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   Abstract—In  this  paper,  an  adaptive  dynamic  programming
(ADP) strategy is investigated for discrete-time nonlinear systems
with unknown nonlinear dynamics subject to input saturation. To
save the communication resources between the controller and the
actuators, stochastic communication protocols (SCPs) are adopted
to  schedule  the  control  signal,  and  therefore  the  closed-loop
system  is  essentially  a  protocol-induced  switching  system.  A
neural  network  (NN)-based  identifier  with  a  robust  term  is
exploited for approximating the unknown nonlinear system, and
a  set  of  switch-based  updating  rules  with  an  additional  tunable
parameter  of  NN  weights  are  developed  with  the  help  of  the
gradient  descent.  By  virtue  of  a  novel  Lyapunov  function,  a
sufficient  condition  is  proposed  to  achieve  the  stability  of  both
system  identification  errors  and  the  update  dynamics  of  NN
weights. Then, a value iterative ADP algorithm in an offline way
is  proposed  to  solve  the  optimal  control  of  protocol-induced
switching  systems  with  saturation  constraints,  and  the
convergence  is  profoundly  discussed  in  light  of  mathematical
induction.  Furthermore,  an  actor-critic  NN  scheme  is  developed
to  approximate  the  control  law  and  the  proposed  performance
index function in the framework of ADP, and the stability of the
closed-loop  system  is  analyzed  in  view  of  the  Lyapunov  theory.
Finally,  the  numerical  simulation  results  are  presented  to
demonstrate the effectiveness of the proposed control scheme.

    Index Terms—Adaptive dynamic programming (ADP), constrained
inputs,  neural  network  (NN),  stochastic  communication  protocols
(SCPs), suboptimal control.
  

I.  Introduction

O PTIMAL  control  has  been  one  of  the  main  focuses  of
control  fields  due  to  its  wide  applications  in  various

emerging industrial systems, such as electrical power systems,
industrial  control  systems,  and  spacecraft  attitude  control
systems  [1]–[7].  It  is  usually  equivalent  to  solve  the  well-
known  Hamilton-Jacobi-Bellman  (HJB)  equation,  which  is  a
critical  challenge  for  nonlinear  systems  [8].  Fortunately,  the
adaptive dynamic programming (ADP) algorithm, as the most
efficient  tool,  has  been  developed  to  perform  various
suboptimal  control  issues  with  known  or  unknown  system
dynamics  [9]–[11]  by  virtue  of  both  its  ability  of  effectively
approximating correlation functions and the characteristics of
iterative forward transfer. The main idea of ADP algorithms is
to  utilize  two  function  sequences  to  iteratively  approximate
the  cost  and value  functions  corresponding to  the  solution of
the HJB equation in a forward-in-time manner [12]. It should
be  pointed  out  that  the  value  iteration  technology  developed
in  [13],  [14]  is  one  of  the  most  important  iterative  ADP
algorithms,  and  its  convergence  has  also  been  thoroughly
discussed  in  [15]–[17].  Furthermore,  some  representative
algorithms  including  heuristic  dynamic  programming  (HDP),
dual  heuristic  dynamic  programming  (DHP),  as  well  as
globalized  DHP  have  been  proposed  and  implemented  in
various control  issues benefiting from the famous actor-critic
structure,  see  [18]–[20].  It  is  noteworthy  that  the  obtained
controller is usually a suboptimal one because of the existence
of approximation errors of such a structure, and therefore the
corresponding control is also regarded as near-optimal control.

In  engineering  practice,  the  actuator  saturation  is  very
pervasive  due  mainly  to  the  facility  protection  or  physical
limits  of  the  actuators.  If  the  saturation of  the  actuator  is  not
considered  adequately,  the  performance  of  the  closed-loop
system  is  often  severely  damaged  [21].  As  a  result,  it  is  of
tremendous  significance  to  survey  the  influence  of  the  input
saturation  phenomenon.  Under  the  framework  of  optimal
control,  a  bounded  and  invertible  one-to-one  function  in  a
nonquadratic  performance  functional  is  usually  exploited  to
evaluate the cost of saturated inputs and the analytical solution
of  the  optimal  controller  can  be  obtained  although  it  is  still
dependent  on  the  cost  functional  [8],  [22],  [23].  Inspired  by
these  work,  the  near-optimal  control  for  various  networked
control  systems  has  been  investigated  and  some  interesting
results  have  been  preliminarily  reported  in  the  literature,  see
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[24]–[27],  for  instance.  Near-optimal  regulation  under  the
actor-critic  framework  has  been  investigated  in  [26]  for
discrete-time  nonlinear  systems  subject  to  quantized  effects,
where the quantization errors can be eliminated via a dynamic
quantizer  with  adaptive  step  size.  Furthermore,  an  online
policy iteration algorithm has been presented in [28]  to  learn
the optimal solution for a class of unknown constrained-input
systems.  Obviously,  compared  with  the  case  without  control
constraints,  the  near-optimal  control  issues  subject  to
constrained-inputs  and  various  network-induced  phenomena
remain  at  an  infant  stage  and  thus  require  further  research
efforts.

On  another  frontier  of  research,  in  the  past  few  years,  we
have  witnessed  the  persistent  development  of  network
technologies, which has been attracting recurring attention on
networked control systems [29]. In order to effectively utilize
the  limited  resource  or  reduce  the  switching  frequency  for
prolonging  the  service  life  of  the  equipment,  only  one  (or  a
limited  number  of)  sensor/control  node,  governed  by  various
protocols,  is  permitted  to  get  access  to  the  communication
network.  These  protocols  include,  but  not  limited  to,  the
round-robin  protocol  [30],  the  try-once-discard  protocol  [31]
and  the  stochastic  communication  protocol  [32],  and  the
event-triggered protocol [33], [34]. There is no doubt that the
utilization  of  these  protocols  tremendously  results  in  the
complexity and the difficulty of both the stability analysis and
the design of weight updating rules, which is the main reason
why  there  are  sparse  results  on  this  topic.  Very  recently,
consensus control with the help of reconstructed dynamics of
the  local  tracking  errors  has  been  investigated  in  [35]  for
multi-agent  systems  with  event-triggered  mechanism  and
input  constraints,  where  the  effect  on  the  local  cost  from the
adopted  triggering  scheme  has  been  investigated.  The  critic
and actor networks combined with an identifier network have
been  simultaneously  designed  in  [27]  to  deal  with  a
constrained-input  control  issue  with  unknown  drift  dynamics
and  event-triggered  communication  protocols.  Unfortunately,
so  far,  near-optimal  control  for  the  discrete-time  nonlinear
systems  subjected  to  input  saturations  has  not  yet  been
adequately  investigated,  not  to  mention  the  stochastic
communication  protocol  (SCP)  is  also  a  concern,  which
constitutes the motivation of this paper.

The addressed system with unknown nonlinear dynamics is
essentially a protocol-induced switching system when SCP is
employed to  govern  the  data  transmission or  update  between
the controller and the actuator. Usually, SCP can be modeled
by a  Markov chain  and  the  relative  networked  control  issues
can  be  effectively  handled  via  the  switching  system  theory
combined  with  Lyapunov  approaches.  It  is  worth  noting  that
this is a nontrivial topic for optimal control issues due mainly
to  the  challenge  of  the  cost  function  from  such  a  switch.
Recently,  two  typical  approaches  have  been,  respectively,
developed  in  [36]  via  a  combined  cost  function  related  to
transition  probabilities  and  in  [37]  via  the  dynamic
programming  principle  [38].  However,  when  an  identifier  is
designed  to  approximate  the  unknown  nonlinear  dynamics,
there exists  a great  challenge to disclose the influence on the
updating rules of the identifier’s weights and the identification

errors.  Furthermore,  the  convergence  of  the  designed  ADP
algorithm  and  the  practical  execution  with  critic  and  actor
networks  should  be  further  inspected.  As  such,  motivated  by
the above discussions, the focus of this paper is to handle the
neural networks (NN)-based near-optimal control problem for
a discrete-time nonlinear system subject to constrained-inputs
and SCPs.  This  appears  to  be nontrivial  due to the following
essential difficulties: 1) how to design an NN-based identifier
under  SCPs to  estimate  system dynamics,  2)  how to perform
the convergence analysis of the ADP algorithm, and 3) how to
disclose  the  performance  of  the  closed-loop  system  in  the
framework of critic and actor networks.

In response to the above discussions, this paper is concerned
with the near-optimal control problem for a class of discrete-
time nonlinear systems with constrained inputs and SCPs, and
hence its main contributions are highlighted as follows: 1) an
NN-based  identifier  with  a  robust  term  is  presented  to
approximate  the  unknown  nonlinear  system,  where  novel
weight  updating  rules  are  constructed  by  virtue  of  an
additional tunable parameter; 2) a set of conditions are derived
to check the stability of both identification error dynamics and
updated error dynamics of NN weights; 3) the convergence of
proposed  value  iterative  ADP  algorithm,  which  solves  the
optimal  control  issue  of  protocol-induced  switching  systems
with  saturation  constraints  in  an  off-line  way,  is  profoundly
discussed in light of mathematical induction; and 4) an actor-
critic NN scheme is employed to perform the addressed near-
optimal control issue.

The rest of this paper is formulated as follows: the problem
formulation and preliminaries are presented in Section II. For
the  addressed  control  issue,  four  subsections  are  involved  in
Section  III:  an  NN-based  identification  with  a  robust
modification  term  is  designed  in  Section  III-A  to  identify
discrete-time systems with  unknown nonlinear  dynamics;  the
value  iterative  ADP  algorithm  with  convergence  analysis  is
developed in Section III-B; the implementation of ADP algori-
thm with actor-critic networks in Section III-C, and the perfor-
mance  of  closed-loop  systems  is  discussed  in  Section  III-D.
Furthermore,  a  numerical  example  is  given  in  Section  IV  to
demonstrate  the  effectiveness  of  the  proposed  algorithms.
Finally, the conclusion is given in Section V.

N
RN

N Q QT

tr Q
diag{Q1,Q2, . . . ,Qn}

Qi
x ∥ x ∥

Notation: The  notation  used  in  this  paper  is  standard. 
denotes the set of nonnegative integers.  denotes the set of
all -dimensional  real  matrices.  For  the  matrix ,  and

{Q}  denote  the  transpose  and  the  trace  of ,  respectively.
 stands for a block-diagonal matrix where

the square matrices  are in the corresponding main diagonal
blocks. For a vector ,  denotes the Euclidean norm.  

II.  Problem Formulation and Preliminaries

xk

In  this  paper,  the  investigated  networked  control  system
consists of a nonlinear plant, sensors, identifier, controller, as
well  as  actuator.  We assume that  the system states  can be
measured  directly  by  sensors  and  then  sent  to  the  controller
via shared networks.  By using NNs, identifier  along with the
controller  is  utilized  to  realize  the  approximation  of  the
nonlinear systems based on the received signals. To reduce the
communication  burden,  SCPs  are  employed  to  schedule  the
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information  transmission  between  the  controller  and  the
actuator.  

A.  System Description
Consider  the  unknown discrete-time nonlinear  system with

the following form:
 

xk+1 = f (xk)+g(xk)ūk (1)
xk ∈ RM

ūk = [ū1,k, ū2,k, . . . , ūN,k]T ∈ RN

f (xk) g(xk)
f (0) = 0 g(0) = 0

f +gu Ωx
ūk

Ωu = {ūk ||ūi,k | ≤ ū} ū

where  is  the  system  state  directly  measured  by
sensors,  is  the  actuator  input
scheduled by SCPs, and  and  are, respectively, the
unknown  nonlinear  functions  with  and .
Assume  that  is  Lipschitz  continuous  on  a  set 
containing  the  origin.  Furthermore,  the  actuator  input 
belongs  to  where  is  a  positive  scalar
representing the saturation-level of the actuator.

xk

uk = [u1,k,u2,k, . . . ,uN,k]T

ūk
uk uk ∈Ωu

ξk ∈ {1,2, . . . ,N}
k

ξk

In  light  of  unknown  nonlinearities,  an  NN-based  system
identifier  via ,  which  will  be  designed  in  the  next  section,
needs  to  be  adopted  to  obtain  the  ideal  control  signal

. For the convenience of analysis, the
saturation constraint can be removed from  into the control
signal , that is, . In what follows, SCP scheduling is
performed to reduce the switching frequency and improve the
communication  burden  between  the  controller  and  the
actuator.  To  model  this  process,  let  us  introduce  the
scheduling  signal  to  describe  the  selected
element  obtaining  access  to  the  network  at  time  instant .
Under SCPs, ,  a  random variable,  is  modeled by a Markov
chain with the known transition probability
 

pi j = Prob{ξk+1 = j|ξk = i} (2)

pi j ≥ 0 ∀i, j = {1,2, . . . ,N} ∑N
j=1

pi j = 1
ūk

where  for  and .  By
means  of  the  above  variable,  the  signal  received  by  the
actuator is expressed as
 

ūi,k =

{
ui,k, if i = ξk
ūi,k−1, otherwise (3)

where  zero-order-holders  are  utilized  in  the  viewpoint  of
practical engineering.

The actuator is further denoted as
 

ūk = Φ(ξk)uk (4)
Φ(i) = diag{σ1

i ,σ
2
i , . . . ,σ

N
i } σn

i ≜ σ(i−n) ∈ {0,1}
(n = 1,2, . . . ,N) σ(i−n)

i = n

with  where 
 is the Kronecker delta function, i.e.,  is

a binary function that equals 1 if  and equals 0 otherwise.
Thus, the closed-loop system is as follows:

 

xk+1 = f (xk)+g(xk)Φ(ξk)uk := fξk (xk)+ g̃ξk (xk)uk. (5)

Remark  1: The  main  idea  of  SCP  is  to  assign  the  access
privilege  for  each  node  in  a  random  manner.  The “random
switch” behavior  of  the  node  scheduling  can  be  usually
characterized  by  a  Markov  chain,  see  the  corresponding
research  in  [39].  Obviously,  the  addressed  system  (5)  is
essentially a protocol-induced switching system.  

B.  Design Objective
To quantify the control performance, the associate utility of

each scheduling is employed as follows:
 

Ji(xk) =
∞∑
j=k

ℓi(x j,u j)

=

∞∑
j=k

(
Qi(x j)+S i(u j)

)
(6)

ℓi(x j,u j) Qi(x j)
S i(u j)

S i(uk)

where  is the cost function, in which  is positive
and  usually  a  quadratic  function,  and  is  generally  a
positive  nonquadratic  function  to  evaluate  the  constrained
control input. In this paper,  is selected as
 

S i(uk) =
w uk

0
2ū(tanh−1(

ν

ū
))T Ridν

=

N∑
i=1

w ui,k

0
2ū(tanh−1(

νi

ū
))T Ridνi (7)

tanh(ν/ū)
ν = [ν1, ν2, . . . , νN]T Ri ≜ diag{ri,1,

ri,2, . . . ,ri,N}
tanh−1(ν/ū)

where  stands  for  the  hyperbolic  tangent  function;
 is  an  integral  vector;  and 

 is a known positive definite diagonal matrix with
appropriate dimension. The operator  means
 

tanh−1(ν/ū) = [tanh−1(ν1/ū), . . . , tanh−1(νN/ū)]T .

S i(uk)Via the same with the approach in [27],  can also be
expressed as
 

S i(uk) = 2ūuT
k Ri tanh−1(

uk

ū
)+ ū2R̄i ln(1−

u2
k

ū2 )

R̄i ≜ [ri,1, ri,2, . . . ,ri,N]where .

S i(uk)

S i(uk)
uk

Remark  2: In  the  framework  of  optimal  control,  the  term
 in  the  associate  utility  should  satisfy  the  following

three conditions: 1) a continuous and positive function for the
performance  evaluation,  2)  a  monotonic  function  for  each
component,  and  3)  a  derivable  function  whose  derived
function  should  be  invertible  for  the  analytic  solution  of  the
optimal  control  law.  Obviously,  the  adopted  (7)  is
definitely  the  best  choice  for  the  control  subject  to  input
saturation.

In order  to  disclose the effect  from statistical  characteristic
of  SCPs,  similarly  to  the  scheme  in  [36],  reconstruct  the
performance  index  function  (6)  by  embedding  the  transition
probability matrix as follows:
 

JI(xk) = p11J1(xk)+ p12J2(xk)+ · · ·+ p1N JN(xk)
JI I(xk) = p21J1(xk)+ p22J2(xk)+ · · ·+ p2N JN(xk)

...

JN(xk) = pN1J1(xk)+ pN2J2(xk)+ · · ·+ pNN JN(xk).

By  virtue  of  the  weighted  sum  technique,  a  combined
performance index is constructed as
 

J(xk) = λ1JI(xk)+λ2JI I(xk)+ · · ·+λN JN(xk) (8)

λi > 0
∑N

i=1 λi = 1where  is the weight vector satisfying .
Define

 

Γ = [Γ1, Γ2, . . . , ΓN]T

L(xk,uk) = [l1(xk,uk), . . . , lN(xk,uk)]

Γi =
∑n

s=1 λs psi > 0where . It follows from (6) and (8) that
 

 768 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021



J(xk) =
N∑

i=1

ΓiJi(xk)

=

N∑
i=1

Γili(xk,uk)+
N∑

i=1

ΓiJ(xk+1)

= ΓT L(xk,uk)+ J(xk+1). (9)
Before  proceeding  further,  let  us  introduce  the  following

definition.
uk uk

Ωu ⊆ RN

x0 ∈Ωx J(xk)
∀xk ∈Ωx

Definition  1: A  law  is  an  admissible  control,  if  is
continuous on the compact  set  and can stabilize the
closed-loop  system  (5)  for  all  and  is  finite

.

u∗k

The purpose of this paper is to find a suboptimal control law
 to  optimize  the  combined  performance  index  (9),  which

consists of the following three aspects:
1) Designing an NN-based identifer to identify the unknown

nonlinear dynamics;
2) Developing a value iterative ADP algorithm to solve the

optimal  control  of  protocol-induced  switching  systems  with
saturation constraints in an off-line way;

3)  In  light  of  the  obtained  value  iterative  ADP  algorithm,
proposing an actor-critic NN scheme to perform the addressed
near optimal control.

The  following  assumption  is  needed  in  order  to  reveal  the
boundedness of developed approximate scheme in sequel.

ℓi(x,u) i = 1,2, . . . , nyAssumption  1: The  cost  function  ( )
satisfies the following conditions:

ℓi(x,u) u
ψℓ,i(u) := ∂ℓi(x,u)/∂u

1)  is  continuously  differentiable  on  and  its
derivative is denoted as ;

ψℓ,i(u)
ui(x) = ψ−1

ℓ,i
(
∂ℓi(x,u)/∂u

)2)  The  derivative  function  is  invertible  with  its
inverse function denoted as ;

∥ψ−1
ℓ,i (x)∥2 ≤ γ∥x∥2

γ
3)  The  inverse  function  satisfies  with  a

known positive constant .
ℓi(x,u)

κ
∑p

s=1

r u
0 tanh−1(ν/κ)Ridν

xT Pix+uT Riu

Note,  that  the  function  is  quite  general  with
examples including 1)  for nonlinear
systems  with  input  constraints;  and  2)  for
linear systems.  

III.  Main Results

Four subsections are embodied in this section, including the
design of the NN-based identifer, the iterative ADP algorithm,
and  the  actor-critic  NN  scheme,  as  well  as  the  performance
analysis  of  the  identification  errors,  the  iterative  ADP
algorithm and the closed-loop system.  

A.  Identification of Closed-Loop Systems via NNs
In  this  paper,  an  NN-based  approximator  is  utilized  to

identify  discrete-time  nonlinear  systems  without  the
knowledge  of  system  dynamics  to  solve  the  optimal  control
issue.  Specifically,  to learn the unknown nonlinear functions,
a  stable  adaptive  weight  updating  law is  proposed  for  tuning
the  nonlinear  identifier,  and  a  robust  modification  term,  a
function  of  estimated  error  and  an  additional  tunable
parameter,  are  also  introduced  to  guarantee  asymptotic
stability of the proposed nonlinear identification scheme.

To start the development of NN-based identifier, the system
dynamic (5) is rewritten as

 

xk+1 = Fξk (xk,uk) (10)
Fi(xk,uk) ≜ f (xk)+ g̃i(xk)ukwhere .

Fξk (xk,uk)
Ωx

W1

W2,ξk

According to the universal approximation property of NNs,
there  exists  an  NN  representation  of  the  function 
on  a  compact  set .  In  this  paper,  a  three-layer  NN  is
considered  as  the  function  approximation  structure,  under
which  the  number  of  neurons  in  the  hidden  layer  is r,  the
weight  matrix (a predetermined constant  matrix)  between the
input  and  hidden  layers  is  denoted  by ,  and  the  weight
matrix between the hidden layer and output layer is denoted as

, which needs to be estimated during the training process.
In  this  case,  the  closed-loop  system (10)  is  further  described
as
 

xk+1 =WT
2,ξk

ϕx(ωk)+εk (11)

ωk =WT
1 [xT

k uT
k ]T ϕx(ωk)

∥ϕx(ωk)∥ ≤ ϕx,m
εk

where  is  the  hidden  layer  input,  is
the  bounded  activation  function  satisfying ,
and  is  the  approximation  error  salifying  a  general
assumption to be provided as follows.

For  the  NN  represented  closed-loop  system  (11),  an
identifier  is  designed  to  estimate  the  system  state,  which  is
described by
 

x̂k+1 = (Ŵk
2,ξk

)Tϕx(ωk)−qk (12)

Ŵk
2,ξk

Wk
2,ξk

qk

where  denotes the estimation of the ideal weight matrix
,  and  is  a  robust  term  to  reduce  the  approximation

error.
Define  the  identification  error  and  the  estimated  error  of

weight matrix as follows:
 

x̃k = x̂k − xk, W̃k
2,ξk
= Ŵk

2,ξk
−W2,ξk . (13)

Then,  subtracting  (11)  from  (12)  obtains  the  following
identification error dynamics:
 

x̃k+1 = x̂k+1− xk+1 = (W̃k
2,ξk

)Tϕx(ωk)−εk −qk. (14)

Considering this error dynamics, the robust term inspired by
the work of [40] is constructed as
 

qk =
νk x̃k

x̃T
k x̃k + c2

c2 > 1 νkwhere  is  a  given  constant,  is  an  additional  tunable
parameter to be designed subsequently. Therefore, the system
dynamics (14) can be further rewritten as
 

x̃k+1 = (W̃k
2,ξk

)Tϕx(ωk)− νk x̃k

x̃T
k x̃k + c2

−εk

= Φk
1,ξk
−Φk

2,ξk
−εk (15)

Φk
1,i Φk

2,iwhere  and  are introduced for brevity in writing.
ξk

Ek+1 = (1/2)x̃T
k+1 x̃k+1 Ŵk

2,i

For  adopted  communication  protocols, ,  modeled  by  a
Markov chain with the known transition probability, is usually
known via the communication coding. To minimize the square
residual  error ,  the  tuning  law  of  is
given as follows:
 

Ŵk+1
2,i =


Ŵk

2,i−γwϕx(ωk)x̃T
k+1, if ξk = i, ξk−1 = i

Ŵk
2,i, otherwise

(16)

νkand  the  tuning  law  of  additional  tunable  parameter 
introduced as
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νk+1 = αννk +
γν

x̃T
k x̃k + c2

x̃T
k+1 x̃k

= αννk +γνΦ
k
3 x̃T

k+1 x̃k (17)
γw > 0 αν > 0 γν > 0where  is  the  NN learning  rate,  and  and 

are the designed parameters.

k

Remark  3: The  proposed  updating  rule  (16)  is  novel  and
nontrivial.  First,  a  zero-order  holder  is  adopted  to  keep  the
weights  of  unactivated  subsystems.  Specifically,  it  can  be
found  from  the  second  case  that  the  weights  are  unchanged
along  with  the  time .  Second,  the  update  of  weights  is
performed only when two successive schedulings are satisfied
in order to avoid the fluctuation of weight updates.

The following assumption and lemma are used to prove the
convergence of the error dynamics.

εk
x̃k

Assumption  2: The  NN  approximation  error  is  upper
bounded by a function of identification error , that is
 

εT
k εk ≤ ϑ̄x̃T

k x̃k (18)
ϑ̄where  is a known constant.

Π ∈ Rn×n

x,y ∈ Rn a > 0
Lemma 1: For any positive definite matrix , vectors

 and scalar , the following inequality is true
 

2xTΠy ≤ axTΠx+a−1yTΠy. (19)

x̃k

Ŵk
2,i

νk
γw 6γwϕ

2
x,m ≤ θ1 γν αν

γν = γwϕ
2
x,m

Theorem  1: Let  the  identifier  (12)  be  used  to  identify  the
nonlinear  system  (10),  where  the  parameter  updating  laws
given in (16) and (17) are used tuning the NN weights and the
robust modification term, respectively. The estimation error 
in (14) is asymptotically stable while the weights  and the
additional tunable parameter  are convergent if the learning
rate  satisfies , and parameters  and  satisfy

 and
 

0 < θ1 <
1
2

0 < ε <
1
4

0 < ϑ̄ < 1

αν <

√
7
8
.

(20)

Proof: Consider the following Lyapunov function candidate
 

Lk = Lk
1+

N∑
s=1

Lk
2,s+Lk

3

= x̃T
k x̃k +

1
γw

N∑
s=1

tr
{
(W̃k

2,s)
T W̃k

2,s

}
+

1
γν
ν2

k . (21)

Lk
1Taking  the  first-order  difference  of  along  with  the

dynamics (15) yields
 

E{∆Lk
1|ξk = i, xk}

≜ E{x̃T
k+1 x̃k+1|ξk = i, xk}− x̃T

k x̃k

=

N∑
j=1

pi, j x̃T
k+1 x̃k+1− x̃T

k x̃k

= (Φk
1,i)

TΦk
1,i+ (Φk

2,i)
TΦk

2,i+ε
T
k εk − x̃T

k x̃k

−2(Φk
1,i)

TΦk
2,i−2(Φk

1,i)
Tεk +2(Φk

2,i)
Tεk. (22)

Lk
2Similarly, taking the first-order difference of  along with

the dynamics (16) results into
 

N∑
s=1

E
{
∆Lk

2,s|ξk = i, xk
}

≜
N∑

j=1

E
{ pi, j

γw
tr
(
(W̃k+1

2,i )T W̃k+1
2,i

) ∣∣∣∣ξk = i, xk
}

+

N∑
s=1,s,i

N∑
j=1

pi, j

γw
E
{
tr
(
(W̃k+1

2,s )T W̃k+1
2,s

) ∣∣∣∣ξk = i, xk
}

− 1
γw

N∑
s=1

tr
(
(W̃k

2,s)
T W̃k

2,s

)
=

1
γw

E
{
tr
(
(W̃k

2,i−γwϕx(ωk)x̃T
k+1)T

× (W̃k
2,i−γwϕx(ωk)x̃T

k+1)
)
|ξk = i, xk

}
− 1
γw

tr
(
(W̃k

2,i)
T W̃k

2,i

)
. (23)

ϕx(ωk) ≤ ϕx,mNoting , one has
 

N∑
s=1

E{∆Lk
2,s|ξk = i, xk}

≤ −2Φk
1,i x̃k+1+γwϕ

2
x,m x̃T

k+1 x̃k+1

= −2(Φk
1,i)

TΦk
1,i+2(Φk

1,i)
TΦk

2,i+2(Φk
1,i)

Tεk

+3γwϕ
2
x,m

(
(Φk

1,i)
TΦk

1,i+ (Φk
2,i)

TΦk
2,i+ε

T
k εk

)
. (24)

Furthermore, it is not difficult to calculate that
 

E
{
∆Lk

3|ξk = i, xk
}

=
1
γν

E
{
ν2

k+1|ξk = i, xk
}
− 1
γν
ν2

k

=
1
γν

(
(αννk +γν Φ

k
3 x̃T

k+1 x̃k)2− ν2
k

)
= 2(Φk

2,i)
T x̃k+1+γν(Φk

3 x̃T
k+1 x̃k)2

−γ−1
ν (1−α2

ν)ν
2
k

≤ −2(Φk
2,i)

TΦk
2,i+2(Φk

1,i)
TΦk

2,i−2(Φk
2,i)

Tεk

+3γν(Φk
3)2 x̃T

k x̃k
(
(Φk

1,i)
TΦk

1,i+ (Φk
2,i)

TΦk
2,i

+εT
k εk

)
−γ−1

ν (1−α2
ν)ν

2
k . (25)

∆LkDenote the first-order difference of  as
 

∆Lk = ∆Lk
1+

N∑
s=1

∆Lk
2,s+∆Lk

3. (26)

Considering  (22),  (24)  and  (25),  the  equation  (26)  can  be
handled as
 

E
{
∆Lk |ξk = i, xk

}
≤ −(Φk

1,i)
TΦk

1,i− (Φk
2,i)

TΦk
2,i− x̃T

k x̃k

+εT
k εk +2Φk

2,i(Φ
k
1,i)

T −γ−1
ν (1−α2

ν)ν
2
k

+3
(
γwϕ

2
x,m+γν(Φ

k
3)2 x̃T

k x̃k
)

×
(
(Φk

1,i)
TΦk

1,i+ (Φk
2,i)

TΦk
2,i+ε

T
k εk

)
.
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(Φk
3)2 x̃T

k x̃k ≤ x̃T
k x̃kThen, considering Assumption 2 and , one

has
 

E
{
∆Lk |ξk = i, xk

}
≤ −(1−3γwϕ

2
x,m−3γν)(∥ Φk

1,i ∥
2 + ∥ Φk

2,i ∥
2)

− (1− ϑ̄−3ϑ̄(γwϕ
2
x,m+γν) ∥ x̃k ∥2

+2 ∥ Φk
1,i ∥ ∥ Φ

k
2,i ∥ −γ

−1
ν (1−α2

ν)ν
2
k . (27)

Furthermore, noting
 

∥Φk
2,i∥

2 =
∥∥∥∥ νk x̃k

x̃T
k x̃k + c2

∥∥∥∥2
≤ ν2

k (28)

one has
 

2 ∥ Φk
1,i ∥ ∥ Φ

k
2,i ∥ ≤ θ1 ∥ Φk

1,i ∥
2 + θ−1

1 ∥ Φk
2,i ∥

2

≤ θ1 ∥ Φk
1,i ∥

2 + εθ−1
1 ∥ Φk

2,i ∥
2

+ θ−1
1 (1−ε)ν2

k

ε (0, 1)where the scalar  belongs to .
γν = γwϕ

2
x,m

6γwϕ
2
x,m ≤ θ1

Furthermore,  select  the  parameters  as ,  and
. Applying Lemma 1, it follows from (27) that

 

E{∆Lk |ξk = i, xk}
≤ −(1−3γwϕ

2
x,m−3γν− θ1) ∥ Φk

i ∥2

− (1−3γwϕ
2
x,m−3γν−εθ−1

1 ) ∥ qk ∥2

−
(
1− ϑ̄−3ϑ̄(γwϕ

2
x,m+γν) ∥ x̃k ∥2

− (γ−1
ν (1−α2

ν)− θ−1
1 (1−ε)

)
ν2

k

= −(1−6γν− θ1) ∥ Φk
i ∥2 −(1−6γν−εθ−1

1 ) ∥ qk ∥2

− (1− ϑ̄−6ϑ̄γν) ∥ x̃k ∥2 −(γ−1
ν (1−α2

ν)

− θ−1
1 (1−ε))ν2

k

≤ −(1−2θ1) ∥ Φk
i ∥2 −(1− θ1−εθ−1

1 ) ∥ qk ∥2

− (1− ϑ̄(1+ θ1)) ∥ x̃k ∥2 −
(
(
θ1

6
)−1(1−α2

ν)

− θ−1
1 (1−ε)

)
ν2

k . (29)

E{∆Lk |ξk = i, xk} < 0Therefore,  one  has  if  the  following
inequalities hold
 

1−2θ1 > 0
1− θ1−εθ−1

1 > 0

1− ϑ̄(1+ θ1) > 0(θ1

6

)−1
(1−α2

ν)− θ−1
1 (1−ε) ≥ 0

(30)

which yields
 

0 < θ1 <
1
2

θ2
1 − θ1 < ε < θ1− θ2

1

ϑ̄ <
1

1+ θ1

6(1−α2
ν) > (1−ε).

(31)

that is, the inequalities (20). ■

εk

Remark  4: It  should  be  pointed  out  that  the  approximate
error  of NNs should be dependent on system states and will
trend  to  zero  as  system states  are  close  to  the  original  point.

qk

νk

Ŵk
2,i

(1/γw)
∑N

s=1 tr
{
(W̃k

2,s)
T W̃k

2,s

}

As  such,  the  feature  should  be  adequately  taken  into
consideration.  In  this  paper,  a  robust  term  with  an
additional tunable parameter , inspired by the work of [40],
is  employed  to  improve  the  system  perform  while
guaranteeing the asymptotic stability. Furthermore, the update
of  in (16) is affected by the Markov jump, and therefore a
novel  Lyapunov  function  candidate  is  constructed  by  adding
the  term  to  discover  the  desired
condition of identifer dynamics.  

B.  Design of ADP Algorithm

J∗(xk)
According to the Bellman’s optimality principle, the optimal

performance  index  function  satisfies  the  discrete-time
HJB equation
 

J∗(xk) =min
uk
{ΓT

L(xk,uk)+ J∗(xk+1)} (32)

and the corresponding optimal control strategy is given by
 

u∗k = argmin
uk
{ΓT L(xk,uk)+ J∗(xk+1)}. (33)

u∗k

Assume  that  the  minimum  on  the  right-hand  side  of  (32)
exists  and  is  unique.  Taking  the  first-derivative  of  the  right-
hand part, the ideal optimal control  is given by
 

u∗k = − ū tanh
( 1
2ū

R−1gT
i (xk)∇J∗(xk+1)

)
= − ū tanh

( 1
2ū

R−1gT
i (xk)∇J∗(Γi(xk)+gi(xk)uk

)
. (34)

J0(xk) = Σ(xk)

Since the direct  solution of  the HJB equation for  nonlinear
systems  is  computationally  intensive,  the  value  iteration
algorithm,  usually  named  as  an  ADP  algorithm,  needs  to  be
developed  in  light  of  the  Bellman’s  principle  of  optimality.
Initializing  the  value  function ,  one  construct
the following iterative algorithm:
 

us(xk) = argmin
uk
{ΓT L(xk,uk)+ Js(xk+1)}

= argmin
uk
{ΓT L(xk,uk)+ Js(Fi(xk,uk)} (35)

and
 

Js+1(xk) = min
uk
{ΓT L(xk,uk)+ Js(xk+1)}

= ΓT L(xk,us(xk))+ Js(Fi(xk,uk) (36)
s Js(xk) us(xk)

J∗(xk) u∗k s→∞
where  is the iterative step, and  and  are used to
approximate  and , respectively, as .

Inspired  by  [17],  [41],  we  further  demonstrate  the
convergence  of  the  developed  scheme  with  the  help  of  a
“functional bound” method.

Js(xk) us(xk)

J0(x) x ∈ RM+N Js(x)
s

J0(x) ≤ J1(x) Js(x)
s Js(x) ≤ Js+1(x)

Js(x)
s Js(x) > Js+1(x)

Lemma  2: Consider  the  sequences  and 
introduced  by  (36)  and  (35),  respectively.  Given  the  initial
value function  for , the value function  is
a  monotonically  sequence  as  increases.  Specifically,  if

,  the  value  function  is  a  monotonically
nondecreasing  sequence  as  increases,  i.e., ,
otherwise  the  value  function  is  a  monotonically
decreasing sequence as  increases, i.e., .

J0(x) ≤ J1(x)
J0(x) ≤ J1(x)

Proof: Let  us  first  prove  the  case  of  by
mathematical  induction.  Consider  (36)  and ,  one
has 
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J2(xk) = min
uk
{ΓT L(xk,uk)+ J1(xk+1)}

≤ min
uk
{ΓT L(xk,uk)+ J0(xk+1)}

= J1(xk).
Jq−1(x) ≤ Jq(x) s = q−1

s = q
Assume that  holds when . Then, for

, one can conclude that
 

Jq+1(xk) = min
uk
{ΓT L(xk,uk)+ Jq(xk+1)}

≤ min
uk
{ΓT L(xk,uk)+ Jq−1(xk+1)}

= Jq(xk).

Js(x) ≥ Js+1(x) J0(x) ≥ J1(x)
Therefore, this case is true. Similarly, one can conclude that

 when . ■
Js(xk) us(xk)

ρ ρ̄ ϱ ϱ̄ 0 < ρ ≤ ρ̄ 0 ≤ ϱ ≤ ϱ̄

Theorem  2: Consider  the  sequences  and 
introduced  in  (36)  and  (35),  respectively.  If  there  exist  four
constants , ,  and  satisfying  and  such
that
 

ρ{ΓT L(xk,uk)} ≤ J∗(xk) ≤ ρ̄{ΓT L(xk,uk)} (37)

and
 

ϱJ∗(xk) ≤ J0(xk) ≤ ϱ̄J∗(xk) (38)

Js(xk)
J∗(xk) s→∞

hold  uniformly,  then  the  iterative  value  function 
converges to the optimal value  as , i.e.,
 

lim
s→∞

Js(xk) = J∗(xk). (39)

Proof: To verify this result, we will first prove the following
assertion by using the mathematical induction method.

0 ≤ ϱ ≤ ϱ̄ < 1
Js(xk)

Assertion: Case I: For parameters , the iterative
value function  satisfies
 (

1+
ϱ−1

(1+ ρ̄−1)s

)
J∗(xk) ≤ Js(xk)

≤
(
1+

ϱ̄−1
(1+ρ−1)s

)
J∗(xk). (40)

0 ≤ ϱ ≤ 1 ≤ ϱ̄ ≤∞
Js(xk)

Case  II: For  parameters ,  the  iterative
value function  satisfies
 (

1+
ϱ−1

(1+ ρ̄−1)s

)
J∗(xk) ≤ Js(xk)

≤
(
1+

ϱ̄−1
(1+ ρ̄−1)s

)
J∗(xk). (41)

1 ≤ ϱ ≤ ϱ̄ ≤∞
Js(xk)

Case  III: For  parameters ,  the  iterative  value
function  satisfies (40).

Considering the limited space,  we only prove the left-hand
side of the inequality (40) in Case I and the right-hand side of
the inequality (41) in Case II. Furthermore, the proof of Case III
is  similar  to  those  the  first  two  cases  and  hence  its  proof  is
omitted.

s = 0
Obviously, the left-hand side of the inequality (40) in Case I

holds  for .  Then,  combing  with  the  condition  (37),  one
can derive that
 

J1(xk) = min
uk
{ΓT L(xk,uk)+ J0(xk+1)}

≥ min
uk
{ΓT L(xk,uk)+ϱJ∗(xk+1)}

≥ min
uk

{
ΓT L(xk,uk)+ϱJ∗(xk+1)

 

+
(ϱ−1)

1+ ρ̄
(ρ̄ΓT L(xk,uk)− J∗(xk+1))

}
≥ min

uk

{(
1+

ρ̄(ϱ−1)

1+ ρ̄

)
ΓT L(xk,uk)

+
(
ϱ−

ϱ−1

1+ ρ̄

)
J∗(xk+1)

}
=

(
1+

ϱ−1

1+ ρ̄−1

)
min

uk
{ΓT L(xk,uk)+ J∗(xk+1)}

=
(
1+

ϱ−1

1+ ρ̄−1

)
J∗(xk).

s = q−1Furthermore, assume that the conclusion holds for ,
that is
 (

1+
ϱ−1

(1+ ρ̄−1)q−1

)
J∗(xk) ≤ Jq−1(xk).

s = qWhen ,  combining  with  the  condition  (37)  again,  one
has
 

Jq(xk) = min
uk
{ΓT L(xk,uk)+ Jq−1(xk+1)}

≥ min
uk

{
ΓT L(xk,uk)+

(
1+

ϱ−1

(1+ ρ̄−1)q−1

)
J∗(xk+1)

}
≥ min

uk

{
ΓT L(xk,uk)+

(
1+

ϱ−1

(1+ ρ̄−1)q−1

)
J∗(xk+1)

+
(ϱ−1)(ρ̄ΓT L(xk,uk)− J∗(xk+1))

(1+ ρ̄)(1+ ρ̄−1)q−1

}
=

(
1+

ϱ−1

(1+ ρ̄−1)q

)
min

uk
{ΓT L(xk,uk)+ J∗(xk+1)}

=
(
1+

ϱ−1

(1+ ρ̄−1)q

)
J∗(xk).

According  to  the  mathematical  induction  method,  the  left-
hand side of the inequality (40) holds.

In  what  follows,  let  us  prove  the  right-hand  side  of  the
inequality (41) in Case II. Obviously, it is not difficult to find
that
 

J1(xk) = min
uk
{ΓT L(xk,uk)+ J0(xk+1)}

≤ min
uk
{ΓT L(xk,uk)+ ϱ̄J∗(xk+1)}

≤ min
uk

{
ΓT L(xk,uk)+ ϱ̄J∗(xk+1)

+
ϱ̄−1
1+ ρ̄

(
ρ̄ΓT L(xk,uk)− J∗(xk+1)

)}
=

(
1+

ϱ̄−1
1+ ρ̄−1

)
J∗(xk)

ρ̄ΓT L(xk,uk)− J∗(xk+1)where  the  term  induced  by  the
condition (37) is added.

s = q−1Furthermore, assume that the conclusion holds for ,
that is
 

Jq−1(xk) ≤
(
1+

ϱ̄−1
(1+ ρ̄−1)q−1

)
J∗(xk).

s = qWhen , combining with the condition (37), one has
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Jq(xk) = min
uk
{ΓT L(xk,uk)+ Jq−1(xk+1)}

≤ min
uk

{
ΓT L(xk,uk)+

(
1+

ϱ̄−1
(1+ ρ̄−1)q−1

)
J∗(xk+1)

}
≤ min

uk

{
ΓT L(xk,uk)+

(
1+

ϱ̄−1
(1+ ρ̄−1)q−1

)
J∗(xk+1)

+
(ϱ̄−1)(ρ̄ΓT L(xk,uk)− J∗(xk+1)

(1+ ρ̄)(1+ ρ̄−1)q−1

}
=

(
1+

ϱ̄−1
(1+ ρ̄−1)q

)
J∗(xk).

In  light  of  the  mathematical  induction  method,  the  right-
hand side of the inequality (41) holds.

s→∞
Combining  the  above  conclusions,  we  can  obtain  that  this

assertion is true. Finally, letting , the convergence (39)
is easily derived. ■

s∗

Remark 5: The above theorem discloses the convergence of
the  developed  ADP  scheme  with  the  help  of  a “functional
bound” method,  which  comes  from  [17],  [41].  An  assertion
has been allocated for the convenience of processing. For the
practical  application,  a  terminal  condition  (or  a  fixed  size
number )  is  adopted,  the  related  algorithm  (i.e.,  ADP
Algorithm 1) is provided as follows.

Algorithm 1 ADP algorithm

J0(xk) = Σ(xk) ϖ > 0
s = 0

Initialization Value  and error threshold .
         Set .

|Js(xk)− Js−1(xk)| > ϖ1:   while  do
us(xk)2:        Solve  according to (35);

Js+1(xk)           Update the value  according to (36);
s = s+1           Set ;

3:   end while
us−1(xk).4:   Output Control strategy 

  

C.  Implementation of ADP Algorithm
Js(xk+1)

J∗(xk) u∗(xk)
Due to the unknown , a approximation structure via

NNs is employed to approximate both  and . Such
a structure consists  of  a  critic  network and an actor  network,
which are all chosen as three-layer feed forward NNs and their
implementation  process  is  shown  in Fig. 1.  In  light  of  the
above  conception,  the  optimal  value  function  (32)  and  the
control input (34) can be described by the following critic NN
and actor NN:
 

J∗(xk) =WT
2cϕc(WT

1czk)+ θc(zk) (42)
and

 

u∗(xk) = ϕ2a(WT
2aϕ1a(WT

1axk))+ θa(xk) (43)

zk = [xT
k uT

k ]T W2c W2a

W̄2cM W̄2aM ∥W2c∥ ≤W2cM ∥W2a∥ ≤
W2aM θc(zk) θa(xk)
∥θc(zk)∥ ≤ θcM ∥θa(xk)∥ ≤ θaM W1c W1a

ϕc(·) ϕ1a(·) ϕ2a(·)
∥ϕc(·)∥ ≤ ϕc,m ∥ϕ1a(·)∥ ≤ ϕ1a,m ∥ϕ2a(·)∥ ≤ ϕ2a,m

with  where  and  are the ideal wights of
designed  NNs  and  bounded,  respectively,  by  two  positive
scalars  and ,  i.e.,  and 

;  and  are the bounded approximation errors,
i.e.,  and ;  and  are  the
known weight matrices of between the input layer and hidden
layer;  and ,  and  are  the  activation  functions
satisfying ,  and .

W2cIn  order  to  identify  the  ideal  weight ,  the  following
approximation is developed by virtue of the ADP algorithm
 

Ĵs(xk) = ŴT
2c,sϕc(WT

1czs,k) (44)

zs,k = [xT
k uT

s,k]Twhere .
Taking the above equation into (36), there is usually

 

Ĵs(xk) , ΓT L(xk,us−1(xk))+ Ĵs−1(xk+1)
that is
 

ŴT
2c,sϕ(WT

1czs,k) , ΓT L(xk,us−1(xk))+ Ĵs−1(xk+1). (45)

Introduce the gap
 

∆Js(xk) = ŴT
2c,sϕc(WT

1czs,k)− Ĵs−1(xk+1)

−ΓT L(xk,us−1(xk)) (46)
and then define the cost function
 

ec,s =
1
2
∆J2

s (xk).

Minimizing  such  a  function  results  in  the  updating  rule  of
the weights of the critic network
 

Ŵ2c,s+1 = Ŵ2c,s−εc
∂ec,s

∂Ŵ2c,s

= Ŵ2c,s−εc
∂ec,s(k)
∂J̃s(xk)

∂(∆Js(xk))
∂Ŵ2c,s

= Ŵ2c,s−εcϕc(WT
1czs,k)∆JT

s (xk) (47)
εc > 0where  is  the  learning  rate  of  the  critic  network.  The

weights  of  the  model  network  are  kept  unchanged  after
finished the training process.

xkIn  the  actor  network,  is  used  as  the  input,  while  the
control input is approximated by
 

ûs(xk) = ϕ2a
(
ŴT

2a,sϕ1a(WT
1axk)

)
. (48)

On  the  other  hand,  it  follows  from  (34)  that  the
approximated value is also obtained by
 

us(xk) = −ū tanh
(

1
2ū

R−1gT
i (xk)∇ĴT

s (xk+1)
)
. (49)

Υi = (1/2ū)R−1g̃T
i (xk)Denote  and then introduce the gap

 

∆us(xk) = ûs(xk)−us(xk)

= ϕ2a
(
ŴT

2a,sϕ1a(WT
1axk)

)
+ ū tanh

(
Υi∇ϕT

c (WT
1czs,k+1)ŴT

2c,s
)
. (50)

In what follows, define the cost of this gap
 

ea,s =
1
2
∆uT

s (xk)∆us(xk).

 

ηk

ηk+1

J(ηk+1)

J(ηk)

ΓTL(ηk, uk)

ukActor network

Critic network

Identification

Signal line
Back-propagating path

^

^

^

 
Fig. 1.     Neural network structure of the proposed ADP approach.
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ea,s

By  employing  the  gradient  descent  approach  again  to
minimize , one has the updating rule of the weights of the
actor network
 

Ŵ2a,s+1 = Ŵ2a,s−εa
∂ea,s(k)

∂Ŵ2a,s

= Ŵ2a,s−εa
∂ea,s(k)
∂∆us(xk)

∂∆us(xk)
∂ûs(xk)

∂ûs(xk)
∂Ŵ2a,s

= Ŵ2a,s−
1
2
εaϕ1a(WT

1axk)

×
(
1−ϕT

2a(ŴT
2a,sϕ1a(WT

1axk))

×ϕ2a(ŴT
2a,sϕ1a(WT

1axk))
)
∆uT

s (xk) (51)

εa > 0where  is the learning rate of the action network.
Defining the estimation errors of weight matrices

 

W̃2c,s = Ŵ2c,s−W2c, W̃2a,s = Ŵ2a,s−W2a

one has
 

W̃2c,s+1 = W̃2c,s−εcϕc(WT
1czs,k)∆JT

s (xk)

= W̃2c,s−εcϕc(WT
1czs,k)

(
ŴT

2c,sϕc(WT
1czs,k)

− Ĵs−1(xk+1)−ΓT L(xk,us−1(xk))
)T

= W̃2c,s−εcϕc(WT
1czs,k)

(
W̃T

2c,sϕc(WT
1czs,k)

+WT
2cϕc(WT

1czs,k)− ŴT
2c,s−1ϕc(WT

1czs,k+1)

−ΓT L(xk,us−1(xk))
)T

(52)

and
 

W̃2a,s+1 = W̃2a,s−
1
2
εaϕ1a(WT

1axk)

×
(
1−ϕT

2a(ŴT
2a,sϕ1a(WT

1axk))

×ϕ2a
(
ŴT

2a,sϕ1a(WT
1axk)

))
∆uT

s (xk)

= W̃2a,s−
1
2
εaϕ1a(WT

1axk)

×
(
1−ϕT

2a(ŴT
2a,sϕ1a(WT

1axk))

×ϕ2a
(
ŴT

2a,sϕ1a(WT
1axk)

))
×

(
ϕ2a(ŴT

2a,sϕ1a(WT
1axk))

+ ū tanh
(
Υ∇ϕT

c (WT
1czs,k+1)ŴT

2c,s
))
. (53)

  

D.  Performance Analysis
It is easily seen that the estimation errors of weights in actor

and  critic  networks  will  inevitably  affect  the  performance  of
the  above  ADP algorithm.  Thus,  it  is  necessary  to  prove  the
boundedness of the critic and actor NN weights.

k W̃c,s

W̃a,s

Theorem 3: Consider the discrete-time Markov jump system
(MJS) (5), the critic NN (44) and the actor NN (48). Then, for
the fixed time , the weight estimation error  in (52) of the
critic  NN and the  weight  estimation  error  in  (50)  of  the
actor  NN  are  all  UUB,  if  the  following  conditions  for  the
learning rates are satisfied
 

0 < εc ≤ ϕ−2
c,m, 0 < εa ≤ ϕ−2

1a,m. (54)

Proof: In  order  to  show  the  boundedness,  we  introduce  a

Lyapunov function candidate
 

LW̃s
= LW̃2c,s+LW̃2a,s

=
1
αc

tr
{
W̃T

2c,sW̃2c,s
}
+

1
αa

tr
{
W̃T

2a,sW̃2a,s
}
.

In what follows, the proof is similar to the one in literature
[42],  and  therefore  its  details  are  omitted,  and  the
corresponding learning rates need to satisfy
 

0 < εc ≤
1

∥ ϕc(WT
1czk) ∥2

0 < εa ≤
∥ ϕ1a(WT

1axk) ∥−2

1− ∥ ϕ2a(ŴT
2a,sϕ1a(WT

1axk)) ∥2
.

ϕc(·) ϕ1a(·) ϕ2a(·)Since  the  excitation  functions ,  and  are
bounded, the ideal learning rates can be obtained. ■

∥g(xk)∥
∥gi(xk)∥

Assumption  3: The  function  in  (1)  is  bounded,  and
therefore the function  is also bounded.

û(xk) = ϕ2a(ŴT
2a,∞ϕ1a(WT

1axk))

Theorem  4: Let  the  initial  control  input  be  admissible  and
the initial actor-NN and critic-NN weights be selected from a
compact set which includes the ideal weights. The NN weight
updating laws (47) and (51) are adopted in an off-line way for
the  critic  network  (44)  and  the  actor  network  (48),  and  the
updating law (50) with (17) is employed in an online way for
the identifier (12). Then, the closed-loop system (5) (or (10))
with  control  law (48)  selecting 
is ultimately bounded in mean-square sense if all conditions in
Theorems 1 and 3 hold.

Proof: In  the  framework  of  identifier-based  control,  taking
the  control  policy  (48)  into  account,  the  actual  closed-loop
system as follows:
 

xk+1 = Fξk (xk, û∞(xk))

= Fξk (xk,u∗(xk))+gξk (xk)(û∞(xk)−u∗(xk))

= Fξk (xk,u∗(xk))+gξk (xk)(ϕ2a(W̃T
2aψk)− θa(xk))

where
 

ψk = ϕ1a(WT
1axk)

ϕ2a(W̃T
2aψk) = ϕ2a(ŴT

2a,∞ψk)−ϕ2a(WT
2aψk).

∥ϕ2a(W̃T
2aψk)− θa(xk)∥

gξk (xk)(ϕ2a(W̃T
2aψk)− θa(xk))

Obviously,  considering the property of  activation functions
of  NNs,  one  has  that  is  bounded.
Furthermore,  benefiting  from  Assumption  3,  the  additional
term  is also bounded.

H∗

On the other hand, according to the optimal control theory,
the  policy  (43)  stabilizes  the  system  (11)  (i.e.,  (10))  on  the
compact  set.  With  the  same  approach  in  [37],  it  is  clear  that
there exists a constant  such that
 

E ∥
N∑

j=1

pi jFi(xk,u∗(xk)) ∥2≤ H∗E ∥ xk ∥2 . (55)

By virtue of the input-to-state stability or the similar line in
[37],  one  can  conclude  that  the  actual  closed-loop  system  is
ultimately bounded in mean-square sense. ■

Js(xk) us(xk)
xk

Remark 6: In the above subsections, a set of critic and actor
networks are designed to approximate the performance index
function sequence  and the control law sequence 
for  the fixed ,  where the updating rules of  NN weights  are
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derived via the gradient descent. By means of the well-known
Lyapunov  stability  theory,  we  obtain  the  conditions  on
learning rates of neural networks, under which both the weight
error  dynamics  and  the  closed-loop  systems  are  bounded
stable.

qk

εk

Remark  7: In  almost  all  ADP-based  suboptimal  control
issues  for  the  nonlinear  systems,  NNs  are  widely  utilized  to
approximate  the  unknown nonlinear  dynamics  as  well  as  the
actor  and  critic  functions.  Such  a  structure,  named the  actor-
critic  structure,  provides  the  capability  of  forwarding
calculation  while  avoiding  the  dimensional  disaster.  Inspired
by the idea in [43], a tuning parameter  has been employed
in  the  identification  of  unknown  nonlinear  systems  to  adjust
the  approximate  error .  Furthermore,  the  three-layer  feed
forward  NNs  have  been  adopted  to  approximate  actor  and
critic  functions  where  the  approximation  capability  is
enhanced due to the utilization of a hidden layer.

Remark  8: Up  to  date,  two  typical  iteration  strategies  of
ADP  algorithms  are  utilized  to  obtain  the  desired  controller
parameter  and  the  associate  utility,  and  they  are  policy
iteration (PI) and value iteration (VI), respectively. One major
difference between PI and VI strategies is that PI requires an
initial  admissible  control  policy  that  stabilizes  the  system
states  [44].  From  a  mathematical  point  of  view,  the  initial
admissible  control  can  be  regarded  as  a  suboptimal  control
which  requires  to  solve  the  nonlinear  partial  differential
equations  (PDEs)  analytically.  To  overcome  the  shortage,  a
VI-based  strategy  has  been  developed  in  this  paper  to
definitely deal with the control issue with input saturation and
communication scheduling.  

IV.  Illustrative Example

In  this  section,  we  use  a  simulation  example  to  show  that
the proposed suboptimal control  is  effective for  discrete-time
nonlinear systems with input saturation under SCPs.

Consider the following nonlinear system:
 

xk+1 =

 −0.5x1,k +0.1x2,k

0.1sin(x1,k)exp(|x2,k |)+1.2x2,k

+  ū1,k

ū2,k


xi,k i = 1,2 i xk

x0 = [−0.5, −0.2]T ūi,k i = 1,2

p11 = 0.65 p22 = 0.6
u0 = [−0.1,0.5]T ū

where  ( )  stands  for  the -th  element  of  vector 
with  the  initial  value ,  and  ( )  is
the  actuator  input  scheduled  by  SCPs,  where  the  scheduling
probabilities  are  and .  Its  initial  value  is

 and the saturation level  is 5.

4−4−2 4−2−1 2−2−2

In this example, choose three-layer feedforward NNs in the
identifier,  the  critic  network  and  the  action  network  with
structures , ,  and ,  respectively.
Furthermore, select the activation functions as follows
 

ϕx(∗) = 2(e∗− e−∗)
e∗+ e−∗

ϕc(∗) = ϕ1a(∗) = e∗− e−∗

e∗+ e−∗

ϕ2a(∗) = ū(e∗− e−∗)
e∗+ e−∗

.

ϕx ϕc ϕ1a ϕ2a ϕx,m = 2
ϕc,m = ϕ1a,m = 1 ϕ2a = ū

Thus,  the  bounds  of , ,  and  are ,
 and , respectively.

γν = γw = 0.1 αν = 0.9 c2 = 1 ν0 = 0.1
In  virtue  of  Theorem  1,  we  can  employ  the  learning  rate

, and parameters , , and  in

Ŵk
2,i νk

W1
1.2I

Ŵ0
2,i i = 1,2

the  tuning  law  and  the  additional  tunable  parameter .
Furthermore,  the  weight  matrix  between  the  input  and
hidden  layers  is  adopted  and  the  initial  weight  matrices

 ( )  in  (12)  between  the  hidden  layer  and  output
layer are selected as
 

Ŵ0
2,i =

[
−0.50, 0.1, 1.0, 0
0.02, 1.2, 0, 1.0

]T

, i = 1,2.

Q1 = Q2 = 0.5I
R1 = R2 = 0.2I

λ1 = 0.4 λ2 = 0.6

εa = εc = 0.4

In  what  follows,  we  consider  the  matrices 
and  in  the  cost  function  (6)  and  the
corresponding  scalars  and  in  the  combined
performance  index  (8).  Furthermore,  the  parameters  in  the
updating  rules  (47)  and  (51)  are  chosen  as  and
for the adopted critic-actor network with the help of Theorem 3,
the  initial  weight  matrices  of  this  critic-actor  network  are
selected as
 

Ŵ2c,0 =
[

1.00, 1.05
]T
, Ŵ2a,0 =

[
−0.04, −1.16
−0.01, −0.134

]T

.

W1a W1cIn  addition,  the  weight  matrices  and  between  the
input and hidden layers are
 

W1a = 0.2I, W1c =

[
2, 0, 0.01, 0
0, 2.5, 0, 0.01

]T

.

k = 4
Training  of  weight  matrices  for  critic-actor  networks  is

performed in instant  with 200 steps. After being trained,
the weights are kept unchanged. The training process is shown
in Fig. 2 and  their  trajectories  are  convergent,  which  verifies
the effectiveness of developed ADP scheme.
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Ŵ2a,s Ŵ2c,sFig. 2.     The iterative trajectories of the weight matrices  and .
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xk

xk

x̂k

The simulation results are presented in Figs. 3–7. The state
trajectories  of  the  open-loop system are  depicted in Fig. 3
to reveal that the open-loop system is divergent. With the help
of  the  designed  controller,  the  state  trajectories  of  the
closed-loop  system  and  the  corresponding  trajectories  of

Ŵk
2i

the identifer are respectively shown in Figs. 4 and 5. For this
control  issue,  the  secluded  node  is  shown  in Fig. 6,  which
clearly  discloses  that  the  system  randomly  jumps  due  to  the
utilization of different actuator units, and the weight matrices
of  the  identifier  are  plotted  in Fig. 7,  all  of  which  are
eventually convergent. It is not difficult to see that the closed-
loop  system  is  stable,  and  therefore  the  developed  control
strategy is effective.  

V.  Conclusions

In  this  paper,  we  have  developed  a  suboptimal  control
strategy  in  the  framework  of  ADP  for  a  class  of  unknown
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nonlinear  discrete-time  systems  subject  to  input  constraints.
An  identification  with  robust  term  based  on  a  three-layer
neural network in which the weight update relies on protocol-
induced jumps, has been established to approximate nonlinear
systems  and  the  corresponding  stability  has  been  provided.
Then,  the  value  iterative  ADP algorithm has  been  developed
to  solve  the  suboptimal  control  problem  with  boundedness
analysis, and the convergence of iterative algorithm, as well as
the  boundedness  of  the  estimation  errors  for  critic  and  actor
NN  weights,  has  been  analyzed.  Furthermore,  an  actor-critic
NN  scheme  has  been  developed  to  approximate  the  control
law  and  the  proposed  performance  index  function  and  the
stability  of  the  closed-loop  systems  have  been  discussed.
Finally,  the  numerical  simulation  result  has  been  utilized  to
demonstrate the effectiveness of the proposed control scheme.
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