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   Abstract—This  paper  presents  a  novel  medical  image
registration  algorithm  named  total  variation  constrained  graph-
regularization for non-negative matrix factorization (TV-GNMF).
The  method  utilizes  non-negative  matrix  factorization  by  total
variation  constraint  and  graph  regularization.  The  main
contributions of our work are the following. First, total variation
is  incorporated  into  NMF  to  control  the  diffusion  speed.  The
purpose is to denoise in smooth regions and preserve features or
details of the data in edge regions by using a diffusion coefficient
based  on  gradient  information.  Second,  we  add  graph
regularization  into  NMF  to  reveal  intrinsic  geometry  and
structure  information  of  features  to  enhance  the  discrimination
power.  Third,  the  multiplicative  update  rules  and  proof  of
convergence of the TV-GNMF algorithm are given. Experiments
conducted  on  datasets  show  that  the  proposed  TV-GNMF
method outperforms other state-of-the-art algorithms.
    Index Terms—Data  clustering,  dimension  reduction,  image
registration, non-negative matrix factorization (NMF), total variation
(TV).
  

I.  Introduction

IMAGE  registration  is  an  important  research  topic  for
aligning  two  or  more  images  of  the  same  scene  taken  at

different  times,  viewpoints,  or  sensors  [1].  Registration  is

widely  used  in  computer  vision  and  medical  image
processing,  including  multimodal  image  fusion,  medical
image  reconstruction,  and  the  monitoring  of  tumors.  For
example, the fusion of multimodal information can be realized
by registering two images, which provides better visualization
of  anatomical  structures  and  functional  changes  to  facilitate
diagnosis  and  treatment  [2].  Area-based  registration  methods
[3]  mainly  uses  gray  level  information  to  optimize  the
maximum  similarity  measure,  including  mutual  information
(MI), by adapting optimization algorithms for registration [4].
Gong et  al.  [5]  proposed  a  novel  image  registration  method
including the pre-registration and a fine-tuning process based
on scale-invariant feature transform (SIFT) and MI. Woo et al.
[6]  presented  a  novel  registration  method  based  on  MI  by
incorporating geometric and spatial context to compute the MI
cost function in large spatial variation regions for multimodal
image registration. However, these methods are very sensitive
to  intensity  variations  and  suffer  from  noise  interference.
Feature-based  methods  for  image  registration  directly  detect
salient  features  and  construct  feature  descriptors,  which  are
robust  and  invariant  to  noise,  illumination,  and  distortion.
SIFT  [7]  is  one  of  the  most  popular  methods  invariant  to
rotation, scale, translation, and illumination changes. Rister et al.
[8]  extended  SIFT  to  arbitrary  dimensions  by  adjusting  the
orientation assignment and gradient histogram of key points.

We can often treat the feature matching problem as a graph
matching  problem in  image  registration,  since  spectral  graph
theory  [9]  is  widely  used  for  image  segmentation  [10],  [11],
graph  matching  [12]–[15],  and  image  registration  [16]–[21].
In order to make many algorithms practical in several real-life
applications, dimensionality reduction is necessary. In order to
avoid  the  curse  of  dimensionality,  some  dimensionality
reduction  matching  or  registration  methods  have  been
introduced [22]–[24].  Xu et  al.  [24]  proposed such a  method
for  high-dimensional  data  sets  using  the  Cramer-Rao  lower
bounds to estimate the transformation parameters and achieve
data  set  registration.  In  addition,  some  manifold  learning
methods  [25]  have  also  been  presented,  such  as  ISOMAP
[26],  locally  linear  embedding  (LLE)  [27],  and  Laplacian
Eigenmap [28]. However, many of these algorithms have high
computational  complexity,  and  deal  poorly  with  large  data
sets  [29].  Liu et  al. [30]  proposed  the  text  detection  method
based  on  morphological  component  analysis  and  Laplacian
dictionary,  which  can  reduce  the  adverse  effects  of  complex
backgrounds  and  improve  the  discrimination  power  of
dictionaries.

Recently, some low-rank matrix factorization methods have
been  introduced  in  data  representation  [31].  Among  these
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methods,  non-negative  matrix  factorization  (NMF)  [32]
achieves a part-based representation for non-negative data sets
with applications in data clustering [33], [34] and data or image
analysis [35], [36]. Some researchers, such as [37]−[40], also
incorporated manifold learning information into NMF. Li et al.
[39]  proposed  a  graph  regularized  non-negative  low-rank
matrix  factorization  (NLMF)  method  by  adding  graph
regularization  into  NLMF  to  exploit  the  manifold  structure
information and utilizing robust principal components analysis
(PCA).  Shang et  al.  [40]  proposed  a  novel  feature  selection
method  by  adding  sparse  regression  and  dual-graph
regularization to NMF to improve the feature selection ability.
Ghaffari  and  Fatemizadeh  [41]  presented  a  new  image
registration method by introducing correlation into the low rank
matrix  theory  based  on  rank-regularized  sum-of-squared-
differences  (SSD)  to  improve  the  similarity  measures.  In
addition, there are still very few NMF based methods used for
image  matching  or  image  registration.  Luo et  al.  have  also
published  several  papers  [42]–[46]  using  non-negative  latent
factor models for high-dimensional and sparse matrices, which
can  be  widely  used  in  industrial  applications  and  highly
accurate  web  service  QoS  predictions.  We  will  introduce  a
special  sparse  matrix  factorization  method  for  image
registration  called  total  variation  constrained  graph-
regularization  for  non-negative  matrix  factorization  (TV-
GNMF).

Rudin et  al.  [47]  first  proposed  the  total  variation  (TV)
method,  which  is  effective  for  image  denoising  and  can
enhance  the  boundary  features  of  large  data  sets.  It  can  be
used  for  various  pattern  recognition  tasks,  such  as
hyperspectral unmixing [48]–[50], data clustering [51], image
restoration  or  image  fusion  [52]–[54],  and  face  recognition
[55],  [56].  Thus, TV regularization is incorporated into NMF
to  enhance  the  details  or  features  of  the  data.  Graph
regularization can also be added to NMF, which can discover
the intrinsic geometric and structural  information of the data.
In  the  differential  form  of  TV  regularization,  a  diffusion
coefficient  is  used  to  control  the  diffusion  speed.  This
coefficient can denoise in smooth regions and preserve details
in edges regions based on the gradient information. Therefore,
our  approach  is  a  good  part-based  data  representation  that
improves the data discrimination ability for clustering big data
sets. We exploit this part-based data representation method to
find better feature point matches for image registration.

∇H

∇H

∇H

In  this  paper,  we  propose  a  special  part-based  matrix
factorization  method,  called  TV-GNMF,  which  extends  our
previous  work  in  [57].  The  manifold  graph  regularization
enhances  and  efficiently  reveals  the  intrinsic  geometric  and
structural  information  of  the  data,  and  the  TV  regularization
denoises  and  preserves  the  sharp  edges  or  boundaries  to
enhance  the  features  of  an  image.  We  now  explain  why  we
incorporate  TV  regularization  into  TV-GNMF.  In  the  TV
regularization terms, the diffusion coefficient 1/| | is used to
control  the  diffusion  speed,  which  can  denoise  and  enhance
the edges or details based on the gradient information. If | |
has a large value in the neighborhood of a point, this point is
considered to be an edge and the diffusion speed is lowered to
preserve the edges. Otherwise, if | | has a small value in the

neighborhood  of  a  point,  and  the  diffusion  is  strong,  it  helps
remove noise. We develop novel iterative update rules, prove
the  convergence  of  our  optimization  technique  and  give  a
matching  algorithm  based  on  TV-GNMF.  Experimental
results  demonstrate  the  discrimination  ability  and  better
performance of our algorithm.

The  remaining  sections  are  organized  as  follows:
Background  work  is  introduced  in  Section  II.  Section  III
proposes  the  TV-GNMF  method,  detailed  multiplicative
update  rules  and  proof  of  convergence  of  our  optimization
method.  Section  IV  presents  the  image  matching  algorithm
based  on  TV-GNMF.  Experimental  results  are  presented  in
Section V, before the conclusions in Section VI.  

II.  Preliminaries
  

A.  Symbols
First,  we list  some necessary symbols used in this paper in

Table I.
 

TABLE I  
Some Necessary Symbols

Symbol Description

Vm×n m×nNon-negative matrix of size 

Wm×r m× rBasis matrix of size 

Hr×n r×nCoefficient matrix of size 

m, n, r The number of features, sample points, factors respectively

|| · ||F Frobenius norm

T Transpose

|| · ||2 L2 norm
| · |BV TV semi-norm

α β λ, , Parameters

D, S, L Diagonal matrix, weight matrix, Laplacian matrix respectively

Tr(·) Trace of matrix

|| · ||TV TV norm

φik ϕk j, Lagrange multipliers

div(∙) Divergence function

∇ Gradient

p The number of nearest neighbors
 
   

B.  NMF

Vm×n = [v1,v2, . . . ,vn] ≈Wm×rHr×n

Non-negative  matrix  factorization  attempts  to  find  an
approximate  factorization .
Equation (1) measures the similarity between V and WH [58]:
 

OF = ∥V −WH∥2F , s.t. W ≥ 0,H ≥ 0. (1)
The  multiplicative  update  rules  are  formulated  for  (1)  by

Lee and Seung [59], to find a locally optimal solution:
 

Wik←Wik

(
VHT

)
ik(

WHHT )
ik
, Hk j← Hk j

(
WT V

)
k j(

WT WH
)
k j
.

  

C.  TV-NMF
Yin and Liu [56] proposed a new NMF model with bounded
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TV  regularization  to  solve  the  following  optimization
problem:
 

OTV−NMF =
1
2
∥V −WH∥22+α|H|BV +β|W |BV

s. t. W ≥ 0, H ≥ 0. (2)
Further  definitions  of  the  symbols  above  can  be  found  in

[56].  

D.  GNMF
Graph  regularization  is  introduced  into  NMF,  i.e.,  GNMF,

to  reveal  the  geometric  information  of  the  data  [37],  as
follows:
 

OGNMF =∥V −WH∥2F +λTr(HLHT )
s. t. W ≥ 0, H ≥ 0 (3)

L = D−S
D Dii =

∑n
j=1 S i j

 is the graph Laplacian matrix, where S is a weight
matrix and  is a diagonal matrix, i.e., .

S
n

p

v j S

Note  that  is  a  weight  matrix  that  we  need  to  construct.
Consider  a  graph  with  vertices,  we  first  use  the  0-1
weighting  scheme  to  construct  a -nearest  neighbor  data
graph  each  of  whose  vertex  corresponds  to  a  data  point,  i.e.,

. Therefore, the weight matrix  is defined as [37]:
 

S jk =

{
1, if vk ∈ np(v j)
0, otherwise j,k = 1,2, . . . ,n

np(v j) p v jwhere  denotes  the  set  of -nearest  neighbors  of .  In
addition, related theory and definitions can be found in [9], [37].  

III.  TV-Gnmf

In this section, we outline the idea behind the total variation
method for enhancing or preserving edge features of data sets
(images).  The  TV method  is  a  form of  anisotropic  diffusion,
which  smoothens  by  selectively  using  diffusion  coefficients
based  on  the  gradient  information  to  retain  image  features
while  eliminating  noise.  Therefore,  TV  regularization  and
graph  regularization  are  integrated  with  the  NMF  model  to
preserve edge features of the intrinsic geometry and structure
information of the data. The proposed novel model called TV-
GNMF can enhance the intrinsic geometry and preserve edge
characteristics of the data to improve discrimination ability for
data clustering and image matching.  

A.  Total Variation
In  order  to  enhance  the  edge  features  of  the  data,  we

introduce TV [47] regularization in this paper, defined as
 

E(H) = ∥H∥TV =
w
Ω
|∇H|dxdy. (4)

A similar discrete form can be found in [51], [57]. The TV
method can remove noise and preserve edge features [60].  

B.  Multiplicative Update Rules
Based  on  TV  regularization  and  graph  regularization,  the

TV-GNMF model with TV regularization is given by
 

OTV−GNMF = ∥V −WH∥2F +λTr(HLHT )
+2β∥H∥TV

s. t. W ≥ 0, H ≥ 0 (5)
λ, β ≥ 0where  are  parameters  that  can  balance  the

OTV−GNMF

reconstruction error in the first term of the objective function
 of TV-GNMF in (5).

OTV−GNMF

The  iterative  updating  algorithm  can  achieve  a  locally
optimal solution to  as follows:
 

OTV−GNMF = Tr(VVT )−2Tr(VHT WT )+Tr(WHHT WT )
+λTr(HLHT )+2β∥H∥TV .

(6)

φik ϕk j
wik ≥ 0 hk j ≥ 0 Ψ = [φik] Φ = [ϕk j]

LL

The  Lagrange  multipliers  and  are  given  for
constraints  and ,  and , .  The
Lagrange function  is given by
 

LL = OTV−GNMF+Tr(ΨWT )+Tr(ΦHT )
= Tr(VVT )−2Tr(VHT WT )+Tr(WHHT WT )
+λTr(HLHT )+2β∥H∥TV +Tr(ΨWT )+Tr(ΦHT ). (7)

LLThe partial derivatives of  with respect to W and H are:
 

∂LL

∂W
= −2VHT +2WHHT +Ψ (8)

 

∂LL

∂H
= −2WT V +2WT WH+2λHL−2βdiv

(
∇H
|∇H|

)
+Φ. (9)

φikwik = 0 ϕk jhk j = 0
Using  the  Karush-Kuhn-Tucker  (KKT)  conditions

 and ,  the  following  equations  are  given
for wik and hkj:
 

−(VHT )ikwik + (WHHT )ikwik = 0 (10)
 

−2(WT V)k jhk j+2(WT WH)k jhk j+2λ(HL)k jhk j

−2βdiv
(
∇H
|∇H|

)
k j

hk j = 0.
(11)

The  following  multiplicative  update  rules  are  obtained
based on (10) and (11):
 

wik← wik
(VHT )ik

(WHHT )ik
(12)

 

hk j← hk j

(
WT V +λHS +βdiv

(
∇H
|∇H|

))
k j(

WT WH+λHD
)
k j

. (13)

The  detailed  updating  procedure  of  TV-GNMF  is
summarized in Algorithm 1.

Algorithm 1 TV-GNMF Algorithm

V ∈ Rm×n S 1 ≤ r ≤min{m,n}Input: , D,  and .
W0 H0 λ β k = 0Initialization: , , ,  and .

k = 0,1 . . .For  until convergence or maximum iteration.
Hk+1　　　　　　Update  according to

Hk+1 = Hk

(
WT V +λHS +βdiv

( ∇H
|∇H|

))k

(
WT WH+λHD

)k　　　　　　

Wk+1　　　　　　Update  according to

Wk+1 =Wk (VHT )k

(WHHT )k　　　　　　

k = k+1　　　　　　

End
W ∈ Rm×r H ∈ Rr×nOutput: , .

We  will  describe  a  theorem  related  to  the  above  iterative
update rules along with the detailed proof of convergence.  
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C.  Proof of Convergence
To prove convergence, the auxiliary function is constructed

and  used  in  the  expectation-maximization  algorithm  [61].
Before  the  proof  of  convergence,  we  will  introduce  the
following related definition and lemmas.

G(x, x′) F(x)
G(x, x′) ≥ F(x) G(x, x) = F(x)

Definition  1:  is  an  auxiliary  function  for  if
 and  are satisfied.
GLemma 1: If  is an auxiliary function of F, then F is non-

increasing under the update rule:
 

xt+1 = argmin
x

G(x, xt). (14)

F(xt+1) ≤G(xt+1, xt) ≤G(xt, xt) = F(xt).Proof: ■
Lemma 2: The function

 

G(w,wt
ab) = Fwab (wt

ab)+F′wab (wt
ab)(w−wt

ab)

+
(WHHT )ab

wt
ab

(w−wt
ab)2 (15)

Fwab

OTV−GNMF wab

is  an  auxiliary  function  for ,  which  is  the  part  of
 that is only relevant to .

G(w,w) = Fwab (w)
G(w,wt

ab) ≥ Fwab (w)
Fwab (w)

Proof: Since  is obvious, we only need to
show  that .  Consider  the  Taylor  series
expansion of :
 

Fwab (w) = Fwab (wt
ab)+F′wab (wt

ab)(w−wt
ab)

+ [(HHT )bb](w−wt
ab)2. (16)

G(w,wt
ab) ≥ Fwab (w)

By  combining  (15)  with  (16),  we  can  show  that
 is equivalent to

 

(WHHT )ab

wt
ab

≥ (HHT )bb. (17)

We have
 

(WHHT )ab =

r∑
l=1

wt
al(HHT )lb ≥ wt

ab(HHT )bb. (18)

G(w,wt
ab) ≥ Fwab (w)Thus, (17) holds and . ■

Motivated  by  [37],  [51],  [56],  [59],  we  will  now  describe
Theorem 1.

OTV−GNMFTheorem 1: The objective function  in (6) is non-
increasing under the update rules in (12) and (13).

G(w,wt
ab)Proof: Replacing  in (14) by (15), we have

 

wt+1
ab = wt

ab−wt
ab

F′wab (wt
ab)

2(WHHT )ab
= wt

ab
(VHT )ab

(WHHT )ab
.

FwabWe  use  an  auxiliary  function  (15),  is  non-increasing
under the update rules. Similarly, we get
 

ht+1
ab = ht

ab

(
WT V +λHS +βdiv

(
∇H
|∇H|

))
ab(

WT WH+λHD
)
ab

.

Theorem  1  guarantees  convergence  under  the  update  rules
based on (12) and (13). ■  

D.  Complexity Analysis
The  computational  complexity  of  the  TV-GNMF  method

will  be  discussed  and  compared  with  the  NMF  and  GNMF
methods.  Since  Cai et  al. gave  the  arithmetic  operations  of
NMF  and  GNMF  for  each  iteration  in  [37],  we  follow  their
results  as  shown  in Table II.  The  main  difference  between
TV-GNMF  and  GNMF  is  the  component  of  TV  norm.
Specifically,  to  generate  the  divergence  function  of  the
discrete  gradient  matrix H,  we need to  calculate  the first  and
second  derivatives  of  each  element,  which  results  in  9
floating-point  additions  and  3  floating-point  divisions.
Moreover,  the update rule of the divergence function of each
element  needs  3  floating-point  additions,  7  floating-point
multiplications,  and  one  floating-point  division.  In  general,
compared  to  GNMF,  our  method  adds  12  floating-point
additions, 7 floating-point multiplications, and 4 floating-point
divisions for each iteration. Note that m denotes the rows of an
input  image,  whose  scale  is  much  larger  than  12.  Therefore,
the  overall  complexity  of  our  TV-GNMF  is  also O(mnr).
Details of the complexity analysis are summarized in Table II.

In Table II,  Fladd,  Flmlt,  Fldiv  denote  the  number  of
floating-point  additions,  floating-point  multiplications,  and
floating-point divisions, respectively; n represents the number
of  sample  points; m is  the  number  of  features;  and, r and p
stand for the number of factors and the number of the nearest
neighbors, respectively.  

IV.  Image Matching Algorithm Based on Tv-Gnmf

To  avoid  confusion,  the  first  part  tests  clustering
performance of the data sets directly represented by the matrix
V to  compute  matrices W and H based  on  (12)  and  (13),
without using the following image registration algorithm. The
data sets include images with many features or details and TV
regularization  can  denoise  and  preserve  details  or  edges  of
features to improve clustering performance.

The  second  part  evaluates  matching  performance  on
medical  images.  We  construct  the  non-negative  matrix,  not
images,  by  exploiting  geometric  positions  of  feature  points.
TV  regularization  can  enhance  and  characterize  the  intrinsic
relationship of feature points based on diffusion depending on
the  gradient  information  of  points.  Further  details  on  the
matching algorithm of TV-GNMF can be found in [57].  

V.  Experimental Results and Discussions

In this section, we provide some experimental evaluation of

 

TABLE II  
Computational Operation Counts for Each Iteration for Different Methods

F-norm formulation

Fladd Flmlt Fldiv Overall

NMF 2mnr+2(m+n)r2 2mnr+2(m+n)r2+(m+n)r (m+n)r O(mnr)

GNMF 2mnr+2(m+n)r2+n(p+3)r 2mnr+2(m+n)r2+(m+n)r+n(p+1)r (m+n)r O(mnr)

TV-GNMF 2mnr+2(m+n)r2+n(p+3)r+12nr 2mnr+2(m+n)r2+(m+n)r+n(p+1)r+7nr (m+4n)r O(mnr)
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the  proposed  TV-GNMF  method  for  image  clustering  and
registration.  There  are  two  aspects  in  this  study.  We
commence with an analysis of image data sets to demonstrate
the  clustering  performance  based  on  multiplicative  update
rules. The image matching performance is tested in the second
part  to  show  that  the  dimensionality  reduction  method  has
better  discrimination  ability  for  medical  image  registration.
The clustering performance is evaluated in the first part.  

A.  Data Sets
The important statistics of the data sets used to evaluate the

clustering  performance  are  summarized  in Table III.  Further
details can be found in [35], [37], [51].
 

TABLE III  
Information on the Data Sets

Data sets Size Dimensionality # of classes

COIL20 1440 1024 20

PIE 2856 1024 68

ORL 400 1024 40

TDT2 9394 36771 30
  

B.  Performance Evaluation and Comparisons
Performance is  tested by comparing the labels obtained for

each  sample  with  the  labels  provided  by  the  data  sets.  One
metric  is  accuracy  (AC),  used  to  measure  the  percentage  of
correct  labels  obtained.  The  second  metric  is  the  normalized
mutual  information  metric  (NMI),  used  to  measure  how
similar the two sets of clusters are. Detailed definitions of AC
and NMI can be found in [33], [62].

S
p

p = 5
λ

β

In  order  to  demonstrate  our  method’s  performance  on  the
above  data  sets,  we  compared  TV-GNMF  with  two  other
related methods, i.e., the NMF [32] and GNMF [37] methods.
The Frobenius norm is used to measure the similarity for the
above three methods. We construct the weight matrix  of (3)
and  (5)  using  the  0–1  weighting  based  on  the -nearest
neighbor  graph,  with  for  the  GNMF  and  TV-GNMF
methods.  In  addition,  the  regularization parameter  is  set  to
100  for  the  GNMF  method  [37];  and  the  TV  regularization
parameter  is given and tested in the experiments for the TV-
GNMF method.

β

β

Table IV gives the data clustering results on the above four
normalized  datasets.  In  the  experiments,  the  different  cluster
numbers are given on the Columbia University Image Library
(COIL20)  and  Olivetti  Research  Laboratory  (ORL)  datasets
for  100  iterations,  and  on  the  NIST  Topic  Detection  and
Tracking  (TDT2)  corpus  dataset  for  50  iterations.  The
regularization  parameter  is  set  to  2  for  the  above  three
datasets  in  our  TV-GNMF method.  The  number  of  iterations
is  set  to  50  on  the  Pose,  Illumination  and  Expression  (PIE)
face dataset for testing, and the parameter  is set to 0.2 in our
TV-GNMF  method.  The  GNMF  method  outperforms  NMF,
indicating  that  GNMF  preserves  or  reveals  the  geometric
structure  of  the  data  in  learning  under  varying  angles  on  the
COIL20  dataset  and  different  lighting  and  illumination
conditions on the PIE dataset. Surprisingly, the average of AC
and NMI of the GNMF method is lower than the NMF method

k = 30

β

λ β

for  the ORL dataset.  The GNMF method does not  reveal  the
geometric  information  because  the  ORL database  consists  of
40  distinct  subjects  with  varying  lighting,  different  facial
expressions,  and  details.  Our  TV-GNMF  method  has  high
accuracy and normalized mutual information. The TV-GNMF
method improves clustering performance because it combines
the  merits  of  graphs  and  TV  regularization  to  discover  the
geometric  structure  information  and  enhances  feature  details.
The  best  results  are  highlighted  in  bold.  In  most  cases,  our
TV-GNMF method  has  the  best  performance.  However,  in  a
few situations,  GNMF has  higher AC and NMI than  ours  for
the  underlined  cases,  such  as  when  for  PIE.  Our
method  cannot  preserve  the  sharp  edges  or  boundaries  to
enhance the feature details because the PIE dataset consists of
68  distinct  subjects  with  different  lighting  and  illumination
conditions.  In  addition,  the  parameter  also  affects  the
clustering  performance.  Overall,  our  TV-GNMF  method
outperforms  NMF  and  GNMF,  and  has  better  performance.
Our  TV-GNMF  method  preserves  geometric  structure
information  and  enhances  the  edge  features  of  the  data  as
demonstrated in Table IV.  Note  that  our  method outperforms
others in most cases, including every instance of the COIL20,
ORL,  and  TDT2  datasets  in Table IV.  Even  for  the  few
situations where our method does not have the best score, we
are within 2% of the top score.  However,  our model has two
parameters,  and ,  which we need to  choose  adaptively  or
empirically.

β = 2

In  addition,  we  use  the  ORL dataset  as  an  example  to  test
the effectiveness of our method. We add Gaussian noise with
mean  0,  and  variance  0.09,  based  on  the  NMF,  TV-NMF,
GNMF,  and  TV-GNMF methods  under  the  same  conditions,
with  parameter ,  and  50  iterations,  for  different  cluster
numbers.  We can see  that  TV-GNMF has  the  best  clustering
results  as  shown  in Table V.  This  happens  because  TV
regularization  can  remove  noise  and  preserve  the  details  or
features of the data, and graph regularization can discover the
intrinsic  geometric  and  structural  information  of  the  data
while  removing  noise  and  enhancing  features.  TV-NMF  has
better  results  than  NMF  and  GNMF,  because  GNMF  cannot
discover  or  reveal  the  intrinsic  geometric  and  structural
information of the data well in the presence of noise.  

C.  Parameter Evaluation

λ β
λ

λ
β

β

β
β

β

In  this  section,  stability  is  tested  based  on  our  TV-GNMF
method  for  various  parameter  settings.  Our  model  has  two
important  regularization  parameters:  and .  The  GNMF
method produces the best results when  is set to 100. In our
model,  is  also  set  to  100,  and  we  vary  the  regularization
parameter  to  test  stability.  The performance of  TV-GNMF
varies  with  the  on  COIL20  and  PIE  datasets  as  shown  in
Fig.1, which shows that TV-GNMF is very stable with respect
to . Fig. 1(a)−1(c) give the clustering performance when the
regularization parameter  varies from 0.1 to 20 for different
classes; such as 8, 13, and 18 on the COIL20 dataset. Fig. 1(d)−
1(f) also  present  the  clustering  performance  when  the
parameter  varies  from  0.1  to  35  under  different  classes,
such as 20, 35, and 50 on the PIE dataset. For a big range of
the regularization parameter on the two data sets, TV-GNMF
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β = 5

β

has  consistently  good  and  stable  performance.  For  the
COIL20 dataset, our method produces relatively big clustering
results based on parameter evaluation when . The reason
is that the randomness of the initial values of W and H affect
the  clustering  performance.  The  initial  values  are  randomly
generated  by  non-negative  constraints  when  we  execute  TV-
GNMF with  varying from 0.1 to 20 for different numbers of
clusters, which can only ensure convergence to a local optima
as  they  are  updated  iteratively.  However,  from  the  second
experimental results, the range of the regularization parameter
is larger than the first and has higher accuracy.

p

λ = 100
β

In  addition,  we also use  the  ORL dataset  as  an example to
test the effectiveness of our method with different  based on
the  GNMF  and  TV-GNMF  methods  under  the  same
conditions  with  and 50 iterations,  cluster  number  set
to 16 classes and  set to 2 in the TV-GNMF method. As we

p

p

p

have  seen,  GNMF  and  TV-GNMF  use  a -nearest  neighbor
graph to capture the local geometric structure information on a
scatter  of  data  points.  GNMF  and  TV-GNMF  have  better
clustering  performance  based  on  the  assumption  that  two
neighboring data points share the same label. When there are
more  nearest  neighbors ,  this  assumption  is  more  likely  to
fail.  This  is  the  reason  why  the  performance  of  GNMF  and
TV-GNMF  declines,  and  TV-GNMF  is  still  superior  to
GNMF as  increases, as shown in Table VI and in Fig. 2.  

D.  Medical Image Registration Performance
In  this  section,  a  novel  low-rank  preserving  technique  is

proposed  by  matching  feature  points  to  verify  the
discrimination ability to achieve one-to-one correspondences.
We  must  emphasize  that  feature  point  detection  or  feature
point  description  is  not  our  research  focus.  The  key  issue  is

 

TABLE IV  
Comparisons On COIL20, PIE, ORL and TDT2 Datasets

Data k
AC (%) NMI (%)

NMF GNMF TV-GNMF NMF GNMF TV-GNMF

COIL20

4 58.403 74.722 76.597 70.044 86.723 87.729

8 60.000 69.861 75.417 70.715 85.287 88.508

13 62.778 72.361 74.028 71.822 87.017 87.219

18 69.444 74.028 75.972 74.277 85.979 89.127

20 66.736 79.306 79.722 74.361 88.515 89.862

Avg. 63.472 74.056 76.347 72.244 86.704 88.489

PIE

10 24.055 69.188 72.724 52.170 85.752 87.174

30 25.490 71.534 69.013 53.109 86.362 85.551

50 22.759 76.436 75.595 50.686 87.173 87.644

68 24.510 72.129 76.120 53.014 86.521 87.909

Avg. 24.204 72.322 73.363 52.245 86.4520 87.070

ORL

3 48.750 50.250 52.750 67.527 68.900 71.513

6 46.500 45.000 51.750 68.744 66.101 69.128

9 48.500 46.750 51.500 67.976 66.099 68.431

12 49.000 48.000 53.000 68.503 68.785 70.870

15 46.500 47.000 50.250 68.025 67.332 70.577

Avg. 48.350 47.400 51.850 68.155 67.443 70.104

TDT2

5 45.476 70.939 81.616 58.877 78.434 84.509

10 43.773 81.563 86.385 57.446 82.651 84.702

15 47.743 83.553 85.501 58.812 83.217 83.587

20 44.922 84.288 86.183 58.978 83.594 83.785

Avg. 45.479 80.086 84.921 58.528 81.974 84.146
 

 

TABLE V  
Comparisons on Orl Dataset With Noise

Data k
AC (%) NMI (%)

NMF TV-NMF GNMF TV-GNMF NMF TV-NMF GNMF TV-GNMF

ORL

25 14.750 15.500 13.000 15.750 34.311 35.892 29.313 38.472

30 14.250 15.000 15.250 17.000 31.935 34.164 32.767 39.898

35 15.750 15.500 14.500 16.500 34.432 35.984 31.818 38.312

40 15.250 15.750 13.500 16.000 33.845 35.323 32.160 40.450

Avg. 15.000 15.438 14.063 16.313 33.631 35.341 31.515 39.283
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how our TV-GNMF method exhibits discriminating power to
capture  the  intrinsic  geometry  and  structure  information  and
finds  one-to-one  correspondences  between  feature  points.  In

order  to  test  the  matching  performance,  we  applied  it  to
medical  images  demonstrating  that  the  proposed  method  has
the discriminating power to achieve stable one-to-one feature
correspondences. Furthermore, we compare the results of our
TV-GNMF  method  with  the  projection  clustering  matching
method (Caelli’s method) [23] and Zass’ method [63] in terms
of matching.

The  32nd  slice  of  T1  and  T2  of  a  magnetic  resonance
imaging  (MRI)  sequence  is  used  to  test,  and  the  image
matching  results  are  given  in Fig. 3.  T1  denotes  prominent
tissue  T1  relaxation  (longitudinal  relaxation)  difference,
which  is  used  to  observe  anatomical  structures.  T2  denotes
prominent  tissue  T2  relaxation  (transverse  relaxation)
difference,  which  is  used  to  show tissue  lesions.  We  use  the
Harris Corner Detector [64] to extract 27 feature points and 38
feature  points  from Figs. 3(a), 3(c),  and 3(e),  and Figs. 3(b),
3(d),  and 3(f),  respectively.  Obviously, Fig. 3(a) produces
some two-to-one mismatches. Zass’ and our methods achieve
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βFig. 1.     Performance of TV-GNMF for varying regularization parameter  on COIL20 and PIE datasets.
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Fig. 2.     The performance of GNMF and TV-GNMF decreases as p increases on ORL dataset.
 

 

TABLE VI  
Comparisons on orl Dataset With the Different p

Data p
AC (%) NMI (%)

GNMF TV-GNMF GNMF TV-GNMF

ORL

3 59.250 62.000 75.188 76.605

4 54.750 55.250 73.709 73.731

5 50.250 52.500 69.263 72.200

6 46.500 46.750 66.840 67.345

7 40.250 45.250 63.918 64.521

8 38.000 39.000 59.240 60.327

9 37.500 37.000 58.401 59.078

10 33.500 36.000 56.863 58.606

Avg. 45.000 46.719 65.428 66.552
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one-to-one  correspondences  in Figs. 3(c) and 3(e),
respectively.  In  addition,  some  feature  points  are  added  as
shown  in Figs. 3(b), 3(d),  and 3(f).  More  many-to-one
correspondences are produced by Caelli’s method in Fig. 3(b)
when the number of feature points is increased. The reason is
that if the distances between some of the extracted points are
very close to each other, they are more likely to be in the same
class. Thus, more many-to-one correspondences are produced.
Zass’ method  is  better  than  Caelli’s  method  because  the
matching problem utilizes a probabilistic framework based on
hypergraphs.  However,  this  method  also  produces  some
mismatches as shown in Fig. 3(d). Despite some feature points
being very close to each other, our method can still find one-
to-one  correspondences,  as  seen  in Fig. 3(f).  This  result
indicates  that  our  method  has  better  discrimination  ability  to
improve  matching  performance,  thereby  achieving  robust
image  registration.  We  also  utilize  the  computation  time  to
evaluate  the  quantitative  analysis,  and  the  computation  time
for  the  entire  matching  process,  including  feature  point
extraction,  in Table VII.  This  table  indicates  that  our  method
needs  less  computation  time.  Please  see  [57]  for  additional
details.

In  addition,  we  also  use  our  method  to  test  the  matching
ability  compared  to  a  more  classical  and  effective  method
called the coherent point drift (CPD) method [65]. We use the
Harris  Corner  Detector  to  extract  156  feature  points  in
T1  (red “*”)  and  T2  (blue “o”)  of  the  24th  slice  of  an  MRI

sequence.  The  test  experiment  is  intended  to  show  the
effectiveness  of  our  method.  We  execute  the  CPD algorithm
and  our  matching  algorithm  on  the  feature  point  sets.  Both
methods  have  good  matching  performance  based  on  the
experimental matching results shown in Fig. 4. However, our
method takes 0.481 s less than the 0.990 s needed by the CPD
method.  This  indicates  that  we  have  introduced  an  effective
matching method that is also computationally more efficient.
 

(a) CPD method (b) Our TV-GNMF method
 
Fig. 4.     Matching results for a feature point set.
 

To  test  the  accuracy  of  registration,  the  root  mean  square

 

(a) (b)  

(c) (d)

(e) (f) 
Fig. 3.     Matching results: (a) and (b) Caelli’s method; (c) and (d) Zass’ method; (e) and (f) Our TV-GNMF method.
 

 

TABLE VII  
Comparison of the Computation Time (s)

as Shown in Fig. 3

Figure and computation time
Figure

(a) and (b) (c) and (d) (e) and (f)

Fig. 3  (s) 0.573/0.682 0.536/0.650 0.426/0.480
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error (RMSE) is used to evaluate the accuracy. Detailed results
can be found in [57].

Finally,  to  verify  the  discrimination  ability  and  robustness
under  different  medical  image  modalities,  we  give  the
accuracy  which  is  defined  as Nc /N,  where Nc denotes  the
number of correct matches and N denotes the total number of
feature  points. Table VIII summarizes  eight  experiments
including different  patients,  with each patient  repeated twice.
It also shows the computation time and accuracy for different
patients  from  the  brain  datasets  [66],  and  is  compared  with
Caelli’s  method.  These  experiments  show  that  the  proposed
method has better discrimination ability in finding one-to-one
correspondences  and  has  good  matching  results.  The  reason
for  large  fluctuation  in  accuracy  in  Caelli’s  method  for
different patients is that if the distances between feature points
are  extracted  very  close  to  each  other,  it  is  more  likely  that
these points are in the same class. This produces many-to-one

correspondences to create a large fluctuation in accuracy. Fig. 5
shows  the  matching  performance  for  different  patients  in
Table VIII.  For this figure,  the y-axis represents the accuracy
and the x-axis  denotes  the  patients.  The different  numbers  of
feature  points  are  obtained  by  using  the  Harris  Corner
Detector  under  the  same  condition  for  different  patients,  and
the  number  of  feature  points  detected  is  relatively  small.
Therefore, the computation time is less than 1.0 s and the time
difference is not big. However, the results (in bold) are not as
good for some patients based on Caelli’s method, as shown in
Table VIII and Fig. 5.  Thus,  the experimental  results indicate
that our method is robust and has more discrimination ability
than Caelli’s.

Fig. 6 also  shows  the  discrimination  ability  and  robustness
on the 65th patient of PD and T2 by increasing the number of
feature  points.  PD  reflects  the  difference  in  hydrogen  proton
content  for  different  tissues,  i.e.,  comparison  of  hydrogen

 

TABLE VIII  
Comparison of Computation Time and Accuracy for Different Image Modalities

Patients and methods
Computation time (s) Accuracy (%)

T1 and PD PD and T2 T1 and PD PD and T2

19th patient
Caelli 0.5960 0.5651 21/21 (100.0%) 13/16 (81.3%)

TV-GNMF 0.5290 0.5197 21/21 (100.0%) 15/16 (93.8%)

21st patient
Caelli 0.4713 0.4683 9/10 (90.0%) 3/7 (42.9%)

TV-GNMF 0.4895 0.4824 10/10 (100.0%) 7/7 (100.0%)

27th patient
Caelli 0.5740 0.6064 4/16 (25.0%) 20/21 (95.2%)

TV-GNMF 0.5331 0.5697 16/16 (100.0%) 20/21 (95.2%)

37th patient
Caelli 0.4378 0.3878 7/7 (100.0%) 0/4 (0.0%)

TV-GNMF 0.4593 0.4530 7/7 (100.0%) 4/4 (100.0%)

45th patient
Caelli 0.4827 0.4949 12/12 (100.0%) 14/14 (100.0%)

TV-GNMF 0.4870 0.4816 12/12 (100.0%) 14/14 (100.0%)

50th patient
Caelli 0.5356 0.4817 17/17 (100.0%) 10/11 (90.9%)

TV-GNMF 0.5112 0.4808 17/17 (100.0%) 10/11 (90.9%)

60th patient
Caelli 0.5589 0.5634 15/15 (100.0%) 14/15 (93.3%)

TV-GNMF 0.5240 0.5331 15/15 (100.0%) 14/15 (93.3%)

65th patient
Caelli 0.5179 0.5284 10/10 (100.0%) 10/10 (100.0%)

TV-GNMF 0.5220 0.5266 10/10 (100.0%) 10/10 (100.0%)
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Fig. 5.     Plot of accuracy considering different slices for the different patients of Table VIII.
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proton  density  in  prominent  tissues. Fig. 6 compares  the
matching results based on Caelli’s method, TV-NMF method,

GNMF  method,  and  our  method.  We  can  see  that  the
matching  results,  whether  correct  or  incorrect,  more  clearly,

 

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m) 
Fig. 6.     Discrimination and robustness considering the same patient for different number of feature points. (a) Feature point extraction results of reference and
sensed images; (b)−(d) Caelli’s method; (e)−(g) TV-NMF method; (h)−(j) GNMF method; (k)−(m) TV-GNMF method.
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when  there  are  relatively  few  feature  points  and  matching
lines.  For  example,  for Figs. 6(d), 6(g), 6(j),  and 6(m),  the
matching  results  have  many  matching  lines  used  to  connect
the reference and sensed images. This makes it difficult to see
the  texture  of  images  due  to  many  mismatches,  as  shown  in
Fig. 6(d).  In  order  to  avoid  this  problem,  we  show
decomposition results with the feature points of the reference
image  (left)  and  the  sensed  image  (right);  which  are  first
extracted as shown in Fig. 6(a). Then, these points are used for
image  matching  as  shown  in Figs. 6(d), 6(g), 6(j),  and 6(m).
For  these  experimental  results  considering  more  feature
points, our method still has better matching results, as shown
in Fig. 6(m),  than  the  TV-NMF  method  (Fig. 6(g))  and  the
GNMF  method  (Fig. 6(j)).  However,  Caelli’s  method  has
completely  different  results,  as  shown  in Fig. 6(b)−6(d),  for
different  number  of  feature  points.  This  indicates  that  our
method  has  good  discrimination  ability  and  robustness,  and
achieves one-to-one correspondences regardless of the number
of feature points.  

E.  Summary
Based  on  the  theory  and  empirical  studies,  we  summarize

that:
1)  The  proposed  TV-GNMF  model  is  able  to  accurately

achieve  data  clustering  and  image  registration  in  a  low
dimensional  feature  space.  Hence,  TV-GNMF  outperforms
other  state-of-the-art  algorithms  in  accuracy  of  clustering,
registration, and time efficiency.

2)  Total  variation  constraint  and  graph  regularization  can
control  the  diffusion  speed  to  denoise  and  preserve  the
features or details of the data. This is achieved by a diffusion
coefficient  based  on  the  gradient  information  to  reveal
intrinsic  geometric  and  structural  information  of  features  to
enhance the discriminating power.

3)  Iterative  update  rules  are  developed  and  a  proof  of
convergence for the TV-GNMF algorithm is given.  

VI.  Conclusions

λ β

λ β

In  this  paper,  we  proposed  a  novel  matrix  factorization
method  called  TV-GNMF,  which  can  effectively  remove
noise  and  preserve  the  data  features  utilizing  total  variation.
Our  method  can  also  reveal  the  intrinsic  geometric  and
structural  information  of  the  data  well  to  improve
discrimination  ability.  Experimental  results  on  data  sets  and
images  indicate  that  TV-GNMF  is  a  better  low-rank
representation  method  for  data  clustering  and  image
registration.  There  are  two  parameters,  and ,  that  play  a
key role in our model. How to adaptively choose the values of

 and  will be investigated in our future work.  
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