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   Abstract—Motivated  by  the  converse  Lyapunov  technique  for
investigating  converse  results  of  semistable  switched  systems  in
control theory, this paper utilizes a constructive induction method
to identify  a  cost  function for  performance gauge of  an average,
multi-cue multi-choice (MCMC), cognitive decision making model
over  a  switching time interval.  It  shows that  such a  constructive
cost function can be evaluated through an abstract energy called
Lyapunov  function  at  initial  conditions.  Hence,  the  performance
gauge problem for the average MCMC model becomes the issue
of finding such a Lyapunov function, leading to a possible way for
designing  corresponding  computational  algorithms  via  iterative
methods  such  as  adaptive  dynamic  programming.  In  order  to
reach this goal,  a series of technical results are presented for the
construction  of  such  a  Lyapunov  function  and  its  mathematical
properties  are  discussed  in  details.  Finally,  a  major  result  of
guaranteeing  the  existence  of  such  a  Lyapunov  function  is
rigorously proved.
    Index Terms—Cognitive  modeling,  decision  making,  Lyapunov
function, multi-cue multi-choice tasks, performance gauge.
 

I.  Introduction

FOR  many  critical  infrastructure  systems,  such  as  power
transmission networks, water distribution systems, and gas

pipeline  networks,  human  operators  are  naturally  part  of  the
system decision  making process  in  which they have  absolute
authority  to  hold  off  the  decision  made  by  automation  or
control  systems.  The  question  of  how  the  human  operators’
decision  will  affect  the  performance  of  such  systems  is  the
main  challenge  in  designing  functional,  human-intelligent
control systems [1]. Also the idea of exploring the possibility
of  optimizing  human-in-the-loop  decision  making  by  mainly
controlling  the  parts  that  may  affect  human  decision
performance  sounds  plausible  with  the  ever  increasing
presence  of  artificial  intelligence  in  daily  life.  For  this
purpose, the first logical step is to develop appropriate models
for  human  decision  process  in  the  control  system  by
integrating cognitive perspectives on human decision making.

The  concept  of  temporal  integration  of  evidence  through
sequential  probability  ratio  test  (SPRT)  has  been  widely
employed in decision-making modeling studies [2]. According
to the drift diffusion model (DDM) to which SPRT converges
in  its  continuum  limit,  decisions  are  made  by  accumulating
noisy stimulus information until the decision variable reaches
either positive or negative threshold in two-alternative forced
choice  (2AFC)  tasks.  The  DDM  has  been  proven  to  be
successful in emulating the process of decision, and due to its
connection  to  SPRT,  it  is  optimal  in  a  sense  of  maximizing
any  reward  criterion  that  is  monotonically  decreasing  with
respect to decision time [3]. In other words, DDM renders the
shortest  possible  decision  time,  given  a  specific  accuracy.
However,  as  pointed  out  by  [4],  this  optimality  description
does not consider any cost associated with behavior, or a cost
function for gathering information dynamically.

By increasing the number of decision choices and attributes
in  multi-choice  multi-cue  tasks  (MCMC),  race  models  with
mutual inhibition were adopted to depict the decision process
[3].  Although  these  models  are  intuitively  plausible  in
describing  the  decision  process,  the  notion  of  asymptotic
optimality  of  SPRT  [5]  cannot  be  applied.  Note  that  for  the
specific  case  of  two-choice  tasks,  inhibition  models  can  be
reduced  to  DDM,  and  hence,  renders  the  optimal  solution
under specific circumstances [6]. This leads to the question of
how  to  address  optimality  for  general  MCMC  tasks.  Even
before we talk about optimality, a cost associated with optimal
performance needs to be defined and its evaluation needs to be
tackled.

In  this  work we take a  control-theoretic  approach to  tackle
the  performance  evaluation  of  MCMC  tasks  modeled  by
mutual  inhibition  race  pools,  as  discussed  later  in  Section  II.
Our  focus  is  to  construct  a  performance  gauge,  which
accounts  for  the  performance  of  average  MCMC  and  at  the
same time deals  with  the  potential  sources  of  deviation  from
optimality  at  the  psychological  level  [7].  To  do  so,  we  first
briefly  review  the  mathematical  abstract  models  in  decision
making in Section II and then formulate our proposed problem
in Section III. In Section IV, some mathematical preliminaries
of  a  novel  method,  called  converse  Lyapunov  approach,  are
developed  to  prepare  for  construction  of  such  a  performance
gauge later, which is based on converse Lyapunov results for
switched  and  nonlinear  semistable  systems.  As  a  major
contribution  of  the  paper,  a  performance  gauge  function  is
constructed in Section V. Finally, some conclusion about this
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work is drawn in Section VI.
 

II.  Review of Decision Making Models

θA θB

In  cognitive  and  behavioral  sciences,  models  of  describing
the  process  of  making  decision  in  human  brain  start  with
analyzing  the  simple  2AFC  decision  task.  Using  the  optimal
SPRT test, the process on its continuum limit converges to the
DDM  if  symmetric  threshold  is  assumed.  In  this  case,  the
decision variable for a noisy evidence can be modeled by one-
dimensional Wiener process bounded by positive and negative
thresholds,  and ,  in which an integrator accumulates the
difference of evidences between two choices [3].

For  2AFC,  only  one  cue  is  concerned.  In  real  world
situations, always several cues are involved. One method is to
combine  and  integrate  all  cues  in  favor  of  each  choice  into
single  source  of  evidence  and  this  source  is  being  used
throughout  the  decision  process.  More  involved  treatment
includes separate processes for each cue. In this approach the
order of considering the cues and the process time devoted to
each  cue  are  two  important  aspects.  The  time  frame  of  the
decision  process  is  divided  to  subintervals  with  different
lengths during which the attention focus is only one cue [8].

In  order  to  model  multi-choice  tasks,  a  more  general  race
model,  which  is  comprised  of  separate  leaky  competing
integrators,  representing  each  choice,  with  mutual  inhibition,
was  proposed  in  [9],  where  each  integrator  gathers
information in favor of or against the associated choice based
on  the  value  of  cue.  Based  on  this  idea,  in  our  preliminary
work  [10],  we  have  proposed  the  following  leaky  integrator
race  model  to  describe  the  dynamics  of  MCMC  tasks.  This
model combines the race model and time and order scheduling
concept as follows:
 

dxi(t) =
(− km(t)xi(t)−

∑
j,i

wm(t)x j(t)+S i,m(t)
)
dt

+σidWi(t), m(t) ∈M, tl−1 ≤ t < tl (1)
xi(t) ∈ R i

t R

m : [0,∞)→M
km wm

S i,m σi

Wi(t) dWi(t)

[tl−1, tl) l = 1, . . . ,L tl

where  is  the  decision  variable  for  choice  which  is
an  abstract  measure  of  amount  of  evidence  information
gathered  at  time  [3],  is  the  set  of  real  numbers,

 is  a  piecewise  constant  cue  switching  signal,
 denotes  the  leak,  is  the  mutual  inhibition  strength

among pools,  is the external input,  is the diffusion rate,
 is  the  standard  Wiener  process,  and  is  the

standard white noise. If finite decision time span is divided to
L consecutive time intervals,  for ,  where 
denotes the time instant switching from one cue to another, we
assume that  one cue is  processed in  each time interval  based
on the given order schedule.

[tl−1, tl)
However, the model (1) does not consider a different impact

on  the  corresponding  integrator  at  each  time  span .
This  scenario  is  quite  common  when  a  decision  maker  faces
different  situations  and  prioritizes  some  tasks  by  weighing
associated  choices  differently  based  on  different  choices.
Hence,  the  MCMC  model  given  by  (1)  can  be  further
generalized as [11]:
 

dxi(t) =
(− ki,m(t)xi(t)−

∑
j,i

wi, j,m(t)x j(t)+S i,m(t)
)
dt

+σidWi(t), m(t) ∈M, tl−1 ≤ t < tl (2)
ki,m i m wi, j,m

i j m wi, j,m = w j,i,m
ki,m

where  depends on both choice  and cue ,  depends
on choice , choice , and cue , and . The leak
parameter  is  determined  by  the  inhibitory  and  excitatory
gains [10], [11] derived from the spiking neural network [12]
for human brain. Depending on the decision making situation
(normal  versus  emergency)  and  rationality  of  decision,  these
parameters  may  lead  (2)  to  generate  optimal  decision  if  the
situation  is  normal  [10],  [11],  while  they  may  lead  (2)  to
generate  heuristic  decision  if  the  situation  is  an  emergency
[10], [11], or polarized decision if antagonistic information is
inevitable for group decision [13], [14]. 

III.  Problem Formulation

xi(0)

zi(t) = E[xi(t)]

In this paper, we consider the mean or average dynamics of
(2)  under  the  case  where  its  initial  condition  is  random
with  a  mean  that  may  not  be  zero,  meaning  that  the  initial
perception may be biased. Let , where E denotes
the  expectation  operator.  Then  the  mean  or  first  moment
equation of (2) is given by
 

żi(t) = −ki,m(t)zi(t)−
∑
j,i

wi, j,m(t)z j(t)+S i,m(t)

or in vector form
 

Ż(t) =Gm(t)Z(t)+S m(t), m(t) ∈M, tl−1 ≤ t < tl (3)
t ≥ 0 (̇) = d()/dt z(t) = [z1(t), . . . ,zn(t)]T ∈ Rn (·)T

Rn n
Gm(t) ∈ Rn×n

(i, i) −ki,m(t) (i, j)
−∑ j,i wi, j,m(t) i , j i, j = 1, . . . ,n Rp×q p

q S m(t) = [S 1,m(t), . . . ,S n,m(t)]T ∈ Rn l = 1, . . . ,
M = {1,2, . . . ,M}

where , , , 
denotes  the  transpose  operation,  denotes  the  set  of -
dimensional  real  column  vectors,  is  a  square
matrix  whose th  element  is  and th  element  is

, , ,  denotes  the  set  of -
by-  real  matrices, , 
L, and  which is finite.

S m(t)

In  this  paper,  we  hypothesize  that  the  incoming  expected
evidence  vector  can  be  decomposed  into  the  following
way.

p ∈M
Hp bp S p = HpZ+bp

Hypothesis  1: For  each ,  there  exist  a  symmetric
matrix  and a vector  such that .

HpZ
bp

S p
HpZ bp

Hypothesis  1  states  that  the  incoming  evidence  can  be
decomposed  into  a  mutual  inhibition  term  and  a
remained  stimulus  term .  From  the  control-theoretic
perspective,  this  implies  that  can  be  divided  into  a  state
feedback term  plus a  residual  disturbance term .  This
postulate has been used to derive the well established mutual
inhibition model for decision making, based on the race model
(see Example 1).

Under Hypothesis 1, (3) can be written as
 

Ż(t) = Am(t)Z(t)+bm(t), m(t) ∈M, tl−1 ≤ t < tl (4)
Am(t) =Gm(t)+Hm(t)where , which is symmetric.

Z∗(t)
Z∗(t) t ∈ [tl−1, tl) Am(t)Z∗(t)+bm(t) = 0

t ≥ 0 Z∗(t)
Y(t) = Z(t)−Z∗(t) t ∈ [tl−1, tl)

Ẏ(t) = Ż(t) = Am(t)Z(t)+bm(t) =

Am(t)Z(t)−Am(t)Z∗(t) = Am(t)(Z(t)−Z∗(t)) = Am(t)Y(t)

We call a function  a piecewise constant solution of (4)
if  is a constant over  and 
for  all .  If  (4)  has  a  piecewise  constant  solution ,
then  define ,  and  hence,  for ,  the
error  dynamics  is  given  by 

, i.e.,

FIROUZNIA AND HUI: ON PERFORMANCE GAUGE OF AVERAGE MCMC DECISION MAKING: A CONVERSE LYAPUNOV APPROACH 137 



 

Ẏ(t) = Am(t)Y(t), m(t) ∈M, tl−1 ≤ t < tl (5)
which  is  an  autonomous,  switched  linear  system.  Hence,
throughout the paper, we make the following hypothesis.

Hypothesis 2: (4) has a piecewise constant solution.
Hypothesis  2  assumes  that  if  we  consider  a  single-cue

subsystem for  (4),  then it  is  possible  to  reach its  steady state
through some feedback stimulus. The following result gives a
necessary and sufficient  condition for  (4)  having a  piecewise
constant solution, which can be used to test Hypothesis 2.

rank[Am(t)] = rank
[

Am(t) −bm(t)
]

t ≥ 0
rank[·]

rank[Am] = rank
[
Am −bm

]
m ∈M

Lemma 1: The system (4) has a piecewise constant solution
if and only if  for all ,
where  denotes  the  rank  operation.  A  sufficient
condition  to  guarantee  (4)  having  a  piecewise  constant
solution is  for all .

Ax = b
x rank[A] = rank

[
A b

]
A ∈ Rn×n x ∈ Rn b ∈ Rn

Proof: The conclusions follow from the fact that  has
a  solution  if  and  only  if ,  where

, , and  (e.g., see [15]). ■
Example 1: Consider the mutual inhibition model [9] given

by
 

dx1(t) = (−kx1(t)−wx2(t)+b1)dt+σdW1(t) (6)
 

dx2(t) = (−kx2(t)−wx1(t)+b2)dt+σdW2(t) (7)
k,w , 0where . This model can be viewed as a derivation from

the following race model [16] based on Hypothesis 1:
 

dx1(t) = S 1dt+σdW1(t) (8)
 

dx2(t) = S 2dt+σdW2(t) (9)[
S 1
S 2

]
=

[
−k −w
−w −k

] [
x1
x2

]
+

[
b1
b2

]
Ż(t) = AZ(t)+b

A =
[
−k −w
−w −k

]
b =
[
b1
b2

]
where .  In  this  case,  the  mean

model of (6) and (7) can be written as , where

 and . Clearly A is symmetric.

k , ±w rank[A] = 2 = rank
[
A −b

]
b ∈ R2

ker(A) = {0} ker(A)

If ,  then  for  any .
In this case, the system (6) and (7) has a constant solution and

, where  denotes the null space of A.
k = w b1 = b2 k = −w b1 = −b2

rank[A] = 1 = rank
[
A −b

]
ker(A) = {α[1,1]T :

α ∈ R} ker(A) = {α[1,−1]T : α ∈ R}

Alternatively, if  and , or  and ,
then .  In  this  case,  the  system  (6)
and  (7)  still  has  a  constant  solution  and 

 or .
It  has  been  shown  in  [3]  that  the  DDM  solves  2AFC

problems optimally: It will on average return a decision in the
shortest  possible  time  for  a  specified  level  of  accuracy.
However,  as  pointed  out  by  [4],  this  optimality  description
does not consider any cost associated with behavior, or a cost
function for  gathering information dynamically.  Thus,  in  this
paper,  we  will  focus  on  the  performance  cost  function  that
involves  dynamic  behavior  of  information  gathering  for  the
average MCMC model  (4).  The core  question that  this  paper
attempts to address is

Question 1: Does there exist a cost function associated with
(4)  to  gauge  its  dynamic  performance  over  finite  or  infinite
horizon?

The answer to this question is imperative since it can serve
as  the  first  step  toward  finding  optimal  decision  making
strategies  for  MCMC  tasks  by  evaluating  their  performance

gauge.  We  will  give  a  positive  answer  to  this  question  by
constructing  such  a  performance  cost  function  for  average
MCMC  models.  Before  we  show  this  main  result,  some
mathematical preliminaries are needed in the next section. 

IV.  Mathematical Preliminaries

In  this  section,  we  will  present  some  mathematical
preliminaries  for  a  general  switched  linear  system  motivated
by  (5).  Specifically,  consider  the  following  switched  linear
system:
 

ẋ(t) = Aσ(t)x(t) : t ≥ 0, x(0) = x0 (10)
x(t) ∈ Rn Aσ ∈ Rn×n σ : [0,∞)→M = {1, . . . ,M}

ker(Ap) p ∈M
ker(Ap)

where , , and  is
a piecewise constant switching signal. Define the equilibrium
set for (10) as  for every . Recall from Example 1
that  may not always be trivial. In order to construct a
performance cost function for (10), we need to find a metric to
gauge  the  long-term  dynamic  behavior  of  (10).  To  this  end,
we  will  make  several  assumptions  for  (10)  to  narrow  down
our  discussion  and  to  have  a  meaningful  result.  The  first
assumption  is  motivated  by  the  MCMC  model  (2)  or
symmetric matrix A in Example 1.

p ∈M ApAssumption 1: For every ,  is symmetric.

ker(A)
The second one is for the equilibrium set of (10) inspired by

the discussion for  in Example 1.
p,q ∈M ker(Ap) = ker(Aq)Assumption 2: For every , .

Es = ker(Ap)

p ∈M

Assumption  2  ensures  that  the  possible  results  for  steady-
state decision making under different cues will  be consistent.
Let  under Assumption 2. The next result gives a
necessary and sufficient condition for (10) having an identical
equilibrium set for every , which can be used to verify
Assumption 2.

p,q ∈M ker(Ap) = ker(Aq)

rank[Ap] = rank[Aq] = rank
[
Ap
Aq

]
p,q ∈M

Lemma 2: For every ,  if and only

if  for every .

ker(A) = ker(B)

rank(A) = rank(B) = rank
[
A
B

]
A ∈ Rn×m

B ∈ Rn×l

Proof: The result follows from the fact that 

if  and  only  if  for  and
 (e.g., see [15]). ■

[·, ·] [
−k −w
−w −k

] [
−k′ −w′

−w′ −k′

]
=

[
−k′ −w′

−w′ −k′

] [
−k −w
−w −k

]
k,k′,w,w′ ∈ R

Let  denote the Lie bracket [17]. The next assumption is
motivated  by  the  mutual  inhibition  model  in  Example  1  and

the fact that ,
where .

p,q ∈M x ∈ Rn

[Apx,Aqx] = 0
Assumption  3: For  every  and  any ,

.

Apx Aqx Apx Aqx

Ap Aq ApAq = AqAp p,q ∈M

Assumption 3 indicates that the flows of (10) following the
directions of  and  define a surface, with  and 
as  coordinate  vector  fields.  It  guarantees  the  commutativity
property  of  pairwise  local  flows  of  (10)  [18],  [19]  and  two
matrices  and  [20], i.e.,  for every .
This  assumption  reflects  the  fact  that  decision  making
performance  of  (2)  occurs  on  the  plane  generated  by  the
excitatory and inhibitory gains [10], [11].

A ∈ Rn×n

λ

Reλ < 0 Reλ = 0 Reλ = 0 λ
Reλ

Recall  from  Definition  2.11  in  [21,  p.  33]  that  is
called Lyapunov  stable if  all  the  eigenvalues  of A satisfy
either  or ,  and  if ,  then  is
semisimple (e.g., see [15]), where  denotes the real part of
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λ λ
Reλ < 0 λ = 0 λ = 0 λ

y(t) ẏ(t) = Apy(t)
p ∈M t ≥ 0

K α : [0,∞)→ [0,∞)
α(0) = 0

∥y(t)∥ ≤ α(∥y(0)∥) Ap
limt→∞ y(t) Ap ∥ · ∥

Ap

limt→∞ y(t) = (In−ApA#
p)y(0) In n n

A#

. A is  called semistable if  all  the eigenvalues  of A satisfy
either  or ,  and  if ,  then  is  semisimple.
Next,  let  denote  the  solution  to  for  a  fixed

, .  Recall  from Proposition  2.6  in  [21,  p.  33]  that
there  exists  a  class  function  (strictly
increasing,  continuous,  and  [22])  such  that

 if  and  only  if  is  Lyapunov  stable,
 exists  if  and  only  if  is  semistable,  where 

denotes  the  2-norm.  And  if  is  semistable,  then
,  where  denotes  the -by-

identity matrix and  denotes the group inverse of A [15].

Ap

It  can  be  seen  from  these  definitions  that  in  general,
semistability  of  a  matrix  is  a  stronger  notion  than  Lyapunov
stability of a matrix. However, for the special case where  is
symmetric, the following result holds.

p ∈M Ap Ap

Lemma 3: Assume that Assumption 1 holds. Then for every
,  is Lyapunov stable if and only if  is semistable.

Ap p ∈M
Ap

Ap

Proof: Since  is  symmetric  for  every ,  all  the
eigenvalues  of  are  real.  Now  the  result  follows  from  the
definitions of Lyapunov stability and semistability of . ■

Motivated  by  Lemma  3  and  Simon’s  notion  of  bounded
rationality [23], we make the following assumption.

p ∈M ApAssumption 4: For every ,  is Lyapunov stable.
Assumption  4  restricts  the  dynamic  behavior  of  all  the

subsystems  of  (10)  to  be  bounded.  If  we  specialize  (10)  into
(5),  this  assumption  implies  that  the  gathered  evidence
information  always  falls  into  some  finite  range  which
indicates the limiting, extreme cases that a decision maker can
take  into  account.  This  situation  gives  the  decision  maker  a
certain  level  of  confidence  to  make  rational  decision  by
knowing  the  best  case  and  worse  case  scenarios,  which
happens in many decision making problems [23].

V : Rn→ [0,∞)
V(x) = 0 x ∈ Es V(x) > 0 x ∈ Rn\Es

∇V(x)Apx < 0 x ∈ Rn\Es p ∈M
A\B = {x : x ∈ A, x < B} ∇

Theorem  1: Consider  (10).  Assume  that  Assumptions  1–4
hold.  Then  there  exists  a  smooth  function 
such that  for every ,  for all ,
and  for  all  and ,  where

 and  denotes the nabla operator.
Proof: See Appendix. ■

V(·)
Theorem  1  states  the  existence  of  an  abstract  energy

function ,  called Lyapunov  function  for  sets,  to  have  a
minimum  energy  at  the  equilibrium  set  and  always  decrease
its value everywhere else. Its proof is based on a novel nested
construction  of  an  approximation  of  such  a  function  via
multiple intermediate results in Appendix. The technique used
for such a construction is motivated by the constructive proof
of  converse  Lyapunov  theorems  for  semistable  switched
systems [19] and semistable nonlinear systems [24].

It  is  important  to note that  Theorem 1 is different from the
traditional  converse  Lyapunov  theorems  for  (asymptotic  or
exponential)  stability  of  (10)  given  in  the  literature,  which
state  the  existence  of  a  Lyapunov  function  by  assuming  that
(10)  is  stable.  In  contrast,  Theorem  1  does not assume  that
(10)  is  semistable  but  all  its  subsystems  are  semistable.
Moreover, it takes Assumptions 1–4 to arrive at the existence
of a (common) Lyapunov function. It  is known that if  all  the
subsystems  of  (10)  are  asymptotically  stable,  one  can
construct  a  counterexample  to  show  that  (10)  may not be
asymptotically  stable  [25].  This  observation  may  lead  us  to

wonder  if  a  similar  situation  would  occur  to  semistability  of
(10),  and  if  not,  what  would  the  relationship  between
Assumptions 1–4 and semistability of (10) be?

xe

K α : [0,∞)→ [0,∞) ∥x(t)− xe∥ ≤ α
(∥x(0)− xe∥) x(t)

Indeed, a stunning application of Theorem 1 is that it can be
used  to  establish  a  semistability  property  of  (10).  To  clarify
this  point,  recall  that  an  equilibrium  point  of  (10)  is
Lyapunov  stable  under  arbitrary  switchings  if  there  exists  a
class  function  such  that 

,  where  denotes  a  trajectory  of  (10).  We
define  an  equilibrium  point  of  (10)  to  be  semistable  under
arbitrary  switchings  if  it  is  Lyapunov  stable  and  every
trajectory  starting  in  a  neighborhood  of  this  point  is
convergent under arbitrary switchings. Equation (10) is called
semistable  under  arbitrary  switchings  if  every  equilibrium
point of (10) is semistable under arbitrary switchings.

First,  we  present  a  necessary  and  sufficient  condition  for
(10)  being  Lyapunov  stable  under  arbitrary  switchings,
provided that Assumptions 1–3 hold.

Lemma  4: Consider  (10).  Assume  that  Assumptions  1–3
hold. Then (10) is Lyapunov stable under arbitrary switchings
if and only if all its subsystems are Lyapunov stable.

σ(t) = p p ∈M
ẏ(t) = Apy(t)

Ap
σ(t) = p ẏ(t) = Apy(t)

p ∈M

Proof: If (10) is Lyapunov stable under arbitrary switchings,
then we pick  for an arbitrary . In this case, (10)
becomes a  linear  time-invariant  system  with  the
constant  system  matrix .  Since  (10)  is  Lyapunov  stable
under ,  it  follows  that  is  Lyapunov
stable.  Finally,  due to  the arbitrary pick of ,  it  follows
that all the subsystems of (10) are Lyapunov stable.

xe ∈ Es ∥x(t)− xe∥ ≤ ∥x0− xe∥
t ≥ 0 tk
σ(t) xe ∈ ker(Ap) p ∈M

t ∈ [tk−1, tk) xe ∈ Es

Conversely,  assume  that  all  the  subsystems  of  (10)  are
Lyapunov stable.  In  this  case,  Assumptions 1–4 all  hold.  Let

 be  arbitrary.  We  claim  that  for
all .  To  see  this,  let  denote  the  switching  time  instant
for . Note that  for any . Then for every

 and any , we have
 

x(t)− xe = eApk (t−tk−1)eApk−1 (tk−1−tk−2) · · ·
eAp0 (t0−t−1)(x0− xe)

pk ∈M t−1 = 0
Apk ∥eApk (t−tk−1)∥ ≤ 1 k = 0,1, . . . t ≥ 0
where  and .  By  Lemma  3  and  symmetry  of

,  for all , and , which leads
to
 

∥x(t)− xe∥ ≤ ∥eApk (t−tk−1)∥× ∥eApk−1 (tk−1−tk−2)∥
· · · ∥eAp0 (t0−t−1)∥× ∥x0− xe∥ ≤ ∥x0− xe∥

t ≥ 0 x0 ∈ Rn k = 0,1, . . . α(s) = sfor all , , and . With , it follows
that (10) is Lyapunov stable under arbitrary switchings. ■

The  next  result  gives  a  necessary  and  sufficient  condition
for (10) being semistable under arbitrary switchings, provided
that Assumptions 1–3 hold.

Theorem  2: Consider  (10).  Assume  that  Assumptions  1–3
hold. Then (10) is semistable under arbitrary switchings if and
only if all its subsystems are semistable.

σ(t) = p p ∈M
ẏ(t) = Apy(t)

Ap
σ(t) = p ẏ(t) = Apy(t)

p ∈M

Proof: If (10) is semistable under arbitrary switchings, then
we  pick  for  an  arbitrary .  In  this  case,  (10)
becomes a  linear  time-invariant  system  with  the
constant  system  matrix .  Since  (10)  is  semistable  under

,  it  follows  that  is  semistable.  Finally,
due  to  the  arbitrary  pick  of ,  it  follows  that  all  the
subsystems of (10) are semistable.
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V : Rn→ [0,∞)
V(·) Es

Es x(t)→Es
t→∞ x(0) Es

Es

x(t)→ z t→∞ x(0) Es
z ∈ Es Es

Conversely,  assume  that  all  the  subsystems  of  (10)  are
semistable.  In  this  case,  Assumptions  1–4  all  hold.  Then  it
follows  from  Theorem  1  that  there  exists  a  smooth  function

 such  that  all  the  conditions  in  Theorem  1
hold.  Next,  by  using  for  the  set ,  it  follows  from  the
Lyapunov stability theorem for (noncompact) sets (Theorem 1
of  [26])  that  is  asymptotically  stable,  i.e.,  as

 for  in a neighborhood of . Since, by Lemma 4,
every  point  in  is  Lyapunov  stable  under  arbitrary
switchings,  it  follows  from  Proposition  2.2  of  [27]  that

 as  for  in  a  neighborhood  of ,  where
.  Now  by  definition,  every  point  in  is  semistable

under  arbitrary  switchings.  Hence,  (10)  is  semistable  under
arbitrary switchings. ■

It  follows  from  Theorem  2  that  if  Assumptions  1–4  hold,
then (10) is indeed semistable under arbitrary switchings. This
answers the previous question about the relationship between
Assumptions 1–4 and semistability of (10),  i.e.,  Assumptions
1–4 do imply semistability of (10). 

V.  Performance Gauge: Main Result

m : [0,∞)→M M

ψ(m, t, x)
m ∈M t ∈ [0,∞)
Y(0) = x ∈ Rn

In  this  section,  we  will  state  our  main  result  on  the
performance  gauge  of  (5)  by  means  of  Theorem  1,  which
answers Question 1 raised at the end of Section II. To this end,
for  the  switched  system  (5),  we  call  the  piecewise  constant
switching  signal  a switching  path.  Let 
denote  the  set  of  all  possible  switching  paths.  Next,  let

 denote  the  solution  to  (5)  along  the  switching  path
 at  time  instant  with  initial  condition

.
The following theorem states the main result of the paper.

Ap =Gp+Hp

Theorem 3: Consider (5). Assume that Hypotheses 1, 2, and
Assumptions  2–4  hold,  where  is  symmetric.
Define a performance cost functional
 

J(m, x0) =
w ∞

0
−∇V(ψ(m, t, x0))Am(t)ψ(m, t, x0)dt (11)

m ∈M x0 ∈ Rn V(·)
J(m, x0) = V(x0)

x0 ∈ Rn m ∈M

where , ,  and  the  existence  of  such  is
guaranteed  by  Theorem  1.  Then  for  all

 and .
∥ψ(m, t, x0)∥ ≤ ∥x0∥ t ≥ 0
m ∈M

{t0, t1, . . . , tl, . . .}
L <∞ L =∞ t ∈ [tl−1, tl)

l = 0,1, . . .

Proof: First,  we  claim  that  for  all .
To  see  this,  for  a  particular ,  let  the  switching  time
sequence  be  given  by ,  which  may  be  finite
( )  or  infinite  ( ).  Then  for  any ,

,
 

ψ(m, t, x0) = eApl (t−tl−1)eApl−1 (tl−1−tl−2) · · ·eAp0 (t0−t−1)x0

pl ∈M t−1 = 0
Apl ∥eApl (t−tl−1)∥ ≤ 1 l = 0,1, . . . t ≥ 0

where  and . Hence, by Lemma 3 and symmetry
of ,  for  all ,  and ,  which
leads to
 

∥ψ(m, t, x0)∥ ≤ ∥eApl (t−tl−1)∥× ∥eApl−1 (tl−1−tl−2)∥
· · · ∥eAp0 (t0−t−1)∥× ∥x0∥ ≤ ∥x0∥ (12)

t ≥ 0 x0 ∈ Rn m ∈Mfor all , , and .
t ≥ 0

{τk}∞k=0 τ0 = 0
limk→∞ψ(m, τk, x0) = pm x0 ∈ Rn m ∈M

m ∈M ωm(x0)

Since (12)  holds  for  all ,  it  follows from the Bolzano-
Weierstrass  theorem  [22]  that  there  exists  an  increasing
unbounded  sequence ,  with ,  such  that

 for  every  and .  For  a
fixed switching path ,  let  be the set of all  such

pm x0 ∈ Rnlimit points  for .
∥pm∥ ≤ ∥x0∥

ωm(x0) ωm(x0) {pm,i}∞i=0
ωm(x0) limi→∞ pm,i = pm

ε > 0 i
∥pm− pm,i∥ < ε/2 pm,i ∈ ωm(x0)

t > T 0 < T <∞ ∥pm,i−ψ(m, t,
x0)∥ < ε/2 ∥pm−ψ(m, t, x0)∥ ≤ ∥pm,i−
ψ(m, t, x0)∥+ ∥pm− pm,i∥ < ε t i

pm ∈ ωm(x0) ωm(x0)
ωm(x0)

Next,  it  follows  from  (12)  that ,  and  hence,
 is bounded. To show that  is closed, let 

be  a  sequence  in  such  that .  Then  it
follows  that  for  every ,  there  exists  an  such  that

.  Next,  since ,  it  follows  that
there  exists ,  where ,  such  that 

.  Now  it  follows  that 
 for  sufficiently  large  and .

Hence, ,  which  indicates  that  is  closed.
Finally, since  is bounded and closed, it is compact.

ψ(m,0, x0) ∈ ωm(x0) ψ(m, t, x0) ∈
ωm(x0) t ≥ 0 pm ∈ ωm(x0) limk→∞ψ(m, τk, x0) =
pm {τk}∞k=0
ψ(m, τk, x0) t+τk ≥ 0

ψ(m, t, x0) limk→∞ψ(m, t+
τk, x0) = limk→∞ψ(m, t,ψ(m, τk, x0)) = ψ(m, t, pm)

ψ(m, t, pm) ∈ ωm(x0) t ≥ 0

We  claim  that  for  all , 
, . Let  be such that 

 for  an  increasing  bounded  sequence .  Consider
. Then for , it follows from the semigroup

property  and  continuity  of  that 
,  which  impl-

ies that  for all .
ψ(m, t, x0)→ ωm(x0) t→∞

{tk}∞k=0
tk→∞ k→∞ infpm∈ωm(x0) ∥ψ(m, tk, x0)− pm∥ > 0

k ≥ 0 ψ(m, t, x0)
t ≥ 0 {ψ(m, tk, x0)}∞k=0

{ψ(m, t∗k , x0)}∞k=0 ψ(m, t∗k , x0)→ p∗m ∈
ωm(x0) k→∞
ψ(m, t, x0)→ ωm(x0) t→∞

To show  as , suppose that this is
not  true.  In  this  case,  there  exists  a  sequence ,  with

 as , such that 
for  all .  However,  since  is  bounded  for  all

, the bounded sequence  has a convergent
subsequence  such  that 

 as ,  which  contradicts  the  assumption.  Hence,
 as .

V(·)
V(ψ(m, τ, x0))−V(ψ(m, s, x0)) =

r τ
s V̇(ψ(m,

t, x0))dt =
r τ

s ∇V(ψ(m, t, x0))Am(t)ψ(m, t, x0)dt ≤ 0
τ > s ≥ 0 x0 ∈ Rn V(ψ(m, t, x0))

t V(x) ≥ 0 x ∈ Rn

γm,x0 = limt→∞V(ψ(m, t, x0))
γm,x0 ≥ 0

Next, it  follows from Theorem 1 that there exists a smooth
 such  that  all  the  conditions  in  Theorem  1  are  satisfied.

Since by Theorem 1, 
 for  all

 and ,  it  follows  that  is  a
nonincreasing function of .  Note that  for all ,
it  follows  that  exists  and

.
pm ∈ ωm(x0)
{tk}∞k=0 t0 = 0 limk→∞

ψ(m, tk, x0) = pm V(pm) = V(limk→∞ψ(m, tk, x0)) =
limk→∞V(ψ(m, tk, x0)) = γm,x0 V(x) = γm,x0

x ∈ ωm(x0)

Now,  for  any ,  there  exists  an  increasing
unbounded  sequence ,  with ,  such  that 

.  Hence, 
, which implies that 

for all .
γm,x0 = 0 V(x) = 0 x ∈ ωm(x0)

x ∈ Es ωm(x0) ⊆ Es
ψ(m, t, x0)→Es t→∞

If , then  for all . It follows from
Theorem  1  that ,  and  hence, .  In  this  case,

 as .
γm,x0 > 0 V(x) > 0

x ∈ ωm(x0) x < Es
ψ(m,0, x0) ∈ ωm(x0) ψ(m, t, x0) ∈ ωm(x0) t ≥ 0

V(ψ(m, t, x0)) = γm,x0 > 0 t ≥ 0
ψ(m,0, x0) ∈ ωm(x0) ψ(m, t, x0) < Es t ≥ 0
x0 ∈ ωm(x0) τ > s ≥ 0 x0 ∈ ωm(x0)

V(ψ(m, τ, x0))−V(ψ(m, s, x0)) =
r τ

s V̇(ψ(m,
t, x0))dt =

r τ
s ∇V(ψ(m, t, x0))Am(t)ψ(m, t, x0)dt < 0

γm,x0 = V(ψ(m, τ, x0)) < V(ψ(m, s, x0)) = γm,x0

γm,x0 > 0

Otherwise,  assume that .  In  this  case,  for
all .  It  follows  from  Theorem  1  that .  Since
for  all , , ,  it
follows  that  for  all  and

.  Hence,  for  all  and
. Now for any  and , it follows

from Theorem 1 that 
,  and  hence,

,  which  is  a
contradiction. Thus, the assumption  is invalid.

limt→∞ψ(m, t, x0) = ψe ψe ∈ Es x0 ∈ Rn

m ∈M x0 ∈ Rn m ∈M

Next, it follows from Lemma 4 that (5) is Lyapunov stable.
Now  by  Proposition  2.2  in  [27],  it  follows  that

 exists  and  for  all  and
. Finally, it follows that for all  and : 
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J(m, x0) =
w ∞

0
−∇V(ψ(m, t, x0))Am(t)ψ(m, t, x0)dt

= V(ψ(m,0, x0))− lim
t→∞

V(ψ(m, t, x0))

= V(x0)−V( lim
t→∞

ψ(m, t, x0))

= V(x0)−V(ψe) = V(x0)
which proves the result. ■

r ∞
0 ⟨−∇T V(Z(t)), Ż(t)⟩dt Z(·)

V(·)
H2/H∞

D⊂ Rn

Z(0)
Rm = {Z∗ ∈ D : Z∗ = argminZ(0)∈D J(m,Z(0))}

m ∈M

The  constructed  cost  functional  (11)  can  be  interpreted  as
the  accumulated  performance  of  the  state  change  rate  for  (5)
projected  on  the  negative  gradient  direction  of  an  abstract
energy  function,  i.e., ,  where 
denotes  the  solution  to  (5).  It  measures  how  fast  the  current
state  of  (5)  can reach the steady-state  one along the dynamic
evolution  of  (5).  Theorem  3  indicates  that  such  an
accumulated  performance  measure  can  be  gauged  by  the
initial  bias,  which  in  some  cases  greatly  reduces  the
complexity of evaluating such a cost functional. Note that the
cost  functional  (11)  represents  a  large  spectrum  of  widely
used performance metrics in dynamics and control [22], [28].
For  example,  if  is  quadratic,  then  (11)  becomes  the
quadratic  cost  functional  used in  optimal  control  and 
theory  [29].  Hence,  the  average  MCMC  model  (3)  implies
some type of optimal performance under Hypotheses 1, 2, and
Assumptions 2–4, which has not been discovered before. This
point  floats  out  a  way  to  explain  optimality  performance  of
many  existing  decision  making  models,  such  as  mutual
inhibition  models,  which  cannot  be  done  through  the  DDM
framework.  For  instance,  let  be  compact.  According
to  Theorem  3,  the  stimulus  input  given  by  Hypothesis  1,
satisfying Hypothesis 2 and Assumptions 2–4, is optimal if the
initial  condition  for  (5)  is  chosen  in  the optimal
reachable  set 
for .

Example  2: Consider  an  average  mutual  inhibition  model
given by
 

ẋ1(t) = −kσ(t)x1(t)−wσ(t)x2(t)+b1,σ(t) (13)
 

ẋ1(t) = −kσ(t)x2(t)−wσ(t)x1(t)+b2,σ(t). (14)
M = {1,2} kp = −wp = p2 b1,p = b2,p = 0

p = 1,2

Ap = −p2H H =
[

1 −1
−1 1

]
p =,1,2 Ap ApAq = AqAp
ker(Ap) = {α[1,1]T ,α ∈ R} Ap

0 p,q = 1,2

V(·)

Let  and  pick  and 
(no external stimulus), . Then the model (13) and (14)

has  the  form  (10)  with  and ,

.  Note  that  is  symmetric, ,
,  and  the  eigenvalues  of  are

given by  and –2, .  Hence, Assumptions 1–4 hold.
Then  it  follows  from  Theorem  1  that  there  exists  a  smooth
Lyapunov function for sets  for (13) and (14).

V(x) = (Hx)T (Hx)/2 = xT Hx = (x1−
x2)2 x = [x1, x2]T V(x) = 0 x ∈ ker(Ap)
V(x) > 0 x < ker(Ap) p = 1,2 ∇V(x)Apx = 2xT HApx =
−2p2xT H2x = −4p2xT Hx = −4p2(x1− x2)2 < 0 x < ker(Ap)
p = 1,2 V(x) = xT Hx = (x1− x2)2

To  explicitly  construct  such  a  Lyapunov  function  for  sets,
we  borrow  the  construction  concept  from  (15)–(17).
Specifically,  consider 

,  where .  Clearly,  if  and
 if , . Next, 

 if ,
.  Hence,  satisfies  all  the

conditions in Theorem 1.
According  to  Theorem  3,  one  can  construct  the  following

cost functional for performance gauge of autonomous (13) and
(14):

 

J(σ, x(0)) =
w ∞

0
4(σ(t))2(x1(t)− x2(t))2dt

=
w ∞

0
(−∇V(x(t))Aσ(t)x(t))dt

=
w ∞

0

(
− d

dt
(V(x(t)))

)
dt

= V(x(0)) = xT (0)Hx(0) = (x1(0)− x2(0))2

x(0)
σ(t) D⊂ R2

x(0) minx(0)∈D J(σ, x(0)) =
minx0∈D xT

0 Hx0

σ(t) = 1 t ∈∪∞k=0[2k,2k+1) σ(t) = 2
t ∈∪∞k=0[2k+1,2k+2)

x(0) = [4,−2]T

which implies that the performance gauge of autonomous (13)
and (14) solely depends on the initial bias ,  regardless of

.  Finally,  let  be  a  compact  set  denoting  the
possible range of initial bias . Then 

.  For  the  simulation  of  autonomous  (13)  and
(14), we take  for  and  for

. Fig. 1 shows  its  state  trajectories
versus time for the initial bias .
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Fig. 1.     State trajectories versus time.
  

VI.  Conclusion

This paper utilized a converse Lyapunov approach to solve
a  longstanding  problem  regarding  the  performance  gauge  of
average  MCMC models  for  decision  making.  The  developed
result  can  be  used  to  evaluate  the  cost  for  performance
comparison  of  decision  making  under  various  inputs  and
initial  conditions,  and  hence,  lead  to  possible  algorithmic
ways  of  finding  optimal  performance  for  average  MCMC
decision making via a computational scheme. This idea seems
tangible  due  to  the  extensive  development  of  semidefinite
programming  methods  [30]  for  searching  appropriate
Lyapunov  functions  within  the  past  two  decades,  and  hence,
the  proposed  approach  lays  a  theoretical  foundation  and
suggests  a  possible  path  toward  seeking  optimal  decision
making in MCMC situations. 

Appendix

Up : Rn→ R U : Rn→ R

Es = ker(A1) Es

This  appendix  contains  multiple  intermediate  results  used
for  proving  Theorem  1.  First,  it  follows  from  Lemma  3  that
this  bounded  behavior  is  actually  a  steady-state  convergence
one. Using Assumptions 1–4, we can start our construction for
the  cost  function  toward  (10)  by  defining  a  series  of  the
compositional  functions  and  as
follows,  which  is  motivated  by  the  iterative  process  in  [19].
To this end, note that  and  is a subspace.
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U1(x) = sup
t≥0
{w1(t)∥eA1t x− p1(t, x)∥} (15)

 

Up(x) = sup
t≥0
{wp(t)Up−1(eApt x)}, p = 2, . . . ,M (16)

 

U(x) = UM(x) (17)
x ∈ Rn p1(t, x) = projEs

(eA1t x)
eA1t x Es wi : [0,∞)→ R

i = 1,2, . . . ,M i c1 ≤ wi(t) ≤ c2
t ≥ 0 0 < c1 < c2 < 2c1 ii

v : [0,∞)→ (0,∞)
dwi(t)/dt ≥ v(t) t ≥ 0

where ,  is  the  orthogonal
projection  of  onto ,  is  a  strictly
increasing,  smooth  function  satisfying  the  following
properties  for  every : )  for  all

 and  some ;  and )  there  exists  a
decreasing  continuous  function  such  that

, .

∥eA1t x− p1(t, x)∥
U1(·)

The  following  result  provides  an  explicit  expression  for
 in  (15),  which  can  be  used  to  show  the

wellposedness of .
A1

x ∈ Rn t ≥ 0
Lemma  5: Assume  that  is  symmetric.  Then  for  any

 and every ,
 

min
y∈Es
∥eA1t x− y∥ = ∥eA1t x− p1(t, x)∥

= ∥
r1∑

l=1

(uT
1,lx)eλ1,ltu1,l∥

=
[ r1∑

l=1

(uT
1,lx)2e2λ1,lt] 1

2 (18)

r1 = rank[A1] ≤ n {u1,1, . . . ,u1,n}
Rn {u1,r1+1, . . . ,u1,n}

ker(A1) λ1,i A1
i = 1, . . . ,r1

where ,  is  an  orthonormal
basis for  such that  is an orthonormal basis
for ,  and  are  the  nonzero  eigenvalues  of ,

.
Es = ker(A1) RnProof: First,  since  is  a  subspace  in ,  it

follows that:
 

min
y∈Es
∥eA1t x− y∥ = ∥eA1t x− p1(t, x)∥. (19)

A1
P1

P−1
1 A1P1 = diag(λ1,1, . . . ,λ1,r1 ,0, . . . ,0) λ1,i ∈ R i =

1, . . . ,r1 A1 diag(X)
i i

X P−1
1 AT

1 A1P1 = diag(λ2
1,1, . . . ,λ

2
1,r1

,

0, . . . ,0) P1= [u1,1, . . . ,u1,n]∈ Rn×n PT
1 = [v1,1, . . . ,v1,n]∈

Rn×n u1,i ∈ Rn v1,i ∈ Rn A1u1,l = λ1,lu1,l
l = 1, . . . ,r1 A1u1, j = 0 j = r1+1, . . . ,n
eA1tu1,l = eλ1,ltu1,l l = 1, . . . ,r1 eA1tu1, j = u1, j
j = r1+1, . . . ,n

Next, since  is symmetric, it follows from diagonalization
that  there  exists  an  orthogonal  matrix  such  that

,  where , 
,  denote  the  nonzero  eigenvalues  of  and 

denotes a  diagonal  matrix whose th diagonal  entry is  the th
component  of .  Hence, 

. Let  and 
,  where  and .  Then  for

,  and  for .  Furthermore,
 for  and  for

.
z ∈ ker(A1) z ∈ ker(AT

1 A1)
z ∈ ker(AT

1 A1) z =
∑n

i=1αiu1,i αi ∈ R
A1 A1 =

∑r1
i=1 λ1,iv1,iuT

1,i
AT

1 A1 =
∑r1

i=1 λ
2
1,iu1,iuT

1,i zT AT
1 A1z =

∑r1
i=1 λ

2
1,iα

2
i

z ∈ ker(A1) α1 = · · · = αr1 = 0
z =
∑n

i=r1+1αiu1,i z ∈ span{u1,r1+1, . . . ,u1,n}
{u1,r1+1, . . . ,u1,n} ker(A1)

p1(t, x) = projEs
(eA1t x) =

∑n
i=r1+1⟨eA1t x,

u1,i⟩u1,i ⟨·, ·⟩

Note that  if and only if . For every
, let , where . It follows from

the  diagonalization  of  that .  Hence,
 and .  Hence,

 if  and  only  if ,  which  is
equivalent  to ,  i.e., .
Hence,  is  an  orthonormal  basis  for .
Now  it  follows  that 

, where  denotes the inner product [17].
{u1,1, . . . ,u1,n}

Rn x =
∑n

k=1 βku1,k βk = ⟨x,u1,k⟩ = uT
1,k x k = 1, . . . ,

Finally,  note  that  is  an  orthonormal  basis  for
.  Let ,  where , 

n i = r1+1, . . . ,n. Then for every ,
 

⟨eA1t x,u1,i⟩u1,i = (uT
1,ie

A1t x)u1,i

= (uT
1,ie

A1t(
n∑

k=1

βku1,k))u1,i

= (
n∑

k=1

βkuT
1,ie

A1tu1,k)u1,i

= (
r1∑

l=1

βluT
1,ie

A1tu1,l

+

n∑
j=r1+1

β juT
1,ie

A1tu1, j)u1,i

= (
r1∑

l=1

βleλ1,ltuT
1,iu1,l

+

n∑
j=r1+1

β juT
1,iu1, j)u1,i

= βiu1,i = (uT
1,ix)u1,i.

p1(t, x) = projEs
(eA1t x) =

∑n
i=r1+1(uT

1,ix)u1,iTherefore,  and
 

eA1t x− p1(t, x) =
n∑

k=1

βkeA1tu1,k −
n∑

i=r1+1

(uT
1,ix)u1,i

=

r1∑
l=1

βleλ1,ltu1,l+

n∑
j=r1+1

β ju1, j

−
n∑

i=r1+1

(uT
1,ix)u1,i

=

r1∑
l=1

βleλ1,ltu1,l =

r1∑
l=1

(uT
1,lx)eλ1,ltu1,l.

∥eA1t x− p1(t, x)∥2 = ⟨eA1t x− p1(t, x),eA1t x−
p1(t, x)⟩ =∑r1

l=1(uT
1,lx)2e2λ1,lt

Consequently, 
, which proves the result.
A1

U1(·)
Lemma  6: Assume  that  is  symmetric  and  Lyapunov

stable. Then  is well defined.
Proof: It follows from Lemma 5 that:

 

U1(x) = sup
t≥0

{
w1(t)

[ r1∑
l=1

(uT
1,lx)2e2λ1,lt]1/2}. (20)

A1
λ1,l < 0

Since  is symmetric and Lyapunov stable, it  follows that
. By the Cauchy-Schwarz inequality, we have

 

U1(x) ≤ sup
t≥0

{
w1(t)

[ r1∑
l=1

(uT
1,lx)2]1/2}

≤ sup
t≥0

{
w1(t)

[ r1∑
l=1

∥u1,l∥2∥x∥2
]1/2}

= sup
t≥0
{w1(t)

√
r1∥x∥}

≤ c2
√

r1∥x∥ <∞.
U1(·)Hence,  is well defined. ■

U1(·)Next, we present a convexity property of .
A1Lemma  7: Assume  that  is  symmetric  and  Lyapunov
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U1(·) Rnstable. Then  is convex on .
z = µx+ (1−µ)y µ ∈ [0,1] x,y ∈ RnProof: Let ,  where  and .

Then  it  follows  from  Lemma  5  and  the  definition  of  norm
that:
 

∥eA1tz− p1(t,z)∥ = ∥
r1∑

l=1

(uT
1,lz)e

λ1,ltu1,l∥

= ∥
r1∑

l=1

µ(uT
1,lx)eλ1,ltu1,l

+

r1∑
l=1

(1−µ)(uT
1,ly)eλ1,ltu1,l∥

≤ µ∥
r1∑

l=1

µ(uT
1,lx)eλ1,ltu1,l∥

+ (1−µ)∥
r1∑

l=1

(uT
1,ly)eλ1,ltu1,l∥

= µ∥eA1t x− p1(t, x)∥
+ (1−µ)∥eA1ty− p1(t,y)∥.

∥eA1t x− p1(t, x)∥ xThat is,  is convex in terms of . Now since
 

sup
t≥0

(w1(t) ∥eA1tz− p1(t,z)∥)

≤ sup
t≥0

(w1(t)µ∥eA1t x− p1(t, x)∥

+w1(t)(1−µ)∥eA1ty− p1(t,y)∥)
≤ µsup

t≥0
(w1(t)∥eA1t x− p1(t, x)∥)

+ (1−µ) sup
t≥0

(w1(t)(1−µ)∥eA1ty− p1(t,y)∥)

U1(z) ≤ µU1(x)+ (1−µ)U1(y)
U1(·)

it follows that , which proves the
convexity property of . ■

U1(·)Next, we present a continuity property of .
A1

U1(·) Rn
Lemma  8: Assume  that  is  symmetric  and  Lyapunov

stable. Then  is continuous on .
T1 : Rn\Es→ [0,∞) T1(z) = inf{h : [

∑r1
l=1

(uT
1,lz)

2e2λ1,lt]1/2 < [
∑r1

l=1(uT
1,lz)

2]1/2/2,∀t ≥ h > 0} z ∈
Rn\Es A1

λ1,l < 0 l = 1, . . . ,r1
Es = span{u1,r1+1, . . . ,u1,n}

spanS S uT
1,iu1, j = 0 l = 1, . . . ,r1

j = r1+1, . . . ,n uT
1,lz , 0 l = 1, . . . ,r1

t > ϵ =max1≤l≤r1 (1/λ1,l) ln(1/2) > 0
e2λ1,lt < 1/4 l = 1, . . . ,r1

[
∑r1

l=1(uT
1,lz)

2e2λ1,lt]1/2 < [
∑r1

l=1(uT
1,lz)

2]1/2/2 t > ϵ
T1(z)

Proof: Define  by 
,  where 

. Note that since  is symmetric and Lyapunov stable,
it  follows  that  for  all .  Next,  the  proof  of
Lemma 5 gives the fact that , where

 denotes the span of . Since  for 
and ,  it  follows  that , .
Therefore,  for , it  follows
that  for  all .  Consequently,

 for  all ,  and
hence,  is well defined.

miny∈Es ∥eA1tz− y∥ = [
∑r1

l=1
(uT

1,lz)
2e2λ1,lt]1/2 t ≥ 0 t = 0

miny∈Es ∥z− y∥ = [
∑r1

l=1(uT
1,lz)

2]1/2 z ∈ Rn\Es

λ = [
∑r1

l=1(uT
1,lz)

2]1/2 > 0 Bµ(z) = {x ∈ Rn :
∥x− z∥ < µ} Bµ(z) = {x ∈ Rn : ∥x− z∥ ≤ µ} µ > 0
S S ⊂ Rn µ < λ

x ∈ Bµ(z) ∥z− z∥ ≤ µ < λ = [
∑r1

l=1(uT
1,lz)

2]1/2 =

miny∈Es ∥z− y∥ Bµ(z)∩Es = ∅

It  follows  from  Lemma  5  that 
 for  all .  In  particular,  for ,

.  Consider  and

define . Next, denote 
 and , where  and

 denotes  the  closure  of  set .  For  any  and  any
,  it  follows  that 

. Hence, .

ze = p1(0,z) A1ze = 0 q(t) = x(t)− ze
ẋ(t) = A1x(t) q̇(t) = A1q(t)

t ≥ 0 q(t) = eA1tq(0) t ≥ 0
∥q(t)∥ = ∥eA1tq(0)∥ ≤ ∥eA1t∥∥q(0)∥ = σmax(eA1t)∥q(0)∥
σmax(A) A A1

σmax(eA1t) =max1≤i≤r1 {e2λ1,it,1} = 1 t ≥ 0
∥q(t)∥ ≤ ∥q(0)∥ t ≥ 0 ∥eA1t x(0)− ze∥ ≤ ∥x(0)−ze∥

x(0) ∈ Rn t ≥ 0 Bε(ze) = {x ∈ Rn : ∥x−ze∥ < ε}
ε > 0 t ≥ 0 x(t) = eA1t x ∈ Bε(ze)

x ∈ Bε(ze) ε = λ/2
eA1t x ∈ Bλ/2(ze) t ≥ 0 x ∈ Bλ/2(ze)

[
∑r1

l=1(uT
1,le

A1t x)2]1/2 =miny∈Es ∥eA1t x− y∥ ≤ ∥eA1t x−
ze∥ t ≥ 0 Wε = {x ∈ Rn : [

∑r1
l=1(uT

1,lx)2]1/2 < ε}
Wε ∥eA1t x− ze∥ ≤ ∥x− ze∥

t ≥ 0 eA1t x ∈Wλ/2 t ≥ 0
x ∈ Bλ/2(ze)

Let .  Then .  Define ,
where .  Then  it  follows  that  for  all

,  which  implies  that  for  all .  Hence,
,  where

 denotes the maximum singular value of . Since  is
symmetric  and  Lyapunov  stable,  it  follows  that

 for  all .  Thus,
 for all , i.e.,  for

all  and . Consider .
Clearly  for  any  and ,  for

.  In  particular,  choose .  It  then  follows  that
 for  all  and .  Note  that  by

Lemma 5, 
 for  all .  Denote 

and  note  that  open.  Since  for  all
,  it  follows  that  for  all  and

.
∥z− ze∥ =miny∈Es ∥z− y∥ = λ λ/2 < µ < λ

Bµ(z)∩Bλ/2(ze) , ∅
y ∈ Bµ(z)∩Bλ/2(ze) ∥eA1T1(z)y− ze∥ ≤ ∥y− ze∥ < λ/2
eA1T1(z)y ∈ Bλ/2(ze) eA1(T1+t)(z)y ∈Wλ/2

t ≥ 0 y ∈ Bµ(z)∩Bλ/2(ze) t > T1(z)
y ∈ Bµ(z)∩Bλ/2(ze) w1(t)∥eA1ty− p1(t,y)∥ ≤ c2∥eA1ty−

p1(t,y)∥ < c2λ/2

Note  that .  If ,  then
it  follows  that .  Hence,  for  all

, ,  i.e.,
.  Now,  it  follows  that 

for all  and . Then, for every 
and , 

.
A1

limt→∞ eA1t x = (In−A1A#
1)x ∈

ker(A1) x ∈ Rn 0 ≤ limt→∞ ∥eA1t x− p1(t, x)∥ ≤
limt→∞ ∥eA1t x− (In−A1A#

1)x∥ = 0 x ∈ Rn

limt→∞ ∥eA1t x− p1(t, x)∥ = 0 x ∈ Rn

y ∈ Bµ(z)\Bλ/2(ze) limt→∞ ∥eA1ty− p1(t,y)∥ =
0 h1 = h1(λ,y) > 0
∥eA1ty− p1(t,y)∥ < λ/2 λ = [

∑r1
l=1(uT

1,lz)2]1/2

h1 z y h1 = h′1(z,y)
T ′1(z,y) = inf{h′1(z,y) : ∥eA1ty− p1(t,y)∥ < λ/2,∀t ≥ h′1(z,y)}

t > T ′1(z,y) y ∈ Bµ(z)\Bλ/2(ze)
w1(t)∥eA1ty− p1(t,y)∥ < c2λ/2

Alternatively, since  is symmetric and Lyapunov stable, it
follows  from  Lemma  3  that 

 for  any .  Hence, 
 for  any ,  it  follows

that  for  any .  Hence,  for
,  it  follows  from 

 that  there  exists  such  that
.  Note that .  Hence,

 depends  on  and ,  i.e., .  Define
.  In

this  case,  for  every  and ,
.

T1,max(z) = sup{T ′1(z,y) : y ∈ Bµ(z)\Bλ/2(ze)}
T1,max(·)

∥eA1ty− p1(t,y)∥ = [
∑r1

l=1(uT
1,ly)2e2λ1,lt]1/2 < λ/2

t > T ′1(z,y)
y 7→ [

∑r1
l=1(uT

1,ly)2e2λ1,lt]1/2 e2λ1,lt ∈ (0,1)
t > T ′1(z,y)

Bη(y) ⊂Bµ(z)\Bλ/2(ze) [
∑r1

l=1(uT
1,lw)2e2λ1,lt]1/2 < λ/2

w ∈ Bη(y) t > T ′1(z,y)
limsupw→y T ′1(z,w) ≤ T ′1(z,y)
y 7→ T ′1(z,y)

y Bµ(z)\Bλ/2(ze)

T1,max(z)
t > T1,max(z) y ∈ Bµ(z)\Bλ/2(ze) w1(t)∥eA1ty−

p1(t,y)∥ ≤ c2∥eA1ty− p1(t,y)∥ < c2λ/2

Next,  define .
We  claim  that  is  well  defined.  Since  by  Lemma  5,

 for  every
,  it  follows  from  the  continuity  of  the  map

 and  the  fact  that 
for  all  that,  there  exists  an  open  set

 such that 
for  every  and .  Hence,

 implying  that  the  function
 is  upper  semicontinuous  at  the  arbitrarily  chosen

point ,  and  hence  on .  Since  an  upper
semicontinuous function defined on a compact set achieves its
supremum, it follows that  is well defined. Therefore,
for  every  and , 

.
µ ≤ λ/2 Bµ(z)∩Bλ/2(ze) = ∅
y ∈ Bµ(z) limt→∞ ∥eA1ty−

p1(t,y)∥ = 0 h̄1 = h̄1(λ,y) > 0 ∥eA1ty−
p1(t,y)∥ < λ/2

Alternatively, if , it follows that .
In  this  case,  for ,  it  follows  from 

 that there exists  such that 
. Using the similar arguments as above, one can
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T ′1,max(z) T1,max(z)
t > T ′1,max(z) y ∈ Bµ(z) w1(t)∥eA1ty− p1(t,y)∥ <

c2λ/2

define ,  which  is  similar  to ,  such  that  for
every  and , 

.
0 < µ < λ

t > Tm(z) =max{T1(z),T1,max(z),T ′1,max(z)} y ∈ Bµ(z)
w1(t)∥eA1ty− p1(t,y)∥ < c2λ/2 w1(0)∥y− p1(0,
y)∥ ≥ c1 infy∈Bµ(z),x∈Es ∥y− x∥ ≥ c1(λ−µ) y ∈ Bµ(z)

w1(0)∥z− p1(0,z)∥ = w1(0)∥z− ze∥ ≥ c1λ µ ≤ (1−
c2/2c1)λ µ < λ c1 > 2c2

c1(λ−µ) ≥ c2λ/2 c1λ > c2λ/2

In  summary,  as  long  as ,  for  every
 and ,

.  Now,  note  that 
 for  every 

and .  Choose 
.  Clearly .  Moreover,  it  follows  from 

that  and . Hence,
 

U1(z)−U1(y) = sup
t≥0
{w1(t)∥eA1tz− p1(t,z)∥}

− sup
t≥0
{w1(t)∥eA1ty− p1(t,y)∥}

= sup
0≤t≤Tm(z)

{w1(t)∥eA1tz− p1(t,z)∥}

− sup
0≤t≤Tm(z)

{w1(t)∥eA1ty− p1(t,y)∥}.

Thus, by the triangle inequality and Lemmas 5 and 3,
 

|U1 (z)−U1(y)|
≤ sup

0≤t≤Tm(z)

∣∣∣w1(t)(∥eA1tz− p1(t,z)∥

− ∥eA1ty− p1(t,y)∥)
∣∣∣

≤ c2 sup
0≤t≤Tm(z)

∣∣∣∥eA1tz− p1(t,z)∥− ∥eA1ty− p1(t,y)∥
∣∣∣

= c2 sup
0≤t≤Tm(z)

∣∣∣∥ r1∑
l=1

(uT
1,lz)eλ1,ltu1,l∥

− ∥
r1∑

l=1

(uT
1,ly)eλ1,ltu1,l∥

∣∣∣
≤ c2 sup

0≤t≤Tm(z)

∣∣∣∥ r1∑
l=1

(uT
1,lz)eλ1,ltu1,l

−
r1∑

l=1

(uT
1,ly)eλ1,ltu1,l∥

∣∣∣
= c2 sup

0≤t≤Tm(z)
∥

r1∑
l=1

(uT
1,l(z− y))eλ1,ltu1,l∥

= c2 sup
0≤t≤Tm(z)

[ r1∑
l=1

(uT
1,l(z− y))2e2λ1,lt]1/2

≤ c2
[ r1∑

l=1

(uT
1,l(z− y))2]1/2

≤ c2
[ r1∑

l=1

∥u1,l∥2∥z− y∥2]1/2
= c2
√

r1∥z− y∥, z ∈ Rn\Es, y ∈ Bµ(z) (21)

U1(z)
z z ∈ Rn\Es

U1(·) Rn\Es U1(·)
Rn\Es

where  the  last  inequality  holds  due  to  the  Cauchy-Schwarz
inequality. Now, it follows from (21) that  is continuous
at .  Since  was  chosen  arbitrarily,  it  follows  that

 is continuous on . In fact, (21) shows that  is
locally Lipschitz continuous on .

U1(·) Es
xe ∈ ker(A1) {xn}∞n=1 Rn\Es

To  show  that  is  continuous  on ,  consider
.  Let  be  a  sequence  in  such  that

limn→∞ xn = xe xe ∈ Es Es = span{u1,r1+1, . . . ,

u1,n} uT
1,lxe = 0 l = 1, . . . ,r1

U1(xe) = supt≥0{w1(t)[
∑r1

l=1(uT
1,lxe)2e2λ1,lt]1/2} = 0

A1

.  Note  that  and 
. It then follows that  for all . Hence,

by  (20), .
Next, it follows from (20) and semistability of  that:
 

U1(xn) ≤ c2 sup
t≥0

[ r1∑
l=1

(uT
1,lxn)2e2λ1,lt]1/2

≤ c2
[ r1∑

l=1

(uT
1,lxn)2]1/2.

limn→∞[
∑r1

l=1(uT
1,lxn)2]1/2= [

∑r1
l=1(uT

1,l limn→∞ xn)2]1/2=

[
∑r1

l=1(uT
1,lxe)2]1/2 = 0 0 ≤ limn→∞U1(xn) ≤ c2

limn→∞[
∑r1

l=1(uT
1,lxn)2]1/2 = 0 limn→∞

U1(xn) = 0 = U1(xe)

Thus, 
.  Therefore, 

,  which  implies  that 
. ■

U1(·)
Based on Lemmas 7 and 8, we have the following Lipschitz

continuity property for .
A1

U1(·) Rn
Lemma  9: Assume  that  is  symmetric  and  Lyapunov

stable. Then  is locally Lipschitz continuous on .

Rn
Proof: The  result  follows  from  Lemmas  7  and  8,  and  the

fact  that  continuous  convex  functions  on  are  locally
Lipschitz continuous (e.g., see [31]). ■

Up(·)The  following  result  states  that  the  values  of  will
vanish on the equilibrium set.

p = 1, . . . ,M Up(xe) = 0 xe ∈ Es

Lemma  10: Assume  that  Assumptions  1–4  hold.  Then  for
every ,  if and only if .

p = 1
xe ∈ Es

U1(xe) = 0 U1(x) = 0
t≥0 0=U1(x)≥c1[

∑r1
l=1(uT

1,lx)2e2λ1,lt]1/2≥
0

∑r1
l=1(uT

1,lx)2e2λ1,lt = 0 t ≥ 0
e2λ1,lt > 0 t ≥ 0

∑r1
l=1(uT

1,lx)2e2λ1,lt = 0
uT

1,lx = 0 l = 1, . . . ,r1 x ∈ span
{u1,r1+1, . . . ,u1,n} = ker(A1) = Es

Proof: We prove this result by induction. For , the last
part  of  the  proof  for  Lemma  8  has  showed  that  if ,

.  On  the  other  hand,  if ,  then  it  follows
from (20) that for all , 
, which implies that  for all . Since

 for  all ,  it  follows  that  if
and  only  of  for  every ,  i.e., 

.
p = k Uk(xe) = 0 xe ∈ Es

p = k+1
ker(Ak+1) = Es xe ∈ Es Ak+1xe = 0

eAk+1t xe =
∑∞

m=0
Am

k+1tm

m! xe = xe+
∑∞

m=1
tm
m! Am

k+1xe = xe

Uk+1(·) Uk+1(xe) = supt≥0{wk+1(t)Uk(eAk+1t

xe)} = supt≥0{wk+1(t)Uk(xe)} = 0 Uk+1(x) = 0
t ≥ 0 0 = Uk+1(x) = supt≥0{wk+1(t)Uk(eAk+1t x)} ≥

c1Uk(eAk+1t x) ≥ 0 Uk(eAk+1t x) = 0
t ≥ 0 eAk+1t x ∈ Es t ≥ 0

t = 0 x ∈ Es

Suppose  that  for ,  if  and  only  if .
Now  consider .  Note  that  by  assumption,

.  Hence,  for  every ,  and
hence, . By
the construction of , 

. Alternatively, if ,
then  for  all , 

,  which  implies  that  for  all
.  By  induction  assumption,  for  all .  In

particular,  letting  yields .  Thus,  by  mathematical
induction, the conclusion holds. ■

Up(·)Next, we extend Lemma 9 to all .

p = 2, . . . ,M Up(·) Rn
Lemma  11: Assume  that  Assumptions  1–4  hold.  For  each

,  is locally Lipschitz continuous on .
p = 1

U1(·)
Rn p = k Uk(·)

Rn

p = k+1 Uk+1(x) = supt≥0{wk+1(t)Uk(eAk+1t x)} ≤
c2 supt≥0{Uk(eAk+1t x)} x ∈ Rn Ak+1

limt→∞ eAk+1t x = xk+1
e ∈ ker(Ak+1) = Es x ∈ Rn

Proof: We  prove  this  result  by  induction.  For ,  it
follows  from  Lemma  9  that  is  locally  Lipschitz
continuous  on .  Suppose  that  for ,  is  locally
Lipschitz  continuous  on .  Then  consider  the  case  where

. By definition, 
 for any . Since  is symmetric

and  Lyapunov  stable,  it  follows  from  Lemma  3  that
 for  any .  Hence,
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Uk(·)
limt→∞Uk(eAk+1t x) = Uk(limt→∞ eAk+1t

x) = Uk(xk+1
e ) = 0 supt≥0{Uk(eAk+1t x)} <∞

Uk+1(·)

by  the  induction  assumption  on  continuity  of  and
Lemma  10,  we  have 

.  Hence, ,  which
implies that  is well defined.

Up(·) Rn p ∈M
p = 1

U1(·) Rn p = k Uk(·)
Rn p = k+1

u = µx+ (1−µ)y µ ∈ [0,1] x,y ∈ Rn

Next, we show that  is convex on  for every .
Again,  we  use  mathematical  induction.  For ,  Lemma  7
shows that  is convex on . Assume that for , 
is  convex  on .  Now  consider .  Let

,  where  and .  Then  by
induction assumption,
 

Uk+1(u) = sup
t≥0
{wk+1(t)Uk(µeAk+1t x+ (1−µ)eAk+1ty)}

≤ sup
t≥0
{wk+1(t)µUk(eAk+1t x)

+wk+1(t)(1−µ)Uk(eAk+1ty)}
≤ µsup

t≥0
{wk+1(t)Uk(eAk+1t x)}

+ (1−µ) sup
t≥0
{wk+1(t)Uk(eAk+1ty)}

= µUk+1(x)+ (1−µ)Uk+1(y)

Uk+1(·) Rn

Up(·) Rn

p ∈M

which  implies  that  is  convex  on .  Thus,  by
mathematical  induction,  is  convex  on  for  every

.
Tk+1 : Rn\Es→ [0,∞) Tk+1(z)= inf{h : Uk(eAk+1tz)<

Uk(z)/2,∀t ≥ h > 0} z ∈ Rn\Es Uε = {x ∈
Rn : Uk(x) < ε}
Uε ⊃ Es Uε

Rn\Uε = {x ∈ Rn : Uk(x) ≥ ε} {xn}∞n=1
Rn\Uε Uk(xn) ≥ ε n = 1,2, . . .

ε ≤ limn→∞Uk(xn) =Uk(limn→∞ xn)
limn→∞ xn ∈ Rn\Uε Rn\Uε

Uε

Define  by 
,  where ,  and  denote 

.  Note  that  it  follows  from  Lemma  10  that
. Next, we claim that  is open. To see this, consider

.  Let  be  a  sequence  in
 that converges. Then  for all . By

induction  assumption, ,
which  implies  that .  Hence,  is
closed, which is equivalent to say that  is open.

z ∈ Rn\Es λ = Uk(z) > 0
ze = limt→∞ eAk+1tz q(t) = x(t)− ze
ẋ(t) = Ak+1x(t) q̇(t) = Ak+1q(t) t ≥ 0

q(t) = eAk+1tq(0) t ≥ 0

∥q(t)∥ ≤ ∥q(0)∥ t ≥ 0 ∥eAk+1t x(0)− ze∥ ≤ ∥x(0)− ze∥
t ≥ 0 ε > 0 x(0) ∈ Bε(ze)

eAk+1t x(0) ∈ Bε(ze) t ≥ 0

Now  consider .  Define  and  let
.  Next,  define ,  where

.  Then  for  all ,  which
implies  that  for  all .  Using  the  similar
arguments  as  in  the  proof  of  Lemma  8,  it  follows  that

 for  all ,  i.e., 
for  all .  Hence,  for  any ,  if ,  then

 for all .
ze ∈ Uλ/2 Uλ/2 η > 0

Bη(ze) ⊂Uλ/2 x(0) ∈ Bη(ze)
eAk+1t x(0) ∈ Bη(ze) ⊂Uλ/2 t ≥ 0

Since  and  is  open,  there  exists  such
that . Hence, for all , it follows that

 for all .
Ak+1

Ak+1
limt→∞ eAk+1tz = ze ∈ ker(Ak+1) = Es

h > 0 eAk+1hz ∈ Bη(ze)
eAk+1(h+t)z ∈ Bη(ze) ⊂Uλ/2 t ≥ 0

Tk+1(z)

Since  is  symmetric  and  Lyapunov  stable,  it  follows
from  Lemma  3  that  is  semistable,  and  hence,

. Then it follows that there
exists  such  that .  Consequently,

 for  all ,  and  hence,  it  follows
that  is well defined.

y 7→ eAk+1ty
t ∈ [0,Tk+1(z)] ρ > 0
Bρ(z)∩Es = ∅ eAk+1Tk+1(z)y ∈ Bη(ze)

y ∈ Bρ(z) eAk+1(Tk+1(z)+t)y ∈ Uλ/2 t ≥ 0
y ∈ Bρ(z) t > Tk+1(z) y ∈ Bρ(z)
wk+1(t)Uk(eAk+1ty) ≤ c2Uk(eAk+1ty) < c2λ/2
supt>Tk+1(z){wk+1(t)Uk(eAk+1ty)} ≤ c2λ/2

Next, by continuity of the map  over the compact
time  interval ,  it  follows  that  there  exists 
such  that  and  for  all

,  and  hence,  for  all  and
.  Then,  for  every  and ,

,  and  hence,
.

supt≥0{wk+1(t)Uk(eAk+1ty)} ≥
wk+1(0)Uk(y) ≥ c1Uk(y) y ∈ Bρ(z)

Uk(·)
ϱ ∈ (0,ρ) Lk > 0

|Uk(z)−Uk(y)| ≤ Lk∥z− y∥ y ∈ Bϱ(z) ⊂ Bρ(z)
Uk(y) ≥ Uk(z)−Lk∥z− y∥ ≥ λ−Lk supy∈Bϱ(z) ∥z− y∥ =

λ−Lkϱ supt≥0{wk+1(t)Uk(eAk+1ty)} ≥ c1(λ−Lkϱ)
y ∈ Bϱ(z) ϱ

ϱ ≤ (1− c2/2c1)λ/Lk c1(λ−Lkϱ) ≥ c2λ/2
y ∈ Bϱ(z)

On  the  other  hand,  note  that 
 for .  Since  by  induction

assumption,  is  locally  Lipschitz  continuous,  it  follows
that  for  sufficiently small ,  one can find  such
that  for all . In this
case, 

.  Hence,  for
.  Choose  to  be  sufficiently  small  so  that

. Then it follows that .
Therefore, for each ,
 

Uk+1(z)−Uk+1(y) = sup
t≥0

{
wk+1(t)Uk(eAk+1tz)

}
− sup

t≥0

{
wk+1(t)Uk(eAk+1ty)

}
= sup

0≤t≤Tk+1(z)

{
wk+1(t)Uk(eAk+1tz)

}
− sup

0≤t≤Tk+1(z)

{
wk+1(t)Uk(eAk+1ty)

}
(22)

which leads to
 

|Uk+1(z)−Uk+1(y)|

≤ sup
0≤t≤Tk+1(z)

|wk+1(t)(Uk(eAk+1tz)−Uk(eAk+1ty))|

≤ c2 sup
0≤t≤Tk+1(z)

|Uk(eAk+1tz)−Uk(eAk+1ty)|

z ∈ Rn\Es, y ∈ Bϱ(z). (23)

Uk(·) Uk+1(·) z
z ∈ Rn\Es Uk+1(·)

Rn\Es

Now, it follows from (23) and the induction assumption on
Lipschitz  continuity  of  that  is  continuous  at .
Since  was chosen arbitrarily, it follows that 
is continuous on .

Uk+1(·) Es xe ∈ Es
{xn}∞n=1 Rn\Es xe

ε > 0 p(t) = x(t)− xe ẋ(t) = Ak+1x(t)
ṗ(t) = Ak+1 p(t) t ≥ 0
p(t) = eAk+1t p(0) t ≥ 0

∥p(t)∥ ≤ ∥p(0)∥
t ≥ 0 ∥eAk+1t x(0)− xe∥ ≤ ∥x(0)− xe∥ t ≥ 0

ε > 0 x(0) ∈ Bε(xe) eAk+1t x(0) ∈ Bε(xe)
t ≥ 0 xe ∈ Uε Uε

δ > 0 Bδ(xe) ⊂Uε

x(0) ∈ Bδ(xe) eAk+1t x(0) ∈ Bδ(xe) ⊂Uε

t ≥ 0

To show that  is continuous on , consider .
Let  be  a  sequence  in  that  converges  to .  Let

 and  define ,  where .  Then
 for  all ,  which  implies  that
 for  all .  Using  the  similar  arguments  as

in the proof of Lemma 8, it follows that  for all
,  i.e.,  for  all .  Hence,

for any , if , then  for all
.  Since  and  is  open,  it  follows  that  there

exists  such  that .  Hence,  for  all
,  it  follows  that  for  all

.
N1

xn ∈ Bδ(xe) n ≥ N1
n ≥ N1 Uk+1(xn) ≤ c2 supt≥0 Uk(eAk+1t xn) ≤ c2ε

limn→∞Uk+1(xn) = 0 = Uk+1(xe)

Next,  note  that  there  exists  a  positive  integer  such  that
 for  all .  Now,  it  follows from (16)  that  for

, ,  which  implies
that .

Rn Uk+1(·)
Rn

p = 1, . . . ,M Up(·)
Rn

Finally,  using the fact  that  continuous convex functions on
 are locally Lipschitz continuous,  it  follows that  is

locally  Lipschitz  continuous  on .  By  mathematical
induction,  for  each ,  is  locally  Lipschitz
continuous on . ■

U(·)The next  result  evaluates  the  upper  Dini  derivative  of 
given by (17).

p ∈M
Lemma  12: Assume  that  Assumptions  1–4  hold.  For  each

, 

FIROUZNIA AND HUI: ON PERFORMANCE GAUGE OF AVERAGE MCMC DECISION MAKING: A CONVERSE LYAPUNOV APPROACH 145 



limsup
h→0+

U(eAphx)−U(x)
h

≤ −ε(x)U(x) < 0, x ∈ Rn\Es (24)

ε(x) 0 < ε(x) ≤ϖ
ϖ > 0 x ∈ Rn\Es

where  is some function satisfying  for some
 and for all .

p,q ∈M
x ∈ Rn 0 = [Apx,Aqx] =

∂

∂x
(Aqx)Apx− ∂

∂x
(Apx)Aqx =

AqApx−ApAqx ApAq = AqAp
Ak

pAl
q = Al

qAk
p k, l

p,q ∈M t, s ≥ 0

Proof: It  follows from Assumption 3 that  for  any 

and any , 
,  which  implies  that .  Hence,

 for any nonnegative integers .  Therefore, for
any  and any ,
 

eApteAq s =

∞∑
k=0

Ak
ptk

k!
eAq s =

∞∑
k=0

Ak
ptk

k!
( ∞∑

l=0

Al
qsl

l!
)

=

∞∑
k=0

∞∑
l=0

Ak
pAl

qtk sl

k!l!
=

∞∑
l=0

∞∑
k=0

Al
qAk

psltk

l!k!

=

∞∑
l=0

Al
qsl

l!
( ∞∑

k=0

Ak
ptk

k!
)
=

∞∑
l=0

Al
qsl

l!
eApt

= eAq seApt

p ∈M
which  establishes  the  commutativity  of  local  flows  for  (10).
Consequently, for each , we have
 

U(x) = sup
tM≥0

{{ · · ·sup
t1≥0
{min
y∈Es
∥

M∏
i=1

eAiti x− y∥

×w1(t1)} · · · }wM(tM)
}

= sup
tp≥0,p∈M

{
min
y∈Es
∥

M∏
i=1

eAiti x− y∥

×w1(t1) · · ·wM(tM)
}
.

U(·)
Rn\Es x ∈ Rn\Es h > 0

eAphx ∈ Rn\Es
h

miny∈Es ∥
∏M

i=1 eAitieAphx− y∥∏M
i=1 wi(ti)

t̂i i ∈M 0 ≤ t̂i ≤ T (x)
T (x) =maxp∈MTp(x)

To show that  is strictly decreasing along the solution of
(10)  on ,  note  that  for  every  and  such
that ,  it  follows  from  the  arguments  preceding
(22)  that,  for  sufficiently  small ,  the  supremum  in  the
definition  of  is
reached at  some time ,  such  that ,  where

. Then
 

U(eAphx) = min
y∈Es
∥

M∏
i=1

eAi t̂ieAphx− y∥
M∏

i=1

wi(t̂i)

= min
y∈Es
∥

M∏
i=1,i,p

eAi t̂ieAp(t̂p+h)x− y∥
M∏

i=1

wi(t̂i)

= min
y∈Es
∥

M∏
i=1,i,p

eAi t̂ieAp(t̂p+h)x− y∥

×
M∏

i=1,i,p

wi(t̂i)wp(t̂p+h)
[
1−

w′p(t̂p+ θph)h

wp(t̂p+h)

]
≤ U(x)

[
1− v(h+T (x))h

wp(h+T (x))

]
θp ∈ (0,1)

wp(t) [t̂p, t̂p+h] wp(t̂p+h)−wp(t̂p) = w′p(t̂p+ θph)h
θp ∈ (0,1)

for  some ,  where  we  used  the  mean-value  theorem
for  on :  for
some . Thus,
 

limsup
h→0+

U(eAphx)−U(x)
h

≤ − v(h+T (x))
wp(h+T (x))

U(x) < 0

x ∈ Rn\Es
0 < v(h+T (x)) ≤ v(0) 0 < c1 ≤ wp(h+T (x)) ≤ c2

for  all ,  and  hence,  (24)  holds  by  noting  that
 and . ■

∇U(x)Apx < −ε(x)U(x)
U(x)

U(·)
U(·)

Lemma 12 is almost like saying that 
except  that  is  not  smooth.  On  the  other  hand,  since
Lemma 11 shows that  is  locally Lipschitz continuous,  it
is  possible  to  approximate  by  a  smooth  (i.e.,  infinitely
many  times  differentiable)  function  without  significantly
changing  its  Dini  derivative  (24)  via  some  smoothing
procedures introduced by [32]–[34].

U(·)
Rn

U(·)
−ε(x)U(x)

x ∈ Rn\Es
W : Rn\Es→ R

W(x) > 0 x ∈ Rn\Es limsuph→0+ (1/h)[W(eAphx)−
W(x)] < 0 x ∈ Rn\Es W(·) Rn

W(z) = 0 z ∈ Es W(·)
Rn\Es

V(x) =W(x)e−(W(x))−2
x ∈ Rn\Es V(x) = 0 x ∈ Es

V(·)

Proof of Theorem 1: It follows from Lemma 11 that  is
locally  Lipschitz  continuous  on .  Furthermore,  it  follows
from  Lemma  12  that  the  upper  Dini  derivative  of  is
strictly  less  than  zero  and  bounded  above  by ,
which is positive for all . Hence, by Theorem 2.5 of
[33], there exists a smooth function  such that

 for  and 
 for . Next, we extend  to all of  by

taking  for .  Then  is  a  continuous
Lyapunov  function  that  is  smooth  on .  Now  letting

 for  and  for .
Then  satisfies all the conditions stated in Theorem 1. ■
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