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   Abstract—Timed  weighted  marked  graphs  are  a  subclass  of
timed  Petri  nets  that  have  wide  applications  in  the  control  and
performance  analysis  of  flexible  manufacturing  systems.  Due  to
the  existence  of  multiplicities  (i.e.,  weights)  on  edges,  the
performance  analysis  and  resource  optimization  of  such  graphs
represent  a  challenging  problem.  In  this  paper,  we  develop  an
approach  to  transform  a  timed  weighted  marked  graph  whose
initial  marking is  not given, into an equivalent parametric timed
marked graph where the edges have unitary weights. In order to
explore  an  optimal  resource  allocation  policy  for  a  system,  an
analytical  method  is  developed  for  the  resource  optimization  of
timed  weighted  marked  graphs  by  studying  an  equivalent  net.
Finally,  we  apply  the  proposed  method  to  a  flexible
manufacturing  system  and  compare  the  results  with  a  previous
heuristic approach. Simulation analysis shows that the developed
approach is superior to the heuristic approach.
    Index Terms—Discrete  event  system,  resource  allocation,  timed
Petri net, weighted marked graph.
 

List of Symbols

P = {p1, p2, . . . , pn}　　Finite set of places.
T = {t1, t2, . . . , tm}　　 Finite set of transitions.
Pre P×T → N

N = {0,1,2, . . .}
　　  is an output function,

 where .

Post P×T → N　　  is an input function.
C C = Post − Pre　　  the incidence matrix.
N N = (P,T, Pre, Post)　　 PN .
δ = [δ1, δ2, . . . , δn]T　　Firing delay vector.
M　　 Marking of a Petri net (PN).
M(pi) pi

M
　　  Number  of  tokens  in  at  marking

  .
⟨N,M⟩　　 A Petri net system.
x = [x1, . . . , xm]T　　 (minimal) T-semiflow of a PN.
y = [y1, . . . ,yn]T　　 (minimal) P-semiflow of a PN.
tin(pi) pi　　 Unique input transition of .
tout(pi) pi　　 Unique output transition of .
v(pi) pi　　 Weight of the output arc of .
w(pi) pi　　 Weight of the input arc of .
gcdpi

w(pi)
v(pi)

　　 Greatest common divisor of 
 and .
•p p　　 Set of input transitions of .
p• p　　 Set of output transitions of .
•t t　　 Set of input places of .
t• t　　 Set of output places of .
γ　　 Elementary circuit in a PN.
Γ　　 Set of elementary circuits.
yγ γ　　 Minimal P-semiflow of .
χ(M)　　 Cycle time of a PN system.
β = 1/χ(M)　　  Throughput of a PN system.
b　　 Upper bound of the cycle time.
N̂ti ti　　 Equivalent subnet of .
M̂ti ti　　 Equivalent submarking of .
N̂pi pi　　 Equivalent subnet of .
M̂pi pi　　 Equivalent submarking of .
N̂　　 Equivalent timed marked graph

 (TMG).
M̂　　 Marking of an equivalent TMG.
⟨N̂, M̂⟩　　 Equivalent TMG system.
µ(ps

i ) ps
i　　 Number of tokens in place .

ϕi = v(pi) · xout(pi) pi　　 Period of .
G(M, N̂, M̂)　　 Equivalent parametric TMG system.
Mki

pi pi　　 Marking set of .
ni N̂pi　　 Number of places of .
n̂ N̂　　 Number of places of .
m̂ N̂　　 Number of transitions of . 

I.  Introduction

MANY artificial systems that consist of a limited quantity
of  resources  shared  by  different  tasks  can  be  classified
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as  resource  allocation  systems  [1];  among  them  include
flexible manufacturing systems, traffic transportation systems,
and  logistics  systems  [2]–[7].  Performance  of  flexible
manufacturing  systems  is  usually  affected  by  timing
specifications  and  resource  allocation.  For  the  sake  of
improving  productivity  and  saving  cost  considerations,  the
resources  of  a  flexible  manufacturing  system  must  be  well
allocated.  The  resource  optimization  of  manufacturing
systems  with  operation  delay,  assembly,  disassembly,  and
batch processing, is a challenging problem for manufacturing
engineers.

Timed  Petri  nets  (TPNs)  are  a  model  of  discrete  event
systems  that  are  widely  applied  to  control,  performance
evaluation, and fault diagnosis in timed systems, e.g., flexible
manufacturing systems [8]–[11].  As an important  subclass  of
TPNs, timed marked graphs (TMGs) are suitable to model and
analyze  synchronization  appearing  in  discrete  event  systems
[12], [13].

The  performance  of  a  system  modeled  with  TMGs  was
usually  characterized  by  the  cycle  time.  When  the  initial
marking  of  a  TMG  is  given,  a  linear  programming  is
developed  to  estimate  the  cycle  time  [14].  The  properties  of
cyclic TMGs were explored in [15] and it was shown that the
evolution of cyclic TMGs is periodic. Therefore, it is possible
to  estimate  the  cycle  time  by  analyzing  its  periodical
behaviors.  In  addition,  the  linear  algebraic  approaches  can
also be applied to model and analyze the dynamic behavior of
TMGs [16], [17].

To  make  a  trade-off  between  the  throughput  of
manufacturing  systems  and  the  resource  cost,  two  main
resource  optimization  problems  were  investigated  in  the
literature:  marking  optimization  [18]  and  cycle  time
optimization  [19],  [20].  The  marking  optimization  problem
finds a minimal cost marking such that the system's cycle time
does not fall short of a predefined upper bound and the cycle
time  optimization  problem  investigated  in  [20]  explores  a
minimal  cycle  time  marking  such  that  the  cost  of  the
machines/resources  does  not  exceed  an  upper  bound.
Deadlock control of flexible manufacturing systems is another
important problem that has been extensively investigated in a
class of Petri nets (PNs) [21]–[23].

For  modelling,  analyzing,  and  controlling  flexible
manufacturing  systems  with  batch  processing,  a  possible
method  is  to  use  timed  weighted  marked  graphs  (TWMGs)
[24].  TWMGs  have  been  proven  to  be  adequate  for
performance  evaluation  and  resource  optimization  of  job-
shops,  kanban  systems,  and  flexible  manufacturing  systems
that are decision free [14], [15]. In such nets, each place has a
unique output  transition and a unique input  transition but  the
weights  on  edges  may  be  greater  than  one,  to  represent
multiple edges. The behaviors and properties of TWMGs were
investigated  in  [25].  Due  to  the  existence  of  multiplicities
(weights)  on  edges,  the  analysis  of  TWMGs is  a  challenging
problem.  When  the  initial  marking  of  a  TWMG is  given,  its
cycle  time  could  be  analyzed  by  converting  to  an  equivalent
TMG  [26],  [27]  using  the  well-known  linear  programming
approach in [14]. However, when the initial marking becomes
a  decision  variable  to  be  determined  for  an  optimization

problem,  the  approaches  developed  in  [26],  [27]  cannot  be
directly used. Heuristic methods were developed in [28], [29]
for the marking optimization problem of TWMGs to obtain a
sub-optimal solution.

By  transforming  a  TWMG  whose  initial  marking  is
unknown into a finite number of equivalent TMG classes,  an
optimal  initial  marking  can  be  obtained  by  solving  a  mixed
integer linear programming problem for each equivalent TMG
class  [30],  [31].  However,  these  approaches  have  high
computational  cost  since  the  number  of  equivalent  TMG
classes increases exponentially w.r.t.  the number of places of
the  original  TWMG.  In  practice  it  is  inefficient  to  solve  a
resource optimization problem by exploring all the equivalent
TMGs1.

To  this  end,  this  paper  proposes  a  method  to  convert  a
TWMG  whose  initial  marking  is  unknown  to  an  equivalent
parametric  TMG system that  fully  describes  the finite  family
of  TMGs  equivalent  to  the  original  TWMG.  Using  this
transformation,  a  resource  optimization  problem  for  the
original  TWMG  can  be  reduced  to  an  optimization  problem
for the equivalent parametric TMG, which, as shown later, can
be solved more efficiently. Particularly, this approach is used
to  handle  the  marking  optimization  of  TWMGs by  solving  a
mixed  integer  quadratically  constrained  programming
problem  for  the  equivalent  parametric  TMG  system.  To  the
best  of  our  knowledge,  the  existing  results  for  the  marking
optimization  problem  of  TWMGs  are  all  based  on  heuristic
strategies.

The main contributions of this work are as follows:
1)  We develop an approach to  transform a  TWMG, whose

initial  marking  is  not  given,  into  an  equivalent  parametric
TMG  system  that  fully  describes  the  finite  family  of  TMGs
equivalent to the original TWMG.

2)  We  propose  a  mixed  integer  quadratically  constrained
programming  problem for  the  marking  optimization  problem
of TWMGs.

3)  We  test  the  proposed  approach  on  different  cases  and
compare its performance with a previous heuristic approach.

This paper is organized in six sections. The basics of PNs is
given in Section II. A method developed in [26] to transform a
TWMG  whose  initial  marking  is  given  into  an  equivalent
TMG is introduced in Section III. In Section IV, an approach
to transform a TWMG whose initial marking is not given into
an equivalent parametric TMG system is presented. In Section V,
an analytical  approach for  the  resource optimization problem
is developed based on the equivalent parametric TMG system.
In Section VI, we give the conclusions. 

II.  Background
 

A.  Petri Nets
N = (P,T, Pre, Post)

P = {p1, . . . , pn} n T = {t1, . . . , tm} m
P∪T , ∅ P∩T = ∅ Pre : P×T → N

Post : P×T → N

A Petri net (PN) is a four-tuple , where
 is a set of  places,  is a set of 

transitions with  and ,  and
 are  the  pre-incidence  and  post-incidence  

1 Although  several  techniques  that  may  help  to  speed  up  the  approaches  in
[30],  [31]  are  developed,  these  procedures  are  still  subject  to  high
computational complexity.
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N
p ∈ P t ∈ T

Pre(p, t) = k > 0 Post(p, t) = k
k p t t p 0

Pre Post
n×m P T

N C = Post − Pre ∈ Zn×m

Z

functions,  specifying  the  arcs  from  places  to  transitions  and
transitions to places, respectively, where  denotes the set of
non-negative  integers.  Specifically,  for  and ,

 (respectively, ) if there exists an
arc  with  weight  from  to  (respectively,  to ),  and is 
otherwise.  ( ) can be tabulated in a rectangular array
and represented by an  matrix indexed by  and . The
incidence  matrix  of  is  defined  as ,
where  denotes the set of integers.

x ∈ Nm y ∈ Nn C · x = 0
yT ·C = 0

∥x∥ {ti ∈ T |xi > 0} ∥y∥
{pi ∈ P|yi > 0}

∥y∥ ∥x∥

A  vector  (respectively, )  such  that 
(respectively, )  is  a  T-semiflow  (respectively,  P-
semiflow).  The  support  of  a  T-semiflow  (respectively,  P-
semiflow) is defined by  =  (respectively, 
= ). A P-semiflow (respectively, T-semiflow) is
said to  be minimal  if  (respectively, )  is  not  a  superset
of  the support  of  any other  P-semiflow (T-semiflow),  and its
elements are coprime.

M : P→ N

p M(p) ⟨N,M⟩
N M

A  marking  is  a  mapping  that  assigns  to  each
place of a PN a non-negative integer of  tokens.  The marking
of place  is denoted by . A Petri net system  is a
net  with a marking .

p ∈ P |•p| = |p•| = 1 •p p•

p
•t t•

p ∈ P |•p| = |p•| = 1

A PN is said to be ordinary if all the weights of its arcs are
unitary. A marked graph (MG) is an ordinary PN such that for
all ,  holds, where  and  denote the set
of input and output transitions of , respectively. The notions
for  and  are  analogously  defined.  A  weighted  marked
graph  (WMG)  is  a  PN  such  that  for  all , 
holds, while the weights on arcs are integers.

N o1o2 · · ·ok
oi ∈ P∪T i ∈ {1, . . . ,k} oi+1 ∈ o•i
i ∈ {1, . . . ,k−1} o, o′ ∈ P∪T

o o′ o1o2 · · ·ok
o1 = ok o1o2 · · ·oko1

γ i, j ∈ {1, . . . ,k} i , j oi , o j

Γ

Given  a  PN ,  a path is  a  sequence  of  nodes 
where  for  all  such  that  holds
for all . A PN is cyclic if for any ,
there exists a path from  to . A path  is a circuit if

.  A  circuit  is  an  elementary  circuit,
denoted by , if for all ,  implies . We
denote the set of elementary circuits by . In the sequel, cyclic
WMGs will be considered.

pi
w(pi) v(pi)

gcdpi w(pi)
v(pi)

Consider  a  WMG  with  a  place  as  shown  in Fig. 1.  The
weights  of  input  arc  and  output  arc  of  are  denoted  by
integers  and ,  respectively.  In  addition,  we  use

 to  represent  the  greatest  common  divisor  of  and
.

 

tin( pi) tout( pi)

w( pi) ν( pi)
pi

 
pi tin(p)

tout(p)

Fig. 1.     A place  with an input transition  and an output transition
.

  

B.  Cycle Time of TWMGs

(N, δ)
N δ : T → N

There  mainly  exist  three  ways  of  introducing  the  timing
parameters in PN models, i.e., a delay can be associated with
transitions,  places,  or  arcs  [32].  In  this  paper,  we  consider
TPNs,  in  which  each  transition  is  associated  with  a
deterministic firing delay.  A timed PN is a pair ,  where

 is a PN, and  is a firing delay function that assigns
to  each  transition  a  non-negative  integer  [30].  The  single
server semantic is considered in this paper, which means that

at each time an enabled transition cannot fire more than once.
More details can be found in [32].

⟨N,M⟩

χ

For  a  TWMG  system ,  the  cycle  time  is  defined  as
the average period to fire one time the minimal T-semiflow as
soon  as  possible,  denoted  by (M).  In  [14],  a  linear
programming  was  developed  to  obtain  a  cycle  time  lower
bound as follows:
 

max β
s.t. C ·α− Pre ·δ ·β+M ≥ 0 (1)

β ∈ R+
β = 1/χ(M) α ∈ Rm

⟨N,M⟩

where  is the throughput (inverse of the cycle time, i.e.,
) and   are the decision variables. Note that

LPP (1) provides an exact value for the cycle time of a TMG
system .  In  addition,  by  simulating  the  dynamic
behavior of a TWMG system [29], the cycle time can also be
obtained. 

III.  Transformation of A Twmg System

⟨N,M⟩ n
m ⟨N̂, M̂⟩ n̂

m̂

For a TWMG system, an analytical approach to evaluate the
cycle  time  is  to  transform it  into  an  equivalent  TMG system
that  has  the  same  cycle  time.  In  [26],  Munier  proposed  a
method to convert a TWMG system  (with  places and

 transitions)  to  an  equivalent  TMG  system  (with 
places  and  transitions)  whose  cycle  time  is  identical.  This
procedure is shown in Algorithm 1.

As discussed in  [30],  for  a  TWMG system the structure  of
its  equivalent  TMG  depends  on  the  initial  marking.  In
addition,  the  number  of  equivalent  TMG  systems  of  a
TWMG,  whose  initial  marking  is  not  given,  increases
exponentially  with  the  size  of  place  set,  which  makes  the
resource  optimization  problem  where  the  initial  marking  is
unknown quite difficult to solve2.

N
x

M = (2,0)T

⟨N̂, M̂⟩

Example 1: Consider a TWMG  in Fig. 2 whose minimal
T-semiflow is  = (2, 1)T. We assume that the initial marking
is . According to Algorithm 1, an equivalent TMG
system  is obtained as follows.
 

p1

2

2
p2

t1(2) t2(5)

 
NFig. 2.     A TWMG  considered in Examples 1, 2 and 3.

 

ti ∈ T
⟨N̂ti , M̂ti⟩

Firstly,  for each transition  we compute its  equivalent
subsystem  as shown in Fig. 3, where
 

N̂t1 = {Pre(q1
1, t

2
1) = 1,Post(q1

1, t
1
1) = 1,

Pre(q2
1, t

1
1) = 1,Post(q1

1, t
2
1) = 1}

M̂t1 = [M̂(q1
1), M̂(q2

1)]
T
= [0,1]T N̂t2 = {Pre(q1

2, t2) = 1,Post(q1
2, t2) = 1}

M̂t2 = [M̂(q1
2)]

T
= [1]T

  
2 The  solutions  developed  in  [30]  and  [31]  for  the  cycle  time  optimization
have high computational cost since they require one to solve a mixed integer
linear programming for each possible equivalent TMG system.
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⟨N̂t, M̂t⟩
⟨N̂ti , M̂ti⟩

and  the  equivalent  subsystem  of  transitions  can  be
obtained by the union of each equivalent subsystem ,
i.e.,
 

⟨N̂t, M̂t⟩ = ⟨N̂t1 , M̂t1⟩∪ ⟨N̂t2 , M̂t2⟩
N̂t = N̂t1 ∪ N̂t2 = {Pre(q1

1, t
2
1) = 1,Post(q1

1, t
1
1) = 1,

Pre(q2
1, t

1
1) = 1,Post(q1

1, t
2
1) = 1,Pre(q1

2, t2) = 1,

Post(q1
2, t2) = 1}

M̂t = M̂t1 ∪ M̂t2 = [M̂(q1
1), M̂(q2

1), M̂(q1
2)]

T
.

Algorithm  1  [26] Transformation  of  a  TWMG  System  into  an
Equivalent TMG System Under Single Server Semantics

⟨N,M⟩
x = (x1, . . . , xm)T

Input: A  TWMG  system  with  a  minimal  T-semiflow

⟨N̂, M̂⟩
⟨N,M⟩

Output: An  equivalent  TMG  system  whose  cycle  time  is
identical to 

⟨N̂t , M̂t⟩
ti ∈ T xi t1i t2i . . . txi

i

1:  (Equivalent  subsystem  of  transitions)  Replace  each
transition  by  transitions, , , , , with delay time
 

δ̂(t j
i ) = δ(ti), j = 1, . . . , xi. (2)

xi q1
i . . . qxi

i qa
i a = 1, . . . , xi −1

tai ta+1
i qxi

i

txi
i t1i

Add  places , , ,  where  ( )  is  a  place
connecting  to  with  unitary  weights  and  is  a  place
connecting  to  with unitary weights.
 

M̂(qa
i ) = 0, i = 1, . . . ,m, a = 1, . . . , xi −1

M̂(qxi
i ) = 1.

(3)

⟨N̂p, M̂p⟩
pi ∈ P w(pi) > v(pi) ni = xin(pi) ps

i

s = 1, . . . ,ni

2: (Equivalent subsystem  of places: Case 1) Replace each
place  such  that  by  places ,  where  for

:
 

as · xout(pi) +bs =

⌊
M(pi)+w(pi) · (s−1)

v(pi)

⌋
+1

bs ∈ {1, . . . , xout(pi)}
as ∈ N.

(4)

ps
i ts

in(pi)
tbs
out(pi)

asPlace  connects transition  to transition  and contains 
tokens, i.e.,
 

tin(ps
i ) = ts

in(pi)
, or equivalently Post(ps

i , t
s
in(pi)

) = 1

tout(ps
i ) = tbs

out(pi)
, or equivalently Pre(ps

i , t
bs
out(pi)

) = 1

µ(ps
i ) = M̂(ps

i ) = as.

(5)

⟨N̂p, M̂p⟩
pi ∈ P w(pi) ≤ v(pi) ni = xout(pi) ps

i

s = 1, . . . ,ni

3: (Equivalent subsystem  of places: Case 2) Replace each
place  such that  by  places ,  where for

: 
cs · xin(pi) +ds =

⌈
s · v(pi)−M(pi)

w(pi)

⌉
ds ∈ {1, . . . , xin(pi)}
cs ∈ Z≤0.

(6)

ps
i tds

in(pi)
ts
out(pi)

−cs

Place  connects  transition  to  transition  and  contains
 tokens, i.e.,

 
tin(ps

i ) = tds
in(pi)

or equivalently Post(ps
i , t

ds
in(pi)

) = 1

tout(ps
i ) = ts

out(pi)
or equivalently Pre(ps

i , t
s
out(pi)

) = 1

µ(ps
i ) = M̂(ps

i ) = −cs.

(7)

⟨N̂, M̂⟩4: (Equivalent TMG system ) The TMG system is equivalent
to the union of the subsystems of transitions and places, i.e.,
 

⟨N̂, M̂⟩ = ⟨N̂t , M̂t⟩∪ ⟨N̂p, M̂p⟩. (8)

N̂t1 N̂t2
M̂t1 M̂t2

N

According to the transformation rule, structures  and 
and their corresponding markings  and  depend on the
net structure  of the TWMG.

p j ∈ P
⟨N̂p j , M̂p j⟩

Secondly, for each place , we compute its equivalent
subsystem  according to (4)–(7) as shown in Fig. 4,
where
 N̂p1 = {Pre(p1

1, t
1
2) = 1,Post(p1

1, t
2
1) = 1}

M̂p1 = [M̂(p1
1)]

T
= [1]TN̂p2 = {Pre(p1

2, t
1
1) = 1,Post(p1

2, t
1
2) = 1}

M̂p2 = [M̂(p1
2)]

T
= [0]T

⟨N̂p, M̂p⟩

⟨N̂p j , M̂p j⟩

and  the  equivalent  subsystem  of  places  can  be
obtained  by  the  union  of  each  equivalent  subsystem

, i.e.,
 

⟨N̂p, M̂p⟩ = ⟨N̂p1 , M̂p1⟩∪ ⟨N̂p2 , M̂p2⟩
N̂p = N̂p1 ∪ N̂p2 = {Pre(p1

1, t
1
2) = 1,Post(p1

1, t
2
1) = 1,

Pre(p1
2, t

1
1) = 1,Post(p1

2, t
1
2) = 1}

M̂p = M̂p1 ∪ M̂p2 = [M̂(p1
1), M̂(p1

2)]
T
= [1,0]T .

 
t1

1(2)t1
2(5) t1

2(5)t2
1(2) p1

2p1
1

<Np, Mp>^ ^

 
⟨N̂p, M̂p⟩Fig. 4.     The equivalent subsystem  of places.

 

⟨N̂, M̂⟩Finally,  we  obtain  the  equivalent  TMG  system  by
combining the equivalent subsystems of transitions and places
as shown in Fig. 5. 

IV.  Parametric Transformation of TWMGs

Since  the  equivalent  structure  of  the  TMG  depends  on  the
initial marking of the TWMG, the number of equivalent TMG
systems of a TWMG whose initial marking is unknown could
increase exponentially with the size of place set. Therefore, it
is  practically  inefficient  to  solve  a  resource  optimization
problem  by  exploring  all  the  equivalent  TMG  systems.  This
section  proposes  a  method  to  transform  a  TWMG  whose
initial  marking  is  not  given  into  an  equivalent  parametric

 

t1
1(2)

t1
2(5)

t2
1(2)

q2
1

q1
2

q1
1

<Nt, Mt>^ ^

 
⟨N̂t , M̂t⟩Fig. 3.     The equivalent subsystem  of transitions.
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TMG  system.  First,  we  discuss  the  logic  constraints  of  the
possible  equivalent  subsystems  in  Section  IV-A.  Then,  some
techniques  are  introduced  to  convert  a  TWMG  to  an
equivalent parametric TMG in Section IV-B. 

A.  Logic Constraints of the Equivalent Subsystems

⟨N̂t, M̂t⟩
⟨N̂pi , M̂pi⟩

pi M(pi) ϕi

In  [30],  the  authors  prove  that  the  equivalent  subsystem
 of  transitions  is  fixed  regardless  of  the  initial

marking,  while  the  equivalent  subsystem  of  any
place  is periodic w.r.t.  with a period , where
 

ϕi = v(pi) · xout(pi). (9)

pi ϕi/gcdpiThe marking space of  is divided into  subsets:
 

Mki
pi = {ki ·gcdpi + ξi ·ϕi|ξi ∈ N, ki = 0, . . . ,

ϕi

gcdpi

−1}. (10)

Mki
pi

⟨N̂ki
pi , M̂

ki
pi⟩

Thus,  for  each  partition  we  can  compute  its
corresponding equivalent subsystem  by (4)–(7) and
the  logic  constraints  of  all  the  equivalent  subsystems  are
shown as follows:
 

⟨N̂pi , M̂pi⟩ =

ϕi
gcdpi

−1∨
ki=0

⟨N̂ki
pi , M̂

ki
pi⟩ (11)

∨
where  denotes the logical or operator.

In  the  following  example,  the  logic  constraints  of  the
equivalent  subsystems  corresponding  to  different  marking
partitions are discussed.

p1
p2

ϕ1 = 2 ϕ2 = 2 gcdp1 = 1 gcdp2 = 1

Example  2: Let  us  consider  the  TWMG depicted  in Fig. 2.
According  to  (9)  and  (10),  the  marking  space  of  place 
(respectively, )  can  be  partitioned  into  two  (respectively,
two) subsets (due to , , , and ):
 M0

p1
= {2ξ1}, M1

p2
= {1+2ξ1}, ξ1 ∈ N

M0
p2
= {2ξ2}, M2

p2
= {1+2ξ2}, ξ2 ∈ N.

⟨N̂p1 , M̂p1⟩
p1

When  computing  the  equivalent  subsystem  of
place , we have the following situations:

M(p1) = 2ξ1 M(p1) ∈M0
p1

1)  If , i.e., , then
 

N̂0
p1
= {Pre(p1

1, t
1
2) = 1, Post(p1

1, t
2
1) = 1}

M̂0
p1
= [M̂(p1

1)]T = [ξ1]T .

M(p1) = 1+2ξ1 M(p1) ∈M1
p1

2)  If , i.e., , then
 N̂1

p1
= {Pre(p1

1, t
1
2) = 1, Post(p1

1, t
1
1) = 1}

M̂0
p1
= [M̂(p1

1)]T = [ξ1]T .

⟨N̂p1 , M̂p1⟩ p1Therefore,  the  subsystem  of  place  can  be
represented as follows:
 

⟨N̂p1 , M̂p1⟩=
1∨

k1=0

⟨N̂k1
p1 , M̂

k1
p1⟩.

⟨N̂p2 , M̂p2⟩
p2

Analogously,  the  equivalent  subsystem  of  place
 belongs to one of the following situations:

M(p2) = 2ξ2 M(p2) ∈M0
p2

3)  If , i.e., , then
 N̂0

p2
= {Pre(p1

2, t
1
1) = 1, Post(p1

2, t
1
2) = 1}

M̂0
p2
= [M̂(p1

2)]T = [ξ2]T .

M(p2) = 1+2ξ2 M(p2) ∈M1
p2

4)  If , i.e., , then
 N̂1

p2
= {Pre(p1

2, t
2
1) = 1, Post(p1

2, t
1
2) = 1}

M̂1
p2
= [M̂(p1

2)]T = [ξ2]T .

⟨N̂p2 , M̂p2⟩ p2Therefore, the equivalent subsystem  of place 
can be represented as follows:
 

⟨N̂p2 , M̂p2⟩ =
1∨

k2=0

⟨N̂k2
p2 , M̂

k2
p2⟩.

N
⟨N̂, M̂⟩

In  conclusion,  we  can  represent  a  TWMG  by  an
equivalent TMG system  as follows:
 

⟨N̂, M̂⟩ = ⟨N̂t, M̂t⟩∪ ⟨N̂p, M̂p⟩ = ⟨N̂t1 , M̂t1⟩∪ . . .
∪⟨N̂tm , M̂(tm)⟩∪ (

∨
⟨N̂k1

p1 , M̂
k1
p1⟩)∪ . . .

∪ (
∨
⟨N̂kn

pn , M̂
kn
pn⟩) where

ki = 0, . . . ,
ϕi

gcdpi

−1.

(12)

 

B.  Parametric Transformation
p ∈ PFor  each  place ,  the  logic  constraints  of  its  possible

equivalent  subsystems  are  logic  or  constraints.  In  particular,
all  the constraints  are  equality  constraints.  In  this  subsection,
some transformation rules to convert logic or constraints into
linear  constraints  are  adopted  to  synthesize  all  equivalent
subsystems into one.

Consider the following equality constraints:
 

s∨
i=1

v⃗i = u⃗i, v⃗i, u⃗i ∈ Rn. (13)

The  work  in  [33]–[35]  showed  that  the  above  equality
constraints  can  be  transformed  into  following  linear
constraints: 

 

t1
1(2)

t1
2(5)

t2
1(2)

q2
1

q1
2

p1
2

q1
1

p1
1

 
N

M = [2,0]T

Fig. 5.     The  equivalent  TMG  system  of  the  TWMG  depicted  in Fig. 2
with .
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v⃗1− u⃗1 ≤ z1 · h⃗
v⃗1− u⃗1 ≥ −z1 · h⃗

...

v⃗s− u⃗s ≤ zs · h⃗
v⃗s− u⃗s ≥ −zs · h⃗

s∑
i=1

zi = s−1

zi ∈ {0,1}, i = 1, . . . , s

(14)

h⃗ ∈ Rnwhere  is a constant vector satisfying
 

h j >max |vi( j)−ui( j)|, j = {1, . . . ,n}. (15)
z j = 0 v⃗ j = u⃗ j j

z j = 1 j∑s
i=1 zi = s−1

If ,  then  holds,  which  implies  that  the -th
constraint  is  active.  On  the  contrary,  if ,  the -th
constraint  is  redundant.  The  condition  implies
that  one  and  only  one  constraint  is  active  and  all  others  are
redundant.

N
Combining  the  results  in  (14)  and  (15),  a  method  to

transform a TWMG  whose initial marking is unknown into
an  equivalent  parametric  TMG  system,  is  developed  as
follows.

N
x = (x1, . . . , xm)T M

N
G(M, N̂, M̂)

Proposition 1: Let  be a TWMG with minimal T-semiflow
,  and  assume  its  initial  marking  is

unknown.  The  net  can  be  converted  to  an  equivalent
parametric  TMG  system  whose  cycle  time  is
identical as follows:
 

G(M, N̂, M̂) =

M̂(qa
r ) = 0, δ̂(ta

r ) = δ(tr)

M̂(qxr
r ) = 1, δ̂(txr

r ) = δ(tr)
ˆPre(qa

r , t
a+1
r ) = 1, ˆPre(qxr

r , t
1
r ) = 1

ˆPost(qa
r , t

a
r ) = 1, ˆPost(qxr

r , t
xr
r ) = 1

r = 1, . . . ,m
a = 1, . . . , xr −1

(16a)

 

M(pi)− ki ·gcdpi − ξi ·ϕi ≤ zi,ki ·h
M(pi)− ki ·gcdpi − ξi ·ϕi ≥ −zi,ki ·h
M̂(ps

i )− ξi−µ(ps
i ) ≤ zi,ki ·h

M̂(ps
i )− ξi−µ(ps

i ) ≥ −zi,ki ·h
ˆPre(ps

i , tout(ps
i ))−1 ≤ zi,ki ·h

ˆPre(ps
i , tout(ps

i ))−1 ≥ −zi,ki ·h
ˆPost(ps

i , tin(ps
i ))−1 ≤ zi,ki ·,

ˆPost(ps
i , tin(ps

i ))−1 ≥ −zi,ki ·h
s = 1, . . . ,ni
i = 1, . . . ,n

ki = 0, . . . ,
ϕi

gcdpi

−1

(16b)

 

ϕi
gcdpi

−1∑
ki=0

zi,ki =
ϕi

gcdpi

−1

zi,ki ∈ {0,1}
ξi ∈ N

(16c)

ni tout(p j
i ) tin(ps

i )

pi

p j
i

ps
i h ∈ R

where , , and , obtained according to Algorithm 1,
denote  the  number  of  equivalent  places  of ,  the  unique
output transition of equivalent  place ,  and the unique input
transition of equivalent place , respectively. Parameter 
is a constant satisfying
 

h >max{|M(pi)− ki ·gcdpi − ξi ·ϕi|, |M̂(ps
i )− ξi−

µ(ps
i )|, | ˆPre(ps

i , tout(ps
i ))−1|, | ˆPost(ps

i , tin(ps
i ))−1|}. (17)

16a
N

G(M, N̂, M̂)
16b

N
G(M, N̂, M̂) M

N
G(M, N̂, M̂)

G(M, N̂, M̂)

Proof: Constraint ( ) enforces (2) and (3) in Algorithm 1
that specify the transition equivalence between the TWMG 
and the system . Combining the results in (5), (7)
and (14), constraint ( ) enforces the correctness of the place
equivalence  between  the  TWMG  and  the  system

. Although the initial marking  is unknown, the
marking  of  each  place  can  be  partitioned  into  finite  sets  as
shown in (10).  Therefore,  constraint  (16c)  guarantees  that  all
marking  partitions  of  TWMG  are  included  in  system

,  which  indicates  that  all  the  possible  equivalent
TMG systems can be represented by system .

h
Note that constraint set (16) has a solution only if a suitable

constant  exists. This problem will be discussed later. ■

G(M, N̂, M̂) h
18a 18b 18c

p1 p2

Example 3: Consider again the TWMG in Fig. 2. According
to  Proposition  1,  it  can  be  converted  into  an  equivalent
parametric system  as shown in (18), where  is a
large  enough  number.  Constraints  ( ),  ( ),  and  ( )
represent  the  equivalent  subsystem  corresponding  to
transitions, place , and place , respectively.
 

G(M, N̂, M̂) =

M̂(q1
1) = 0, δ̂(t1

1) = 2, M̂(q2
1) = 1

δ̂(t2
1) = 2, M̂(q1

2) = 1, δ̂(t1
2) = 5

ˆPre(q1
1, t

2
1) = 1, ˆPost(q1

1, t
1
1) = 1 ˆPre(q2

1, t
1
1) = 1

ˆPost(q2
1, t

2
1) = 1, ˆPre(q1

2, t
1
2) = 1 ˆPost(q1

2, t
1
2) = 1

(18a)

 

M(p1)−2ξ1 ≤ z1,0 ·h,M(p1)−2ξ1 ≥ −z1,0 ·h
ˆPre(p1

1, t
1
2)−1 ≤ z1,0 ·h

ˆPre(p1
1, t

1
2)−1 ≥ −z1,0 ·h

ˆPost(p1
1, t

2
1)−1 ≤ z1,0 ·h

ˆPost(p1
1, t

2
1)−1 ≥ −z1,0 ·h

M̂(p1
1)− ξ1 ≤ z1,0 ·h, M̂(p1

1)− ξ1 ≥ −z1,0 ·h
M(p1)−1−2ξ1 ≤ z1,1 ·h
M(p1)−1−2ξ1 ≥ −z1,1 ·h

ˆPre(p1
1, t

1
2)−1 ≤ z1,1 ·h

ˆPre(p1
1, t

1
2)−1 ≥ −z1,1 ·h

ˆPost(p1
1, t

1
1)−1 ≤ z1,1 ·h

ˆPost(p1
1, t

1
1)−1 ≥ −z1,1 ·h

M̂(p1
1)− ξ1 ≤ z1,1 ·h, M̂(p1

1)− ξ1 ≥ −z1,1 ·h
z1,0+ z1,1 = 1,z1,0,z1,1 ∈ {0,1}, ξ1 ∈ N

(18b)
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M(p2)−2ξ2 ≤ z2,0 ·h,M(p2)−2ξ2 ≥ −z2,0 ·h

ˆPre(p1
2, t

1
1)−1 ≤ z2,0 ·h

ˆPre(p1
2, t

1
1)−1 ≥ −z2,0 ·h

ˆPost(p1
2, t

1
2)−1 ≤ z2,0 ·h

ˆPost(p1
2, t

1
2)−1 ≥ −z2,0 ·h

M̂(p1
2)− ξ2 ≤ z2,0 ·h, M̂(p1

2)− ξ2 ≥ −z2,0 ·h

M(p2)−1−2ξ2 ≤ z2,1 ·h

M(p2)−1−2ξ2 ≥ −z2,1 ·h

ˆPre(p1
2, t

2
1)−1 ≤ z2,1 ·h

ˆPre(p1
2, t

2
1)−1 ≥ −z2,1 ·h

ˆPost(p1
2, t

1
2)−1 ≤ z2,1 ·h

ˆPost(p1
2, t

1
2)−1 ≥ −z2,1 ·h

M̂(p1
2)− ξ2 ≤ z2,1 ·h, M̂(p1

2)− ξ2 ≥ −z2,1 ·h

z2,0+ z2,1 = 1,z2,0,z2,1 ∈ {0,1}, ξ2 ∈ N.

(18c)

 

V.  Application to the Resource Optimization Problem
 

A.  An Optimal Solution for Marking Optimization
This  section demonstrates  that  the  transformation approach

discussed  in  Section  IV  can  be  further  used  to  handle  the
marking optimization of TWMGs [28], [29]. Then, an optimal
solution  based  on  mixed  integer  quadratically  constrained
programming is developed.

The  mathematical  model  of  the  marking  optimization  of  a
TWMG can be summarized as follows [29]:
 

min yT ·M
s.t. χ(M) ≤ b (19)

b
yγ
γ y

∑
γ∈Γ yγ

b ≥max{xi ·δi, ti ∈ T } xi
ti δi

ti

where  is a predefined positive real number that denotes the
upper  bound  of  the  cycle  time,  represents  the  minimal
P-semiflow  corresponding  to  circuit ,  and  =  is  a
P-semiflow that is equal to the sum of all minimal P-semiflows.
It has been proven in [28] that problem (19) has a solution iff

,  where  is  the  component  of  minimal
T-semiflow  corresponding  to  transition  and  is  the  fixed
firing delay of transition .

⟨N,M⟩
χ(M)

⟨N̂, M̂⟩
M

As mentioned in Section III, for a TWMG system  its
cycle time  can be analytically solved by converting it to
an equivalent  TMG. Nevertheless,  according to  Algorithm 1,
to obtain an equivalent TMG system , it is necessary to
know  the  initial  marking .  Based  on  the  equivalent
parametric  TMG  system  obtained  by  Proposition  1,  we  will
show  how  to  transform  problem  (19)  into  a  programming
problem.

(β∗,M∗, M̂∗, ˆPre∗, Ĉ∗,α∗)Proposition 2: Let  be the optimal
solution  of  the  following  mixed  integer  quadratically
constrained programming problem: 

min yT ·M
s.t.
Ĉ ·α− ˆPre · δ̂ ·β+ M̂ ≥ 0 (20a)

β ≥ 1
b

(20b)

G(M, N̂, M̂) (20c)
β ∈ R≥0 ˆPre, Ĉ ∈ Zn̂×m̂ M ∈ Nn M̂ ∈ Nn̂

α ∈ Rm̂ M∗
with  variables , , , ,  and

 . Then,  is an optimal marking for problem (19).

20c

N 20a 20b

b
M∗ b

χ(M∗) ≤ b

Proof: The  objective  function  guarantees  that  the  cost  of
resources  is  minimized.  Constraint  ( )  ensures  that  the
parametric  TMG  system  has  the  same  cycle  time  with  the
TWMG . With constraints ( ) and ( ), the cycle time of
the equivalent TMG system is not greater than a given upper
bound . It  follows that the cycle time of the TWMG system
with  marking  is  not  greater  than  a  given  upper  bound ,
namely, . ■

20c
h

ˆPre, ˆPost ∈ {0,1}n̂×m̂

M f
M f (p) = Pre(p, p•) · xp• , ∀p ∈ P

M∗ M∗ ≤ M f
h

Remark 1: Note that constraint set ( ) has a solution only
if  a  suitable  constant  in  (17)  exists.  Since  the  equivalent
parametric  TMG system is  an ordinary net,  it  is  obvious that

 holds.  In  [28],  it  has  been proven that  a
marking  that  contains  adequate  tokens  is  feasible  for
problem  (19),  where .  Thus,
this marking is an upper bound of  (i.e., ) and can
be used to compute  in (17).

(β∗,M∗, M̂∗, ˆPre∗, Ĉ∗,α∗)
M∗ 1/β∗

β ≥ 1/b

max β (20b)
yT ·M = yT ·M∗

Remark  2: Although  an  optimal  solution  of  problem  (20)
 provides  an  optimal  initial  marking

, the quantity  may not be the actual cycle time of the
TWMG  system.  Among  all  the  minimal  cost  markings  that
ensure , it is interesting to find one that also maximizes
the throughput. This can be done by solving (20) replacing the
objective  function  with  " "  and  constraint  with

.

(
2× m̂× n̂+2×n+ m̂+ n̂+

∑n
i=1ϕi/gcdpi

)(∑n
i=1ϕi/gcdpi × (6×ni+2)+ n̂+1+4×

m̂) ni
pi

O(|x|1) |x|1
x

n̂ ≤ 2|x|1 m̂ = |x|1

n m x

Computational  complexity.  Although  a  mixed  integer
quadratically  constrained  programming  problem  belongs  to
the NP-hard complexity class [36], in practice it can often be
efficiently solved by using programming tools such as CPLEX
and  LINGO.  The  computational  burden  of  a  mixed  integer
quadratically  constrained  programming  problem  is
characterized  by  the  numbers  of  constraints  and  variables.
Problem  (20)  has 
variables  at  most  and 

 constraints  in  total,  where  represents  the  number  of
equivalent  places  of  place .  It  has  been proven in  [27]  that
the size of  the equivalent  TMG is ,  where  denotes
the 1-norm of the minimal T-semiflow . More precisely, we
have  and . Therefore, the number of variables
and  constraints  of  problem  (20)  depends  on  the  numbers  of
places  and  transitions  and  the  minimal  T-semiflow  of
the TWMG.

It  is  worth  mentioning  that  a  mixed  integer  quadratically
constrained  programming  is  a  non-convex  optimization
problem  and  thus  a  local  optimal  solution,  which  is  easy  to
find, cannot guarantee global optimality [36].

This  subsection  is  concluded  with  some  discussion  on  its
application  to  the  cycle  time  optimization  of  TWMGs.
Optimal  approaches  have  been  developed  for  TWMGs  [30],
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[31].  However,  theses  approaches  rely  on  solving  mixed
integer  linear  programming  for  a  finite  family  of  equivalent
TMGs whose number could increase exponentially w.r.t.  that
of  places.  The  transformation  method  proposed  in  this  paper
could also be used to the cycle time optimization of TWMGs
with a similar technique as Proposition 2. 

B.  Illustrative Examples
This  section  applies  the  proposed  approach  to  the  marking

optimization  of  a  flexible  manufacturing  system  (FMS)  and
the obtained results are compared with a previous approach in
[29] that is based on the heuristic strategy.

U1 U2 U3
R1 R2

R1 R2
R1 :U1, U2, U3

t1 t2 t3
R2 : U2, U1 t4 t5

t6 t7 t8 t9

Consider  the TWMG of an FMS [28] depicted in Fig. 6.  It
consists  of  three  machines ,  and  and  can
manufacture two products, namely  and . The production
ratio  for  and  is  60% and  40%,  respectively.  The
manufacturing  processes  are  as  follows: 
(denoted  by  transitions , ,  and ,  respectively)  and

 (denoted  by  transitions  and ,  respectively).
Transitions , , ,  and  are  used  to  represent  the  cyclic
manufacturing process.
 

33

33

22

22

p2

p3

p13 p10

p6p9

p12
p11

p8
p7

p4

p5

p1

t7 t6

t9 t8

t3(2)

t5(2)

t4(1)

t2(3)t1(1)

 
Fig. 6.     The TWMG model of a flexible manufacturing system.
 

y
∑
γ∈Γ yγ = [3,3,3,4,4,4,6,6,4,

4,6,6,4]T b = 11 N
⟨N̂, M̂⟩

We  assume  that  = 
 and .  The  TWMG  is  transformed  into  an

equivalent  parametric  TMG  system  according  to
Proposition  1.  Then,  the  marking  optimization  problem  is
formulated according to Proposition 2 and is solved by using
LINGO [37].

In Table I,  the  proposed  approach  is  compared  with  the
heuristic  approach  developed  in  [29]  that  is  implemented  by
the  PN  tool  HYPENS  [38].  All  cases  run  on  a  computer
running Windows 10 with CPU Intel Core i7 at 3.60 GHz and
8  GB  RAM.  Case  1  is  the  flexible  manufacturing  system
discussed  above,  Case  2  is  an  example  taken  from Fig. 6 in
[29],  Case  3  is  a  flexible  manufacturing  system  studied  in
[27],  and  Case  4  is  a  real  assembly  line  studied  in  [39]  that
consists  of  41  places  and  25  transitions.  For  each  case,  the
tested  approach,  the  upper  bound  on  the  cycle  time,  the
objective function, and the CPU time are shown. Note that the
first proposed approach is tested by using LINGO without the

global  optimal  solver  option  which  means  that  the  obtained
solution  cannot  guarantee  the  optimality,  and  the  second
proposed approach is tested by using LINGO with the global
optimal solver option.  In Table I, “o.o.t” (out  of  time) means
that the solution cannot be found within 12 hours.

The results in Table I show that the locally optimal solutions
obtained  by  the  proposed  approach  (Loc.  Opt.)  and  the
heuristic  approach  in  [29]  for  Cases  1  and  2  are  also  global
optimal.  The  solution  obtained  by  the  heuristic  approach  in
[29]  is  better  than  the  locally  optimal  solution  for  Case  3,
while  only  a  locally  optimal  solution  is  found  for  Case  4.  It
should  be  noticed  that  the  computational  cost  for  finding  an
optimal solution is very high with the increase of the net size.
Therefore, a locally optimal solution is also useful. 

 
TABLE I  

Simulations Results of the Approach in [29] and the
Proposed Approach

b Objective
function CPU time

Case 1
Proposed approach (Loc. Opt.)

11

38 1.7 s

Proposed approach (Glob. Opt.) 38 38.7 s

Approach in [29] 38 45.9 s

Case 2
Proposed approach (Loc. Opt.)

21

28 0.8 s
Proposed approach (Glob. Opt.) 28 4.4 s

Approach in [29] 28 10.5 s

Case 3
Proposed approach (Loc. Opt.)

84

315 29.7 s
Proposed approach (Glob. Opt.) 307 5048 s

Approach in [29] 307 329 s

Case 4
Proposed approach (Loc. Opt.)

336

40 172.8 s
Proposed approach (Glob. Opt.) o.o.t o.o.t

Approach in [29] o.o.t o.o.t

 
 

VI.  Conclusions

This  work  aims  to  present  an  approach  to  transform  a
TWMG whose initial marking is not given into an equivalent
parametric TMG system where the arcs have unitary weights.
Using this transformation, a resource optimization problem for
the  original  TWMG  can  be  reduced  to  an  optimization
problem  for  the  equivalent  parametric  TMG,  which  can  be
solved more efficiently.  Particularly,  this  approach is  used to
handle  the  marking  optimization  problem  of  TWMGs  and  a
mixed integer quadratically constrained programming method
is  developed  for  the  equivalent  parametric  TMG  system.  To
the best of our knowledge, the existing results for the marking
optimization  problem  of  TWMGs  are  all  based  on  heuristic
strategies. Future work aims to extend the developed approach
to  a  general  model  where  shared  resources  (i.e.,  conflicts)
exist.
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