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   Abstract—Estimating the global state of a networked system is
an important problem in many application domains. The classical
approach  to  tackling  this  problem  is  the  periodic  (observation)
method,  which  is  inefficient  because  it  often  observes  states  at  a
very  high  frequency.  This  inefficiency  has  motivated  the  idea  of
event-based  method,  which  leverages  the  evolution  dynamics  in
question  and  makes  observations  only  when  some  rules  are
triggered  (i.e.,  only  when  certain  conditions  hold).  This  paper
initiates  the  investigation  of  using  the  event-based  method  to
estimate  the  equilibrium  in  the  new  application  domain  of
cybersecurity, where equilibrium is an important metric that has
no closed-form solutions. More specifically, the paper presents an
event-based  method  for  estimating  cybersecurity  equilibrium  in
the  preventive  and  reactive  cyber  defense  dynamics,  which  has
been proven globally convergent. The presented study proves that
the  estimated  equilibrium  from  our  trigger  rule  i)  indeed
converges to the equilibrium of the dynamics and ii) is Zeno-free,
which  assures  the  usefulness  of  the  event-based  method.
Numerical  examples  show  that  the  event-based  method  can
reduce  98% of  the  observation  cost  incurred  by  the  periodic
method. In order to use the event-based method in practice,  this
paper  investigates  how  to  bridge  the  gap  between  i)  the
continuous  state  in  the  dynamics  model,  which  is  dubbed
probability-state  because it  measures the probability  that  a node
is  in  the  secure  or  compromised  state,  and  ii)  the  discrete  state
that is often encountered in practice, dubbed sample-state because
it  is  sampled  from  some  nodes.  This  bridge  may  be  of
independent  value  because  probability-state  models  have  been
widely  used  to  approximate  exponentially-many  discrete  state
systems.
    Index Terms—Cybersecurity  dynamics,  cybersecurity  equilibrium,
event-based  method,  global  state  estimation,  preventive  and  reactive
cyber defense dynamics.
 

I.  Introduction
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E STIMATING  the  global  state  of  a  networked  system  at
any  point  in  time  is  of  fundamental  importance  in  many

application domains. This is because the real-time global state
allows an engine (or administrator) to make prompt decisions.
The  classical  approach  to  obtaining  the  global  state  of  a
networked system is the periodic method, which observes the
state of every node in the networked system at every point in
time  (at  an  appropriate  time  resolution). Fig. 1 illustrates  a
networked  system of  nodes  and  a  time  interval  at  a
certain time resolution. In order to estimate the global state of
the  networked  system  at  time ,  the  periodic  method
requires the observation of every node’s state at every point in
time, leading to  observations (or operations) in total.
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Fig. 1.     Illustration of the advantage of the event-based method over the
classical periodic (observation) method. The latter observes the state of every
node  at  every  point  in  time   (i.e.,  incurring   observation
events in total). The former only observes the state of some nodes at some
points in time, which are highlighted with filled circles, meaning that the
former incurs a much smaller (than ) number of observations.
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The  complexity  mentioned  above  has  motivated  the
event-based  method  [1],  [2].  The  key  idea  underlying  this
method  is  to  leverage  the  state  evolution  dynamics.  As
illustrated  in Fig. 1,  this  method  only  observes  the  state  of
some  nodes  at  some  points  in  time,  effectively  achieving
“observation  on  demand” and  incurring  a  much  smaller
number (than ) of observations. While intuitive, the event-
based  method  is  not  always  effective  because  it  may  fall
victim  to  the  so-called  Zeno  behavior  [3],  which  renders  it
useless  by  incurring  infinitely  many  observations  within  a
finite period of time. Therefore,  an event-based method must
be proven Zeno-free. 

A.  Our Contributions
This paper initiates the investigation of adapting the event-

based method to the cybersecurity domain. In this domain, the
global  cybersecurity  state  of  a  network  is  a  basic  input  for
making effective, if not optimal, cyber defense decisions, such
as  whether  to  impose  new  cybersecurity  restrictions  or  not.
The  paper  investigates  how  to  estimate  the  cybersecurity
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equilibrium  in  the  context  of  preventive  and  reactive  cyber
defense dynamics, which is a particular kind of cybersecurity
dynamics  (and  will  be  reviewed  later).  The  dynamics  have
been  proven  globally  convergent  in  the  entire  parameter
universe  (i.e.,  the  dynamics  always  converge  to  a  unique
equilibrium  for  any  possible  initial  state)  [4].  Despite  this
exciting progress,  one important problem is left  unaddressed:
How to  estimate  the  equilibrium efficiently  without  knowing
the  value  of  every  model  parameter?  Since  the  periodic
observation  method  is  inefficient  (especially  for  large
networks),  the  presented  paper  proposes  adapting  the  event-
based method to estimate the cybersecurity equilibrium in the
preventive and reactive cyber defense dynamics.

98%

Specifically, this paper proposes an active event-based met-
hod  for  estimating  the  cybersecurity  equilibrium  and  proves
that the method is Zeno-free (i.e., it does not fall victim to the
Zeno  behavior).  Numerical  examples  show  that  our  event-
based  method  can  reduce  of  the  observation  cost  when
compared with the periodic method. In order to show how to
use this event-based method in practice, we investigate how to
bridge the gap between i) the continuous state in the dynamics
model, which is dubbed probability-state because it  measures
the  probability  that  a  node  is  in  the  secure  or  compromised
state,  and  ii)  the  discrete  state  that  is  often  encountered  in
practice,  dubbed  sample-state  because  it  is  sampled  from
some  nodes  at  some  points  in  time.  This  bridge  may  be  of
independent value because probability-state models have been
widely  used  to  approximate  discrete  state  systems  with
exponentially-many  discrete  states  (incurred  by  a  state-space
explosion [5], [6]). 

B.  Related Work
The  event-based  method  has  been  investigated  in  many

application settings other than cybersecurity, such as sampling
for  stochastic  systems  [7],  stabilizing  control  [8],  self-trigg-
ered control  [9],  and set-membership filtering (SMF) [10].  A
core research problem is to show that the method does not fall
victim to the Zeno behavior (see, for example, [8], [11]–[19]),
which can render the event-based method useless by imposing
infinitely many observation events within a finite period of ti-
me and can prevent the estimated dynamics from converging [3].

To the best  of  the authors’ knowledge,  the presented study
is the first  to introduce the idea of event-based sampling into
the  cybersecurity  domain.  This  is  made  possible  by  a  recent
breakthrough  showing  that  a  certain  class  of  cybersecurity
dynamics  is  globally  convergent  in  the  entire  parameter
universe  [4],  a  characterization  that  was  not  proven  until  10
years after the model was first introduced in [20]. The notion
of  cybersecurity  dynamics  [5],  [6]  was  introduced  to  model
and analyze cybersecurity from a whole-network perspective.
This notion, as discussed in [5], [6], has roots in earlier studies
in biological epidemiology (e.g., [21]–[25]) and its variants in
cyber  epidemiology  (e.g.,  [26]–[36]),  interacting  particle
systems  [37],  and  microfoundation  in  economics  [38].  This
notion has opened the door to a new research field with many
results (e.g., [39]–[50]).

However, the previous studies leave one important question
unaddressed:  How  can  one  quantify  the  equilibrium  in  the

real-world when the values of some model parameters are not
known?  This  paper  will  fill  the  lacuna  by  showing  that  the
event-based  method  can  be  naturally  adapted  to  tackle  this
problem  in  the  context  of  preventive  and  reactive  cyber
defense  dynamics,  which  is  globally  convergent  in  the  entire
parameter  universe  [4].  Special  cases  of  this  dynamic  are
(partially) characterized in previous studies such as [33]–[36],
[48], which mostly focus on the epidemic threshold, namely a
condition  under  which  the  dynamics  will  converge  to  the
equilibrium zero (i.e., a special equilibrium that does not need
to  be  estimated).  In  the  cybersecurity  domain,  the  notion  of
epidemic  threshold  is  less  relevant  because  the  dynamics
rarely “die  out”,  which  is  inherent  to  the  nature  of  the  dyna-
mics  (e.g.,  computers  can  become  compromised  by  means
other than infection, contrary to biological dynamics).

The  estimation  of  equilibrium  has  been  explored  in  a
smaller  parameter  regime  [48],  within  which  the  dynamics
were  known  to  be  convergent  while  certain  parameters  were
specified (i.e., the structure of the global attack-defense graph,
which  will  be  elaborated  later).  In  contrast,  the  presented
paper  investigates  how  to  estimate  the  cybersecurity  equili-
brium  in  the  entire  parameter  universe,  making  results
applicable to broader scenarios.  This is  made possible by the
theoretical result that the dynamics are globally convergent in
the entire parameter universe [4].

It is worth mentioning that the preventive and reactive cyber
defense  dynamics  are  particular  kinds  of  cybersecurity
dynamics  for  quantifying  cybersecurity  from  a  holistic
perspective  [51]–[55].  There  are  other  kinds  of  cybersecurity
dynamics, which aim to accommodate adaptive defenses [45],
active  defenses  [56]–[58],  and  proactive  defenses  [43].
Adapting the event-based method to these kinds of dynamics
is an important open problem for future research. 

C.  Paper Outline
In  Section  II,  the  paper  briefly  reviews  the  preventive  and

reactive  cyber  defense  dynamics  model  and  its  global
convergence  in  the  entire  parameter  universe  [4].  In  Section
III,  an  event-based  method  for  estimating  the  equilibrium  is
presented.  Section  IV involves  a  discussion  on  how to  apply
this  event-based  method  in  practice  by  bridging  the  gap
between the probability-state in the theoretical model and the
sample-state  in  practice.  Section  V  concludes  the  paper  with
open problems and further research topics. 

II.  Problem Statement
 

A.  Review of Preventive and Reactive Defense Dynamics
The  idea  of  a  preventive  and  reactive  cyber  defense

dynamics  model  was  first  introduced  in  [20]  and  partially
analyzed  in  [48],  while  noting  that  its  special  cases  were
studied  earlier  in  [33]–[35].  However,  all  these  studies  only
contribute  a  partial  understanding  of  the  dynamics  corres-
ponding  to  a  special  parameter  regime  rather  than  the  entire
parameter  universe.  Very  recently,  it  is  proven  that  these
dynamics  are  globally  convergent  in  the  entire  parameter
universe,  meaning  that  there  is  always  a  unique  equilibrium
[4], whose exact value (or position) depends on the parameter
values rather than the initial state of the dynamics.
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In the dynamics model, the defender employs two classes of
defenses:

1) Preventive Defenses: These correspond to the use of intr-
usion prevention tools to block cyber attacks before they reach
a target or before they can cause any damage.

2) Reactive  Defenses: These  correspond to  the  use  of  anti-
malware  tools  to  detect  compromised  computers  and  then
clean them up.

On the other hand, the attacker wages two kinds of attacks:
1) Push-based  Attacks: These  correspond  to  the  use  of

computer malware to spread across the network.
2) Pull-based  Attacks: These  correspond  to  the  use  of

compromised  or  malicious  websites  to  attack  browsers  when
vulnerable browsers visit those malicious websites.

G = (V,E)
V (u,v) ∈ E

u v
u v

G

(u,v) ∈ E
G

G G
A = [avu]n×n

G avu = 1 (u,v) ∈ E

avv = 0 deg(v) v ∈ V
G v G
deg(v) = |Nv| Nv = {u ∈ V : (u,v) ∈ E}

The  model  abstracts  the  attack-defense  interaction  taking
place over an attack-defense graph structure , where

 is the vertex set representing computers and  means
computer  can  wage  push-based  attacks  against  computer 
directly (i.e., the communication from  to  is allowed by the
security  policy).  This  means  that  is,  in  general,  different
from  the  underlying  physical  network  structure  because

 may  represents  a  variety  of  communication  paths
(rather than a single physical link), and that  can be derived
from  the  security  policy  of  a  networked  system  and  the
physical  network  in  question.  The  presented  study  does  not
make  any  restrictions  on  the  structure  of ;  for  example, 
may  be  directed  or  undirected.  Let  denote  the
adjacency matrix of , where  if and only if .
Since  the  model  aims  to  describe  the  attacks  between  comp-
uters,  we  set .  Let  be  the  degree  of  node 
when  is undirected or the in-degree of  when  is directed,
where  with .

v ∈ V

sv(t) v t iv(t)
v t

sv(t)+ iv(t) = 1 v ∈ V t ≥ 0

The  dynamics  can  equally  be  described  with  either  a
continuous-time  model  or  a  discrete-time  model  [4].  The
presented paper focuses on the continuous-time model. At any
point in time, a node  is in one of two states: “0” means
secure  but  vulnerable,  whereas “1” means  compromised.  Let

 denote the probability that  is secure at time  and 
denote  the  probability  that  is  compromised  at  time .  Note
that  for  and  for ;  thus,  these  terms
interchangeably  describe  the  probability-state  of  a  given
computer.

v ∈ V
t θv,1→0(t)

θv,0→1(t)
β ∈ (0,1]

θv,1→0(t) = β
θv,0→1(t)

α ∈ [0,1]

γ ∈ (0,1]
u

Fig. 2 describes the state-transition diagram for a node 
at  time ,  where  abstracts  the  effectiveness  of  the
reactive  defenses  and  abstracts  the  capability  of
attacks  against  the  preventive  defenses.  Let  be  the
probability  that  a  compromised  computer  changes  to  the
secure state because the attacks are detected and mitigated up
by  the  reactive  defenses.  Then, .  On  the  other
hand,  is  more  inclusive  because  it  accommodates
both push-based and pull-based attacks. In order to model the
power  of  pull-based  attacks  against  the  preventive  defenses,
let  denote  the  probability  that  a  secure  computer
becomes compromised despite the presence of the preventive
defenses  (i.e.,  the  preventive  defenses  are  penetrated  by  the
pull-based attacks). In order to model the power of push-based
attacks  against  the  preventive  defenses,  let  denote
the  probability  that  a  compromised  computer  wages  a

v

(u,v) ∈ E

successful  attack  against  a  secure  computer  despite  the
preventive  defenses  (i.e.,  the  preventive  defenses  are  pene-
trated  by  push-based  attacks),  where .  Under  the
assumption  that  the  attacks  are  waged  independently  of  each
other, it holds that

 

θv,0→1(t) = 1− (1−α)
∏
u∈Nv

(
1−γiu(t)

)
. (1)

v ∈ V
The preceding discussion leads to the following continuous-

time nonlinear dynamical system for :
 

dsv(t)
dt
= θv,1→0(t)× iv(t)− θv,0→1(t)× sv(t)

div(t)
dt
= θv,0→1(t)× sv(t)− θv,1→0(t)× iv(t).

n
v ∈ V

The  dynamics  can  be  rewritten  as  a  system  of  nonlinear
equations for 
 

div(t)
dt
= fv(i)

= −βiv(t)+
[
1− (1−α)

∏
u∈Nv

(
1−γiu(t)

)](
1− iv(t)

)
. (2)

The global  convergence  of  system (2)  presented  in  [4]  can
be summarized as follows:

α > 0
1)  If  the  attacker  wages  both  push-based  and  pull-based

attacks  (i.e., ),  system  (2)  is  globally  convergent  in  the
entire  parameter  universe  and  the  dynamics  converge  to  a
unique nonzero equilibrium exponentially.

α = 0

λA,1

A

2)  If  the  attacker  only  wages  push-based  attacks  (i.e.,
), system (2) is still globally convergent in the parameter

universe  but  the  convergence  speed  depends  on  the  model
parameters and the largest eigenvalue  of adjacency matrix

 is as follows:
λA,1 < β/γa)  If ,  the  dynamics  converge  to  equilibrium  0

exponentially (see also [35], [48]).
λA,1 = β/γb)  If ,  the  dynamics  converge  to  equilibrium  0

polynomially.
λA,1 > β/γc) If , the dynamics converge to a unique nonzero

equilibrium exponentially.
This leads to:

α > 0 α = 0 λA,1 , β/γ
Lemma  1  [4]: System  (2)  converges  exponentially  when

 and when  and .

αv βv

γuv

It is worth mentioning that the results also hold for the more
general setting with node-dependent parameters  and  and
edge-dependent parameter  [4]. 

B.  Problem Statement: Estimating Cybersecurity Equilibrium
Even  though  system  (2)  has  been  proven  globally  conver-

gent  in  the  entire  parameter  universe,  there  is  no  analytic
result  on  the  value  of  the  equilibrium,  which  remains  a  hard

 

State 0
(secure)

State 1
(compromised)

θv, 0→1(t)

θv, 1→0(t)

 
v ∈ V

θv,0→1(t)
Fig. 2.     The  state-transition  diagram  of  any  that  leads  to  a  nonlinear
Dynamical System with the nonlinear term , as shown in (1).
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α > 0
α = 0

λA,1 , β/γ

α = 0 λA,1 = β/γ

problem (except for special cases, such as the aforementioned
equilibrium 0).  As discussed previously,  the  periodic  method
may  be  used  to  estimate  the  equilibrium,  but  in  many  cases,
this  is  too  costly.  This  observation  reiterates  the  purpose  of
this  paper,  which  is  to  investigate  the  use  of  an  event-based
method as an alternative. This paper focuses on estimating the
equilibrium  in  the  parameter  regime  where  System  (2)
converges  exponentially,  namely  when  (i.e.,  there  are
pull-based attacks) or when  (i.e., there are no pull-based
attacks)  but ,  as  shown  in  Lemma  1.  The  paper
leaves  it  to  future  works  to  address  the  special  parameter
regime  and ,  where  the  dynamics  converge
polynomially;  as  the  techniques  used  in  the  presented  paper
are applicable to exponential convergence but not polynomial
convergence. 

C.  Notations
R N

n i = [i1, . . . , in]
∈ Rn l1 ∥i∥1 =

∑n
v=1 ξv|iv| ξv ∈ [0,1]∑n

v=1 ξv = 1

Let  be  the  set  of  real  numbers,  be  the  set  of  positive
integers  and  zero.  For  an -dimensional  vector 

, the -norm  is adopted, where 
is  a  positive  constant  subject  to .  Note  that  the
result  holds  equally  with  respect  to  other  norms. Table I
summarizes the major notations used in the paper. 

III.  An Event-based Method

In  this  section,  the  paper  proposes  an  event-based  method
for estimating the cybersecurity equilibrium of system (2) and
analyzes  its  properties,  including  Zeno-freeness.  Then,  the
method  is  adapted  to  accommodate  the  practical  case  where
state observations are not conducted arbitrarily but conducted
at predetermined points in time. 

A.  Designing Event-based Trigger Rule
The  presented  work  proposes  using  a  linear  dynamical

system  to  approximate  the  original  nonlinear  dynamical
system  in  the  event-based  method.  In  the  linear  system,  the
probability  that  a  node  is  compromised  evolves  linearly
between  two  consecutive  state  observation  events.  More

v u ∈ Nv u
tv
k v k

k = 0,1, . . .
u i[a]

u (tv
k) v

[a] iu(·)

i[a]
v (tv

k) = iv(tv
k)

specifically,  a  node  actively  probes  its  neighbors  for  their
observed  state  information  when  certain  conditions  are
satisfied. Note that this “active probing” strategy is sometimes
called “pull-based” event-based  method;  here,  the  latter  term
is  not  adopted  as  it  already  refers  to  pull-based  attacks.
Suppose  node  probes  its  neighbors  for ’s  observed
state information at time , which indicates node ’s th state
observation  event,  where .  Upon  receiving  the
probe, ’s  current  state,  denoted  by ,  is  given  to ,
where superscript “ ” highlights the difference from  in
the  original  dynamical  system.  However,  it  holds  that

.

α > 0 α = 0 λA,1 , β/γ
v ∈ V t ∈ [tv

k, t
v
k+1)

As  discussed  above,  the  presented  work  focuses  on  the
parameter  regime  where  the  dynamics  converge
exponentially, namely  and  but . In this
parameter regime, system (2) becomes: for , ,
 

di[a]
v (t)
dt

=−βi[a]
v (tv

k)

+

[
1− (1−α)

∏
u∈Nv

(
1−γi[a]

u (tv
k)
)](

1− i[a]
v (tv

k)
)

(3)

α > 0 α = 0 λA,1 , β/γwhere , or  but .
u,v ∈ V u ∈ NvFor  where , define state errors as

  εv(t, tv
k) = iv(t)− i[a]

v (tv
k)

εu(t, tv
k) = iu(t)− i[a]

u (tv
k)

t ∈ [tv
k, t

v
k+1) k = 0,1, . . .

e−σt

σ φ

for  and .  When  system  (2)  converges
exponentially,  its  convergence  speed  can  be  denoted  by 
for  some  appropriate .  Let  be  a  continuous  function
satisfying
 

φ(t) = M0e−νt, ∀t > 0 (4)
0 < ν ≤ σ M0where  and  is a positive constant number. Then,

the  following  event-based  trigger  rule  defines  a  sequence  of
points in time at which state observation events occur.

tv
0 = 0

v ∈ V
Definition  1  (Event-based  Trigger  Rule): Let  for

. The trigger rule is defined as

 

TABLE I  
Notations Used Throughout the Paper

Notation Description

G = (V,E),A G A = [avu]n×n avu = 1 (u,v) ∈ EThe attack-defense graph structure  with adjacency matrix  where  if and only if 
α ∈ [0,1] The probability that a secure computer becomes compromised because a pull-based attack penetrates a preventive defense

β ∈ (0,1] The probability that a compromised computer becomes secure because a reactive defense detects and cleans the compromise

γ ∈ (0,1] The probability that a compromised computer wages a successful push-based attack against a secure computer

Nv Nv = {u ∈ V : (u,v) ∈ E}

iv(t) i(t), v t i(t) = [i1(t), . . . , in(t)]The probability  is in the compromised state at time ; 

i∗v i∗, v i∗ = [i∗1, . . . , i
∗
n]The probability  is in the compromised state in the equilibrium; 

i[a]
v (t) i[a](t), v t i[a](t) = [i[a]

1 (t), . . . , i[a]
n (t)]The probability  is in the compromised state at time  w.r.t. the event-based method; 

tvk k v ∈ V tv0 = 0The time for the th observation event at  in the event-based method; 
h The constant time interval for periodic observations (as the reference setting)

χv(t) v tThe sample-state of node  at time ; 0 means secure and 1 means compromised

îv(t) ŝv(t), v tThe probability  is in the compromised (secure) state at time  as estimated from the sample-states
̂i[a]
v (t) v tThe probability  is in the compromised state at time  as estimated from the sample-states w.r.t. the event-based method
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tv
k+1 = sup

{
τ ≥ tv

k : max
u∈Nv∪{v}

∣∣∣εu(τ, tv
k)
∣∣∣ ≤ φ(τ)

}
(5)

{tv
k}
+∞
k=0

which specifies a sequence of state observation events at time
. 

B.  Analyzing the Event-based Method
In  the  following  paragraphs,  we  demonstrate  the

effectiveness  of  the  event-based  method  and  prove  that  it  is
Zeno-free.

Theorem 1: Suppose the following conditions hold:
1) (α,β,γ) < Θ Θ ⊂ R3  for some set with zero measure ;
2) parameters satisfy the conditions required by Lemma 1;
3) ζ > 0 there exists some , so that

 

max
u∈Nv
|εu(tv

k+1, t
v
k)| ≤ ζ |εv(tv

k+1, t
v
k)|

∀v ∈ V k = 0,1, . . .holds for , .
Then,  system  (3)  under  the  event-based  trigger  rule  in

Definition 1 converges to the equilibrium of system (2) and is
Zeno-free.

inf{tv
k+1− tv

k} > 0 v ∈ V
Proof: The  presented  study  needs  to  show  i)  the  sequence

satisfies  for all ; ii) system (3) under the
event-based  trigger  rule  converges  to  the  equilibrium  of
system (2) and system (3) is Zeno-free.

i∗v = limt→+∞iv(t)
v ∈ V

To  prove  part  i),  the  first  thing  to  note  is  that  the  global
convergence of system (2) is proven in [4]. Let 
for all . Then
 

−βi∗v +
[
1− (1−α)

∏
u∈Nv

(
1−γi∗u

)]
(1− i∗v) = 0.

zv(t) = iv(t)− i∗v i∗vLet  for all . Then
 ∣∣∣∣∣ ddt

zv(t)
∣∣∣∣∣ = ∣∣∣∣∣−βiv(t)+

[
1− (1−α)

∏
u∈Nv

(
1−γiu(t)

)]
×
(
1− iv(t)

)
+βi∗v −

[
1− (1−α)

∏
u∈Nv

(
1−γi∗u

)]
× (1− i∗v)

∣∣∣∣∣
=

∣∣∣∣∣(β+1)zv(t)− (1−α)
∏
u∈Nv

(
1−γi∗u

)
zv(t)

− (1−α)
[∏

u∈Nv

(
1−γi∗u

)
−
∏
u∈Nv

(
1−γiu(t)

)]
×
(
1− iv(t)

)∣∣∣∣∣.
u− NvLet  be the smallest index in . Notice that

 ∏
u∈Nv

(
1−γi∗u

)
−
∏
u∈Nv

(
1−γiu(t)

)
=

[(
1−γiu− (t)

)
+
(
γiu− (t)−γi∗u−

)]
×
∏

u>u−,u∈Nv

(
1−γi∗u

)
−
∏
u∈Nv

(
1−γiu(t)

)
= γzu−

∏
u>u−,u∈Nv

(
1−γi∗u

)
+
(
1−γiu− (t)

)
×
[ ∏

u>u−,u∈Nv

(
1−γi∗u

)
−
∏

u>u−,u∈Nv

(
1−γiu(t)

)]
.

This recurrent process will lead to
 ∣∣∣∣∣ ddt

zv(t)
∣∣∣∣∣ ≤ M1

∣∣∣∣zv(t)
∣∣∣∣+ ∣∣∣∣∣(1−α)γ

(
1− iv(t)

) ∑
ω∈Nv

zω(t)

×
∏

u>ω,u∈Nv

(
1−γi∗u

) ∏
u<ω,u∈Nv

(
1−γiu(t)

)∣∣∣∣∣
≤ M1

∣∣∣∣zv(t)
∣∣∣∣+M2

∑
ω∈Nv

∣∣∣∣zω(t)
∣∣∣∣

M1 M2
2)

where  and  are positive constants. According to Lemma
1,  when  condition  holds,  the  system  has  an  exponential
convergence speed, which means
 

∀v ∈ V, ∃σ, Tv > 0, ∀t > Tv,
∣∣∣∣zv(t)
∣∣∣∣ = ∣∣∣∣iv(t)− i∗v

∣∣∣∣ ≤ e−σt.

So
 ∣∣∣∣∣ ddt

zv(t)
∣∣∣∣∣ ≤ M1

∣∣∣∣zv(t)
∣∣∣∣+M2

∑
ω∈Nv

∣∣∣∣zω(t)
∣∣∣∣

≤ Me−σt ≤ Me−σtvk

(6)

M d
dt zv(t) = d

dt iv(t)where  is  a  positive  constant.  Since ,  the
following inequality holds:
 ∣∣∣∣εv(tv

k+1, t
v
k)
∣∣∣∣ = ∣∣∣∣iv(tv

k+1)− i[a]
v (tv

k)
∣∣∣∣ = ∣∣∣∣iv(tv

k+1)− iv(tv
k)
∣∣∣∣

≤
w tvk+1

tvk

∣∣∣∣∣ d
dτ

iv(τ)
∣∣∣∣∣dτ = w tvk+1

tvk

∣∣∣∣∣ d
dτ

zv(τ)
∣∣∣∣∣dτ

≤
w tvk+1

tvk
Me−σtvk dτ = Me−σtvk (tv

k+1− tv
k).

φ(t) = M0e−νt = M0e−σt ν = σ

v
t = tv

k+1

In  the  case  or ,  the  event-
based trigger rule in Definition 1 shows that  will not trigger
a state observation event until time , which means
 

max
u∈Nv∪{v}

|εu(tv
k+1, t

v
k)| = M0e−σtvk+1 .

3)Under condition ,
 

M0e−σ(tvk+1−tvk)e−σtvk = max
u∈Nv∪{v}

|εu(tv
k+1, t

v
k)|

≤ ζ |εv(tv
k+1, t

v
k)|

≤ ζMe−σtvk (tv
k+1− tv

k). (7)

ηv

M0e−σηv = ζMηv

tv
k+1− tv

k ≥ ηv

v ∈ V inf{tv
k+1− tv

k} > 0

It shows the existence of a positive number , which is the
root  of  the  transcendental  equation  and
satisfies ,  which  essentially  means  that  for  every

, .

φ(t) = M0e−νt > M0e−σt ν < σ

ηv tv
k+1− tv

k > ηv

In the case  or , with respect to
the  mentioned above, we can easily get .  This
completes the proof of part i).

1) t→ +∞ k→ +∞

φ(t)→ 0 t→ +∞ ∀tv
k > 0 iv(tv

k) , i∗v
tv
k+1 > tv

k |iv(tv
k+1)− i[a]

v (tv
k)| = φ(tv

k+1)
(k+1) v

tv
k > 0

iv(tv
k) = i∗v v (k+1)

In  order  to  prove  part  ii),  the  presented  study  first  shows
that  under  condition ,  implies  (i.e.,  there
are  infinitely  many  state  observation  events).  Note  that

 as . For , if , then there must

exist a  such  that ,  which
means  the th  state  observation  event  for  node  will
occur within a finite time; if there exists some  such that

, node  may not incur the th state observation
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tv
k+1 = +∞

∀v ∈ V ∀k = 0,1, . . .
Θv,k

(α,β,γ) ∈ R3 iv(tv
k) = i∗v

v ∈ V k = 0,1, . . . Θ = ∪v,kΘv,k

(a)
(α,β,γ) < Θ t→ +∞ k→ +∞

event  within  a  finite  time,  meaning .  The  latter
situation can be addressed by using the Sard’s lemma in [59]:

 and ,  this  paper  uses  a  set  with  zero
measure, denoted by , to cover all of the parameter vectors

 corresponding  to  which  is  true.  Since
 and  are both countable,  is also a

set with zero measure. Therefore, under condition , namely
,  implies .

v ∈ VThen, the presented paper goes to part ii). For ,
 

d
dt

[
i[a]
v (t)− iv(t)

]
= βiv(t)−

[
1− (1−α)

∏
u∈Nv

(
1−γiu(t)

)](
1− iv(t)

)
−βi[a]

v (tv
k)+
[
1− (1−α)

∏
u∈Nv

(
1−γi[a]

u (tv
k)
)]

× (1− i[a]
v (tv

k)
)

= (β+1)
(
iv(t)− i[a]

v (tv
k)
)

+ (1−α)
[(

1− iv(t)
)∏

u∈Nv

(
1−γiu(t)

)
− (1− i[a]

v (tv
k)
)∏

u∈Nv

(
1−γi[a]

u (tv
k)
)]

= (β+1)εv(t, tv
k)− (1−α)εv(t, tv

k)
∏
u∈Nv

(
1−γiu(t)

)
− (1−α)γ

(
1− iv(t)

) ∑
ω∈Nv

εω(t, tv
k)

×
∏

u<ω,u∈Nv

(
1−γiu(t)

) ∏
u>ω,u∈Nv

(
1−γi[a]

u (tv
k)
)
.

Under  the  event-based  trigger  rule  in  Definition  1,  the
following holds:
 ∥∥∥i[a](t)− i(t)

∥∥∥
1

≤
∑
v∈V
ξv

w t

tvk

∣∣∣∣∣ d
dτ

[
i[a]
v (τ)− iv(τ)

]∣∣∣∣∣dτ
=
∑
v∈V
ξv

w t

tvk

∣∣∣∣∣(β+1)εv(τ, tv
k)− (1−α)εv(τ, tv

k)

×
∏
u∈Nv

(
1−γiu(τ)

)
− (1−α)γ

(
1− iv(τ)

) ∑
ω∈Nv

εω(τ, tv
k)

×
∏

u<ω,u∈Nv

(
1−γiu(τ)

) ∏
u>ω,u∈Nv

(
1−γi[a]

u (tv
k)
)∣∣∣∣∣dτ

≤C1

∑
v∈V
ξv

w t

tvk

[∣∣∣εv(τ, tv
k)
∣∣∣+∑
ω∈Nv

∣∣∣εω(τ, tv
k)
∣∣∣]dτ

 

≤C2

∑
v∈V
ξv

w t

tvk
e−στdτ

≤ C
2

∑
v∈V
ξv
(
e−σtvk − e−σt

)
≤C
∑
v∈V
ξve−σtvk

C1 C2 C
t ∈ [tv

k, t
v
k+1) v ∈ V k = 1,2, . . .

where ,  and  are  some  positive  constants  and
 for all  and .

i∗ ∈ [0,1]n

limt→+∞ ∥i(t)− i∗∥1 = 0 inf{tv
k+1− tv

k} > 0
t→ +∞ k→ +∞ t→ +∞

tv
k → +∞

It  is  proven  in  [4]  that  system  (2)  is  globally  convergent,
confirming  the  existence  of  a  unique  equilibrium 
such  that .  From  and

 implying ,  it  can  be  found  that  is
equivalent to . Therefore:
 

lim
t→+∞

∥∥∥i[a](t)− i∗
∥∥∥

1 ≤ lim
t→+∞

∥∥∥i[a](t)− i(t)
∥∥∥

1

+ lim
t→+∞

∥∥∥i(t)− i∗
∥∥∥

1

≤ lim
t→+∞

C
∑
v∈V
ξve−σtvk +0

= 0
t ∈ [tv

k, t
v
k+1)where .

tv
k+1− tv

k ≥ ηv ηv

Finally,  it  comes  to  the  problem  of  Zeno-freeness.  From
inequality (7), it can be deduced that  where  is
a  positive  number.  It  indicates  that  for  any  finite  period  of
time, there is only a finite number of state observation events.
Furthermore,  there  is  a  positive  lower  bound  in  the  time
intervals  between  two  consecutive  state  observation  events,
making  the  event-based  method  feasible  in  practice.  In
addition, the following holds:
 

tv
κ =

κ∑
k=1

(
tv
k − tv

k−1
)
=

κ−1∑
k=0

(
tv
k+1− tv

k
)
< +∞

κ = 1,2, . . .for .  It  effectively  shows that  system (3)  under  the
event-based  trigger  rule  is  Zeno-free,  which  completes  the
proof of part ii).

Putting  the  two  pieces  of  proofs  together,  the  presented
work concludes that system (3) under event-based trigger rule
in Definition 1 converges to the equilibrium of system (2) and
is Zeno-free. ■ 

C.   Adapting  Theorem  1  to  Accommodate  Periodic  Reference
Setting

tv
k k = 0,1, . . .

h

h

h

h

Theorem 1 requires that the trigger events occur precisely at
sequential  points  in  time  for  as  in  Definition 1.
In practice,  observation events  may occur at  a  predetermined
sequence of points in time, say, with time interval  (e.g., the
points  highlighted  with  filled  circles  in Fig. 1).  Since
observations are made at points in time that are multiples of ,
there  can  be  delays  in  state  observation  events  because  the
model-derived  observation  time  may  not  be  a  multiple  of .
Therefore,  what  the  presented  study  needs  to  show  is  that
Theorem 1 is still valid under the periodic reference setting as
long as  is small enough, which can be achieved by Theorem 2
below with an adapted event-based trigger rule in Definition 2.

tv
0 = 0 v ∈ V

Definition  2  (Adapted  Event-based  Trigger  Rule  Accomm-
dodating Discrete-time): Let  for .  The  adapted
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trigger rule is defined as
 

tv
k+1 = sup

{
τ ≥ tv

k,
τ

h
∈ N : max

u∈Nv∪{v}

∣∣∣εu(τ, tv
k)
∣∣∣ ≤ φ(τ)

}
. (8)

h

tv
k h v ∈ V

k = 0,1, . . .

Theorem  2: Suppose  system  (2)  submits  to  the  periodic
reference  setting  with  a  small  enough  time  interval  (which
will  be  specified),  so  that  any  actual  state-observation  event
occurs  at  time  will  be  at  a  multiple  of  where  and

 as specified in Definition 2. Then, Theorem 1 still
holds.

∀v ∈ V k = 0,1, . . . tv
k+1− tv

k ≥ ηv
ηv

Proof: Remember that in the proof of Theorem 1, inequality
(7) shows that  for  and ,  where

 is a positive number, denoted by
 

η = inf{ηv : v ∈ V}

∀v ∈ V h
h < η

a positive lower bound in the state observation time intervals
with  respect  to .  Suppose  is  small  enough,  which
means .

tv
k = lvkh lvk ∈ N

tv
k+1 = lvk+1h

lvk+1 > lvk lvk+1 ∈ N h < η
[lvkh, lvk+1h]

The next issue is the periodic reference setting. Without loss
of  generality,  this  paper  assumes  where .  It
executes  the  next  state  observation  event  at  time 
according to the adapted event-based trigger rule in Definition
2.  Note  that  and  because .  Regarding
the  time  period ,  the  following  can  be  proven  in  a
similar fashion to the proof in Theorem 1 that
 ∥∥∥i[a](t)− i(t)

∥∥∥
1

≤
∑
v∈V
ξv

w t

lvkh

∣∣∣∣∣ d
dτ

[
i[a]
v (τ)− iv(τ)

]∣∣∣∣∣dτ
≤ C1

∑
v∈V
ξv

w t

lvkh

[∣∣∣εv(τ, lvkh)
∣∣∣+∑
ω∈Nv

∣∣∣εω(τ, lvkh)
∣∣∣]dτ

≤ C2

∑
v∈V
ξv

w t

lvkh
e−στdτ

≤ C
∑
v∈V
ξve−σlvkh

C1 C2 C
t ∈ [lvkh, lvk+1h) v ∈ V k = 1,2, . . .
where ,  and  are  some  positive  constants  and

 for all  and .

i∗ ∈ [0,1]n limt→+∞ ∥i(t)− i∗∥1 = 0
t→ +∞ lvkh→ +∞

Similarly  to  the  proof  of  Theorem  1,  regarding  the  unique
equilibrium  satisfying ,

 is equivalent to . Then
 

lim
t→+∞

∥∥∥i[a](t)− i∗
∥∥∥

1 ≤ lim
t→+∞

C
∑
v∈V
ξve−σlvkh = 0

t ∈ [lvkh, lvk+1h)where .

h > 0

As  for  Zeno-freeness,  note  that  for  the  periodic  reference
setting, the time interval between two consecutive observation
events  must  be  not  shorter  than  the  period  parameter ,
which implies Zeno-freeness. ■

h→ 0
In addition, note that Theorem 2 becomes Theorem 1 when

. In the numerical experiments, this study simulates the
dynamics  in  the  setting  of  Theorem 2  and  in  what  follows  it
presents  an  algorithm  to  enforce  the  event-based  trigger  rule
specified in Definition 2. 

D.  Translating Trigger Rule in Definition 2 to Algorithm
Here,  the  trigger  rule  in  Definition  2  is  adapted  to  design

Algorithm 1 for  estimating the  cybersecurity  equilibrium.  To
simplify notations, this paper defines, according to system (3)

 

F [a]
v (tv

k) =−βi[a]
v (tv

k)

+
[
1− (1−α)

∏
u∈Nv

(
1−γi[a]

u (tv
k)
)](

1− i[a]
v (tv

k)
)
. (9)

 Algorithm  1: Event-based  trigger  rule  over  probability-states  as
 specified in Definition 2

G = (V,E) iv(0) v ∈ V σ h  1 input: ,  for , , 
{tvk}
+∞
k=0 {iv(t)}+∞t=0 v ∈ V  2 output:  and  for 

k← 0 tv0← 0  3 initialize: ; 
  4 while true do

t← tvk  5　　

Event← 0  6　　

v i[a]
u (tvk) u ∈ Nv  7　　if  is observed with  for  then

F [a]
v (tvk)  8　　　　compute  according to (9)

  9　　end
Event = 010　　while  do

iv(t)← i[a]
v (tvk)+ (t− tvk)F [a]

v (tvk)11　　　 
maxu∈Nv∪{v} |iu(t)− i[a]

u (tvk)| ≥ φ(t)12　　　 if  then
v u ∈ Nv i[a]

v (tvk)13　　　　   probes its neighbors  for observing 
Event← 114　　　　　

tvk+1← t15　　　　　

i[a]
v (tvk+1)← i[a]

v (t)16　　　　　

17　　　 end
t← t+h18　　　 

19　　end
k← k+120　　

21 end

G = (V,E)
iv(0) v ∈ V φ

h
φ(t) = e−θt

e−σt θ < σ

 
    Algorithm 1 has four inputs: attack-defense graph ;
initial  values  for ;  a  trigger  function ;  and  a  step
length  parameter  (i.e.,  the  constant  time  interval  of  the
periodic reference setting). The presented study sets ,
where  is the convergence speed of system (2) and . 

E.  Numerical Examples

G

G

The  presented  study  uses  numerical  examples  to  confirm
that the event-based method based on the event-based trigger
rule  specified  in  Definition  2  is  correct  as  well  as  more
efficient  than  the  periodic  observation  method,  where
efficiency  is  exhibited  by  the  reduced  (or  saved)  number  of
observation events incurred by using the event-based method.
For  graph  in  the  dynamics  model,  the  following  network
structures  obtained  from  http://snap.stanford.edu/data/  are
sufficient for illustration purposes. Note that the extraction of

 in  practice  demands  access  to  the  enterprise’s  physical
network  topologies  and  security  policies,  which  are  usually
confidential data unavailable to academic researchers.

|V | = 8717 |E| = 31 525
64 λA,1 = 4.7395
α = 0.2108 β = 0.6528 γ = 0.1695

i(t)

i)  Gnutella  peer-to-peer  network:  This  is  a  directed  graph
with  nodes,  links,  maximal  node  in-
degree  and . The other model parameters are
set  as: ,  and ,  which  means

 converges to a unique nonzero equilibrium exponentially.

|V | = 5242 |E| = 28 980 81
λA,1 = 45.6167

α = 0.5268 β = 0.7856 γ = 0.0212 i(t)

ii)  Enron  email  network:  This  is  an  undirected  graph  with
 nodes,  edges, maximal node degree 

and .  The  other  model  parameters  are  set  as:
,  and ,  which  means 
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converges to a unique nonzero equilibrium exponentially.
GThe  above  network  structures  are  suitable  examples  of 

because  cyber  attacks  on  these  networks  must  follow  their
topologies.

v ∈ V
iv(0) ∈R [0,1] ∈R

t ∈ [0,500]
h = 0.025 θ = 0.5

maxu∈Nv |εu(tv
k+1, t

v
k)|/|εv(tv

k+1, t
v
k)|

3)

iv(t) v ∈ V
tv
k

iv(t) v ∈ V

1)  Numerical  Method: In  this  paper’s  numerical  examples,
each  node  is  assigned  with  an  initial  compromise
probability  where  means sampling uniformly
at random. This study considers  steps with a fixed
step-length  and . The conditions in Theorem 1
hold in the settings. It is worth mentioning that the maximum
value  of  ratio  appears  in  the
early  stage  of  the  process  with  respect  to  condition .  The
execution  of  the  periodic  observation  method  directly  keeps
track of  the  for .  Corresponding to the event-based
method, the execution of Algorithm 1 keeps track of the  and
the  for .

1
n
∑

v∈V |iv(t)− i[a]
v (t)| t ∈ [400,

500]
m sd m ≈ 0

sd ≈ 0
m+ sd < 2×10−2

m = 5.69×10−6

sd = 2.66×10−6 m+ sd =
8.35×10−6 < 2×10−2

m = 5.34×10−6 sd = 2.06×10−6

m+ sd = 7.40×10−6 < 2×10−2

2) Confirming the Correctness  of  the Event-based Method:
In  order  to  demonstrate  that  the  event-based  method  indeed
makes the global state converge to the equilibrium, the mean
and  standard  deviation  of  for 

 are  calculated.  In  principle,  the  mean  and  the  standard
deviation,  denoted  by  and ,  should  satisfy  and

.  For  the  presented  experiment,  the  threshold  of
effectiveness is defined as . For the Gnutella
network,  when  the  dynamics  converge  to  a  unique  nonzero
equilibrium  exponentially,  we  see  that  and

 under the event-based method, with 
, which shows the effectiveness. For the

Enron  email  network,  when  the  dynamics  converge  to  a
unique  nonzero  equilibrium  exponentially,  we  see  that

 and  under  the  event-based
method,  with ,  which  shows
the  effectiveness.  These  results  show  that  the  event-based
method can estimate cybersecurity equilibrium effectively.

80%

3) Measuring Efficiency of the Event-based Method: Having
confirmed  the  correctness  of  the  estimated  cybersecurity
equilibrium,  the  next  step  is  to  compare  the  numbers  of
observation events induced by the event-based method and by
the  periodic  observation  method.  The  threshold  of  efficiency
is  defined  as  of  the  events  induced  by  the  periodic
method (i.e., an event-based method should save at least 80%

of the cost incurred by the periodic method).
{tv

k}
+∞
k=0

#0 −#30 t ∈ [0,500]

98.45%

99.08%

98%

tv
k+1− tv

k > 0 v ∈ V
k = 1,2, . . .

tv
k+1− tv

k

Fig. 3 plots  the  observation  events  at  for  nodes
 during time interval , where each blue line

represents  an  observation  event.  The  following  observations
can  be  made.  First,  the  event-based  method  incurs  fewer
observation  events.  Compared  with  the  periodic  observation
method,  the  event-based  method  reduces  of  the
observation  events  in  the  case  of  the  Gnutella  network,  and

 in  the  case  of  the  Enron  email  network.  This
demonstrates  that  the  event-based  method  can  reduce  more
than  of the observation cost compared with the periodic
observation  method.  Second,  the  time  intervals  between
observation  events  satisfy  for  all  and

.  This  confirms  Zeno-freeness  of  the  event-based
method. Indeed, the time interval  becomes larger and
larger as the dynamics converge to the equilibrium.

Moreover,  the  authors  discover  an  interesting  empirical
phenomenon: the convergence speed of the dynamics plays an
important  role  in  determining  the  cost  of  the  associated
observations.  Specifically,  slower  convergence  allows  more
observation cost  to be reduced.  The presented study leaves it
to  future  investigations  to  rigorously  prove  whether  the
phenomenon is universally true or not. 

IV.  Putting the Event-based Method Into Practice

v ∈ V t iv(t)
v t

v v

v ∈ V t

In order to utilize the aforementioned event-based method in
practice, the following gap needs to be bridged. In the model,
the state of node  at time  is represented by , namely
the  probability  that  is  in  compromised  state  at  time .  In
practice, this state is often measured as a Boolean value, with
“0” indicating  is secure but vulnerable and “1” indicating 
is  compromised.  In  other  words,  the  sample-state  of  node

 at time  can be denoted by
 

χv(t) =

 0, v is in the secures tate at time t

1, v is in the compromised stateat time t.
(10)

This difference underlines the gap between the probability-
states in the model and the sample-states in practice. 

A.  Bridging the Gap via 0-1 State Ergodic Process
This  paper  proposes  bridging  the  aforementioned  gap  by
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+∞
k=0 #0 − #30Fig. 3.     Observation events at time  for nodes  in a network, where each blue line represents an observation event.
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îv(t) iv(t)
ŝv(t) sv(t)

M

obtaining an estimation  of  probabilities  and  an
estimation  of probabilities  from a 0-1 state ergodic
process  over  time  as  indicated  by  (10).  For  this  purpose,  the
paper adopts the theorem of two-valued processes introduced
in  [59,  Chapter  1],  and  uses  the  Lebesgue  measure  to
define
  Tv0(t) =M({τ ≤ t : χv(τ) = 0

})
Tv1(t) =M({τ ≤ t : χv(τ) = 1

})
.

(11)

îv(t)
ŝv(t)

Theorem 3 below shows how to generate probabilities 
and  from a 0-1 state ergodic process over time.

{χv(t), t > 0} v ∈ VTheorem  3  [59]: Let  for  be  a  0-1  state
ergodic process. Let
 

ŝv(t) =
Tv0(t)

t

îv(t) =
Tv1(t)

t
.

Then
  lim

t→+∞
[
P
(
χv(t) = 0

)− ŝv(t)
]
= 0

lim
t→+∞

[
P
(
χv(t) = 1

)− îv(t)
]
= 0.

îv(t) iv(t)
ŝv(t) sv(t) t

S
push

pop
|S| S

Based on Theorem 3,  can be used to estimate  and
 to  estimate  at  sufficiently  large  time .  The

following Algorithm 2 is designed for this estimation, where a
stack  data  structure  is  used  with  two  standard  stack
operations  in  (i.e.,  adding  an  element  on  the  top  of  the
stack)  and  (i.e.,  removing  the  element  on  the  top  of  the
stack). Let  be the number of elements in stack .

îv(t) ŝv(t) Algorithm 2: Estimating  and 

h
{
χv(t)
}+∞
t=0 N 1

v (0) = χv(0) N 0
v (0) = 1−χv(0) input: , , , {

ŝv(t)
}+∞
t=0
{
îv(t)
}+∞
t=0 output: , 

t = 1 +∞  1 for  to  do
χv(t) == 0  2 　if  then
N 0

v (t) =N 0
v (t−1)+1  3 　　

N 1
v (t) = 0  4 　　

χv(t) ! = 0  5 　else if  then
N 0

v (t) = 0  6 　　

N 1
v (t) =N 1

v (t−1)+1  7 　　

  8 　end
  9 end

i = 0 110 for  to  do
Stack Si11 　Create  

t = 0 +∞12 　for  to  do(
t == 0 N i

v (t) ! = 0
) (

t > 0

N i
v (t) ! = 0

N i
v (t−1) == 0

)
13 　　if  and  or 

　　　　    and  and
　　　　     then

Si . push
(N i

v (t)
)14 　　　   

t > 0 N i
v (t) ! = 0

N i
v (t−1) ! = 0

15 　　else if  and  and
　　　　     then

Si . pop ()16 　　　   
Si . push

(N i
v (t)
)17 　　   　

18 　　end
|Si | ! = 019 　　if  then

Tvi(t) =
1
|Si |
∑

e∈Si

e20 　　　

21 　　else
Tvi(t) = 022 　　　

23 　　end
24 　end
25 end

t = 0 +∞26 for 　  to  do

ŝv(t) =
Tv0(t)

Tv0(t)+Tv1(t)
27 　　

îv(t) =
Tv0(t)

Tv0(t)+Tv1(t)
28 　　

29 end {
ŝv(t)
}+∞
t=0
{
îv(t)
}+∞
t=0     return , 

∀v ∈ V v t
iv(t)

Since  undirected  networks  are  a  special  case  of  directed
networks,  this  study  will  only  perform  experiments  on  the
directed Gnutella network. In order to simulate a 0-1 process
for ,  the  paper  samples  node  at  time  by  its
compromise probability 
 

χv(t) = H
[
iv(t)−Rand(0,1)

]
(12)

Rand(0,1)
[0,1] H

where  means  drawing  a  random  real  number
uniformly  from ,  and  is  the  discrete  heaviside  step
function
 

H(x) =
{

0, x < 0
1, x ≥ 0. (13)

Run Algorithm 2 until the state estimation curve converges
to the probability-state curve. From the numerical result, it can
be  seen  that  the  estimation  curve  indeed  converges  to  the
equilibrium  of  the  underlying  model  as  expected. Fig. 4
depicts  the  convergence  processes  of  two  arbitrarily-chosen
nodes. 

B.  Using the Event-based Method in Practice

îv(t)

̂i[a]
v (t)

iv(t)

Having  bridged  the  gap  between  probability-states  and
sample-states, this paper moves to use the event-based method
in  practice  as  follows. Fig. 5 plots  the  experimental  result,
where  the  red  curve  corresponds  to  the  sample-state
estimation  curve  (which  can  also  be  regarded  as  the
classic  periodic  observation  method  with  a  very  high
frequency),  the  green  curve  corresponds  to  the  event-based
method ,  and  the  blue  curve  corresponds  to  the  under
lying dynamic  (which can not be directly observed).

1
n
∑

v∈V |îv(t)−̂i[a]
v (t)| m1 sd1

m1 ≈ 0 sd1 ≈ 0
m1 = 7.74×10−3 sd1 = 4.96×10−3

t ∈ [400,500]
1
n
∑

v∈V |iv(t)−̂i[a]
v (t)|

m0 sd0
m0 = 1.81×10−2 sd0 = 1.10×10−2 t ∈ [400,500]

m0 = 8.71×10−3 sd0 = 8.72×10−3 t ∈ [900,1000]

The  study  calculates  the  mean  and  standard  deviation  of
,  denoted by  and .  In  principle,  the

mean  and  the  standard  deviation  satisfy  and .
The  results  of  and  for

 prove  the  effectiveness  of  the  event-based  met-
hod. The mean and standard deviation of 
are  also  calculated,  denoted  by  and .  The  results  are

 and  for .
Notice that the sample-state estimation curve converges to the
equilibrium  relatively  slowly,  so  the  accuracy  can  be
improved by prolonging the experiment time along with more
observation  events  (i.e.,  higher  cost).  For  example,  we  have

 and  for ,
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m0+ sd0 = 1.743×10−2 < 2×10−2with section  (i.e., threshold
defined in Section III-E), which shows effectiveness. 

C.  Impact of the Trigger Function Parameter

φ(t) = e−θt

e−σt θ < σ

θ

θ

1
n
∑

v∈V |îv(t)−̂i[a]
v (t)|

Note that trigger function (4) plays an important role in the
event-based  method.  In  the  experiments  herein, 
where  is the convergence speed of system (2) and .
With  respect  to  the  trigger  function,  a  smaller  may  be
chosen to loosen the trigger rule. This paper therefore tests the
impact  of  trigger  functions  with  different  values  of . Fig. 6

plots the means and standard deviations of 

t ∈ [400,500]for  under different trigger functions.

θ

θ θ

Fig. 6 illustrates  that  with  respect  to  a  designated  time
interval,  a  larger  does  not  necessarily  achieve  a  better
performance, which instead depends on whether or not system
(3) under the event-based trigger rule in Definition 1 is able to
converge during this time interval. If it converges, then a large
 results  in  extraneous  observation  events,  while  a  small 

causes fewer events to be triggered.
 

D.  Robustness Against False Negative Observations
When bridging the gap between sample-states observed in
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Fig. 4.     The state estimation curve of a single node converges to the probability-state curve of that node.
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Fig. 5.     Applying the event-based method to the sample-state estimation curve which approximates its underlying dynamic.
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îv(t)

practice  and  probability-states  in  the  theoretical  model,  an
underlying  premise  is  that  the  0-1  state  can  be  precisely
determined.  However,  this  may  not  be  true  in  practice
because  there  might  be  false-negative  observations  when
determining  a  computer’s  state  (i.e.,  failures  in  detecting
attacks).  It  is  therefore  important  to  accommodate  such
measurement  errors.  Since  the  dynamics  converge  to  the
equilibrium  of  the  sample-state  estimation  ( )  for  the
event-based method, the only issue is the correlation between
the false-negative rate in the state observation and the bias of
the equilibrium estimation.

1
n
∑

v∈V
|iv(t)−îv(t)|

iv(t) t ∈ [1300,1500] r
r

r ≈ 0 r = 1
îv(t) = 0

∀v ∈ V

This  paper  conducts  an  experiment  to  evaluate  the  bias  of
the  estimated  equilibrium,  which  is  the  mean  of

 for  and  denoted  by .  In
principle,  should  be  linear.  Regardless,  it  should  hold  that

 when  there  are  no  false-negatives  and  when  all
compromised  nodes  are  treated  as  secure  (i.e., ,

). Fig. 7 illustrates  the  correlation  when  varying  the
false-negative rate from 0 to 1,  which is  almost  linear with a
slope  of  1.  The  practical  meaning  of  this  observation  is  that
the  estimated  equilibrium  needs  to  be  adjusted  to
accommodate the false-negative rate (if applicable). 
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Fig. 7.     Correlation between the false-negative rate  in  the sample-state
observation and the bias of the equilibrium estimation.
 

V.  Conclusion

98%

This paper has shown how to use the event-based method to
estimate  the  equilibrium  of  preventive  and  reactive  cyber
defense  dynamics.  Numerical  examples  confirmed  that  the
event-based  method  can  estimate  the  equilibrium  while
reducing  of  the  state  observation  cost  incurred  by  the
periodic  method.  The  paper  also  spots  an  empirical  pheno-
menon  that  the  slower  the  convergence  of  the  dynamics,  the
more  observation  cost  is  saved  by  the  event-based  method.
Moreover, the presented study probed into the practical use of
the  event-based  method,  by  bridging  the  gap  between  the
probability-state in the theoretical model and the sample-state
in practice, which may be of independent value.

There are many open problems for future research, such as:
What  is  the  lower-bound  observation  cost  of  an  event-based
method?  Do  there  exist  better,  or  even  optimal,  forms  of

event-based methods? How can the aforementioned empirical
phenomenon  (that  the  slower  the  convergence,  the  more
observation  cost  is  saved)  be  rigorously  proven  (or  dis-
proven)? Can other models cope with the case of polynomial
convergence speed of a system (2)? Can other models handle
situations where the observation errors are indeterminate (e.g.,
when only the upper or lower bound of the false negative rate
are  known)?  Can  the  presented  method  be  applied  to  other
dynamics  under  different  event-trigger  scenarios?  Can  other
event-based methods be designed for  cybersecurity dynamics
models  [41],  [44],  [47]  that  do  not  make  the  current
assumption of dynamics independence? 
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