 h̄3(ẽ41+4ρ̃14)}
D̃22 = col{ρ̃2,0, 1

2 h̄ρ̃10,− 1
2 h̄ρ̃10,

1
6 h̄2(ρ̃12−3ρ̃6),

1
2 h̄2(ẽ42+2ρ̃14)}

D̃23 = col{ẽ20,
1
2 ρ̃7,− 1

2 ρ̃7,
1
6 h̄(ρ̃13−3ρ̃7), 1

6 h̄(ρ̃13−3ρ̃7)}
D̃24 = col{ẽ40,

1
6 (ẽ44+ ρ̃14), 1

6 (ẽ44+ ρ̃14)}
D̃30 = col{h̄2ẽ52,

1
2 h̄2ẽ1,

1
2 h̄3ẽ53,

1
2 h̄3(ẽ51− ẽ53),

1
6 h̄4ẽ54,

1
6 h̄4(ρ̃14+3ρ̃8)}

D̃31 = col{h̄ρ̃3,0, 1
2 h̄2ρ̃5,

1
2 h̄2(ρ̃1− ρ̃5), 1

6 h̄3ρ̃11,
1
6 h̄3ρ̃16}

D̃32 = col{ρ̃2,0, 1
2 h̄ρ̃6,− 1

2 h̄ρ̃6,
1
6 h̄2ρ̃12,

1
2 h̄2ρ̃15}

D̃33 = col{ẽ20,
1
2 ρ̃7,− 1

2 ρ̃7,
1
6 h̄ρ̃13,

1
6 h̄ρ̃13}

D̃34 = col{ẽ40,
1
6 (ρ̃14+ ẽ44), 1

6 (ρ̃14+ ẽ44)}

col{ẽ1, ẽ2, ẽ3, ẽ4, ẽ5} 11×11
ẽ4 = col{ẽ41, ẽ42, ẽ43, ẽ44} ẽ5 = col{ẽ51, ẽ52, ẽ53 ẽ54}

ẽ j0 = 0 jn×11n ( j ≥ 2)

with  being  an  identity  matrix
with  and , ,
and ; and
 

ρ̃1 = ẽ41− ẽ51, ρ̃2 = ẽ42+ ẽ52− ẽ51, ρ̃3 = ẽ51−2ẽ52

ρ̃4 = ẽ51− ẽ52, ρ̃5 = 2ẽ52−3ẽ53, ρ̃6 = ρ̃3− ρ̃5

ρ̃7 = ẽ43− ẽ51+2ẽ52− ẽ53, ρ̃8 = ẽ53+ ρ̃3

ρ̃9 = ẽ41−3ρ̃8, ρ̃10 = 3ρ̃8−2ẽ42, ρ̃11 = 3ẽ53−4ẽ54

ρ̃12 = 3ẽ52−9ẽ53+6ẽ54, ρ̃13 = ẽ51−3ρ̃5−4ẽ54

ρ̃14 = ẽ54− ρ̃4+ ρ̃5, ρ̃15 = ẽ51−3ẽ53+2ẽ54− ẽ42

ρ̃16 = 3ρ̃9−4ρ̃14− ẽ41, ℵ1 = col{0,C̃0,−ẽ3, ẽ1, ẽ20}
ℵ2 = col{ẽ40, ẽ3,0}, ℵ3 = col{ẽ50, ẽ1}.

Ṽ(t, xt)Proof: First, taking the time-derivative of  yields 

˙̃V(t, xt) = 2ψ̃T
1 (t)P ˙̃ψ1(t)− ψ̃T

2 (t− h̄, t)Qψ̃2(t− h̄, t)

+ ψ̃T
2 (t, t)Qψ̃2(t, t)+

w t

t−h̄
2ψ̃T

2 (s, t)Q
∂

∂t
ψ̃2(s, t)ds

+ h̄2 ẋT (t)Rẋ(t)− h̄
w t

t−h̄
ẋT (s)Rẋ(s)ds.

(37)
ξ̃(t) = col

{
x(t), x(t−d(t)), x(t− h̄), ν1(t), ν2(t)

}
Let . Then

 

ψ̃1(t) = C̃10+d(t)C̃11+d2(t)C̃12
˙̃ψ1(t) = C̃20+d(t)C̃21

ψ̃2(t, t) = C̃30+d(t)C̃31+d2(t)C̃32

ψ̃2(t− h̄, t) = C̃40+d(t)C̃41+d2(t)C̃42.

Note that
 

∂

∂t
ψ̃2(s, t) = ℵ1+ (t− h̄− s)ℵ2+ (t− s)ℵ3

which leads to
 w t

t−h̄
2ψ̃T

2 (s, t)Q
∂

∂t
ψ̃2(s, t)ds = 2ℵT

1 Q
w t

t−h̄
ψ̃2(s, t)ds

+2ℵT
2 Q

w t

t−h̄
(t− h̄− s)ψ̃2(s, t)ds

+2ℵT
3 Q

w t

t−h̄
(t− s)ψ̃2(s, t)ds

After some algebraic manipulations, one has
 w t

t−h̄
ψ̃2(s, t)ds =

3∑
j=0

d j(t)D̃1 j

w t

t−h̄
(t− h̄− s)ψ̃2(s, t)ds =

4∑
j=0

d j(t)D̃2 j

w t

t−h̄
(t− s)ψ̃2(s, t)ds =

4∑
j=0

d j(t)D̃3 j.

On the other hand
 

−h̄
w t

t−h̄
ẋT (s)Rẋ(s)ds ≤ ξ̃T (t)[Ψ̃11+d(t)Ψ̃12]ξ̃(t)

where
 

Ψ̃11 = −C̃T
5 (R+Z1)C̃5− C̃T

6RC̃6−He
{
C̃T

5 Y2C̃6
}

Ψ̃12 =
1
h̄

[
C̃T

5 Z1C̃5− C̃T
6 Z2C̃6−He

{
C̃T

5 (Y1−Y2)C̃6
}]

To sum up, one has that
 

˙̃V(t, xt) ≤ ξ̃T (t)
4∑

j=0

d j(t)Φ̃ jξ̃(t) (38)

Φ̃ j ( j = 0,1, . . . ,4)
ε > 0

˙̃V(t, xt) ≤ −εξ̃T (t)ξ̃(t) ≤ −εxT (t)x(t)

where  are  defined  in  Proposition  2.  If  the
conditions in (34)–(36) are satisfied, there exists a scalar 
such  that ,  leading  to  the
asymptotic stability of the system (14) subject to (15). ■

r s
t−h̄(s− θ)x(θ)dθ

r t
s (θ− s)x(θ)dθ

Ṽ1(t, xt) d(t) ˙̃V(t, xt)r s
t−h̄(s− θ)2x(θ)dθr t

s (θ− s)2x(θ)dθ Ṽ1(t, xt)
˙̃V(t, xt)

Remark 4: From the proof of Proposition 2, one can see that
the  introduction  of  and  into

 yields  a  quartic  polynomial  on  in ,  see,
(38).  If  we  introduce  more  vectors  such  as 
and  into ,  then  a  sixth-degree
polynomial will  appear in .  However,  it  is  not an easy
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task to express explicitly such a sixth-degree polynomial. 

IV.  Numerical Example

In this  section,  we take a well-studied example to compare
Propositions  1  and  2  with  some  existing  stability  criteria
recently reported.

Example 1: Consider the system (14) with
 

A =
[−2 0

0 −0.9

]
, B =

[−1 0
−1 −1

]
(39)

Case 1: Suppose that the time-varying delay satisfies (15).

h̄ µ = −µ1 = µ2 ∈ {0.1,0.5,0.8}

h̄

In  this  case,  we  calculate  the  maximum  admissible  upper
bound  of  for . Table I lists  the
obtained  results  using  some  existing  methods  [23,  Theorem
1], [24, Theorem 1], [19, Theorem 8], [13, Proposition 2] and
[18,  Corollary  2].  However,  applying  Proposition  1  in  this
paper gives much larger upper bounds of , which can be seen
in Table I.

On the other hand, Table I also lists the number of decision
variables  (DVs)  required  in  those  methods.  It  is  clear  to  see
that  Proposition  1  requires  a  larger  number  of  DVs,  which
means that  solving the matrix inequalities  in  Proposition 1 is
much time-consuming. However, with the rapid development
of  computer  technology,  such  a  number  of  DVs  is  not  a
problem for  high  performance  computers  to  solve  the  matrix
inequalities in Proposition 1.

Case 2: Suppose that the time-varying delay satisfies (16).

h̄ = 3.04

In  this  case,  we  use  Proposition  2  to  compare  with  some
existing  methods  [13],  [25]–[27]. Table II lists  both  the
obtained delay upper bounds and the required number of DVs
by  [26,  Corollary  1],  [27,  Proposition  6],  [25,  Theorem  2],
[13,  Proposition  6]  and  Proposition  2  in  this  paper.  From
Table II, one can see that Proposition 2 delivers a larger upper
bound  than  those  in  [13],  [25]–[27].  Moreover,  the

number of DVs required in Proposition 2 is less than those of
[25, Theorem 2] and [13, Proposition 6]. 

V.  Conclusion

Stability  of  linear  systems  with  a  time-varying  delay  has
been  studied.  First,  a  necessary  and  sufficient  condition  on
matrix-valued  polynomial  inequalities  has  been  established.
Then,  this  condition  has  been  employed  to  formulate  two
stability  criteria  for  two  cases  of  the  time-varying  delay,
respectively, where the time-varying delay is differentiable or
only  continuous.  Simulation  has  shown  that  the  obtained
stability  criteria  can  provide  larger  delay  upper  bounds  than
some existing ones.
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