

An Effective Cloud Workflow Scheduling
Approach Combining PSO and Idle

Time Slot-Aware Rules
Yun Wang and Xingquan Zuo, Senior Member, IEEE

 Abstract—Workflow scheduling is a key issue and remains a
challenging problem in cloud computing. Faced with the large
number of virtual machine (VM) types offered by cloud
providers, cloud users need to choose the most appropriate VM
type for each task. Multiple task scheduling sequences exist in a
workflow application. Different task scheduling sequences have a
significant impact on the scheduling performance. It is not easy to
determine the most appropriate set of VM types for tasks and the
best task scheduling sequence. Besides, the idle time slots on VM
instances should be used fully to increase resources’ utilization
and save the execution cost of a workflow. This paper considers
these three aspects simultaneously and proposes a cloud workflow
scheduling approach which combines particle swarm
optimization (PSO) and idle time slot-aware rules, to minimize the
execution cost of a workflow application under a deadline
constraint. A new particle encoding is devised to represent the
VM type required by each task and the scheduling sequence of
tasks. An idle time slot-aware decoding procedure is proposed to
decode a particle into a scheduling solution. To handle tasks’
invalid priorities caused by the randomness of PSO, a repair
method is used to repair those priorities to produce valid task
scheduling sequences. The proposed approach is compared with
state-of-the-art cloud workflow scheduling algorithms.
Experiments show that the proposed approach outperforms the
comparative algorithms in terms of both of the execution cost and
the success rate in meeting the deadline.
 Index Terms—Cloud computing, idle time slot, particle swarm
optimization, task scheduling sequence, workflow scheduling.

I. Introduction

IN scientific computing communities, such as astronomy,
physics, and bioinformatics, there are many large-scale and

complex workflow applications consisting of tasks with data
dependencies amongst them [1]. Those applications must be
deployed in high-performance distributed computing
environments for rapid execution. Cloud computing [2] offers
cloud users elastic resources that can be acquired and released
on demand. Cloud users pay for the leased resources on a pay-
as-you-go basis. Such flexible resource provisioning and pay-
as-you-go strategy attract enterprises or research institutes to
run their workflow applications on clouds at low costs without
the need of purchasing and maintaining any infrastructure.

In cloud computing, IT resources are often encapsulated as
virtual machines (VMs). The running VMs are called VM
instances. Cloud users usually want to obtain the computation
result of a workflow within a given deadline at lower
execution cost. Generally, the more computing power a VM
has, the higher its price. To balance the execution cost and
runtime of a workflow, scheduling the tasks of a workflow
onto VM instances [3] is very vital for cloud computing.
However, the flexible management of cloud resources and the
complex workflow structure makes the cloud workflow
scheduling challenging.

Cloud providers offer various VM types with different
configurations (e.g., CPU, memory and disk size, and price)
for users to choose. The number of VM types has been
increasing. For example, the number of VM types provided by
Amazon elastic computing cloud (Amazon EC2) has been
recently increased from 8 to more than 35 [4]. Faced with so
many VM types, scheduling algorithms need to choose the
most appropriate VM type for each task to achieve the lowest
cost for the whole workflow. However, when choosing a VM
type for a task, current scheduling algorithms typically only
consider the VM type that has the cheapest price and can meet
the resources needed to complete the task, while ignoring the
impact of the chosen VM type on other subsequent tasks. This
manner of choosing VM type may encourage subsequent tasks
to be scheduled on faster VM instances, thereby increasing the
cost of a workflow [5].

Scheduling algorithms usually assign each task in the order
of a task scheduling sequence to a VM instance. The task
scheduling sequence has a significant impact on the execution
time and cost of a workflow application [6]. For a workflow
application, although precedence constraints exist for many
tasks, there are many parallel tasks which do not directly have
data dependencies with each other. On the premise of keeping
the dependencies of tasks, the scheduling order of parallel

Manuscript received October 26, 2020; accepted November 19, 2020. This

work was supported in part by the National Natural Science Foundation of
China (61874204, 61663028, 61703199), in part by the Science and Techno-
logy Plan Project of Jiangxi Provincial Education Department (GJJ190959).
Recommended by Associate Editor Shangce Gao. (Corresponding author:
Xingquan Zuo.)

Citation: Y. Wang and X. Q. Zuo, “An effective cloud workflow
scheduling approach combining pso and idle time slot-aware rules,”
IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1079–1094, May 2021.

Y. Wang is with the School of Computing Science, Beijing University of
Posts and Telecommunications, Beijing 100876, and also with the School of
Information Engineering, Nanchang Institute of Technology, Nanchang
330099, China (e-mail: wangyun@nit.edu.cn).

X. Q. Zuo is with the School of Computing Science, Beijing University of
Posts and Telecommunications, Beijing 100876, and also with the Key
Laboratory of Trustworthy Distributed Computing and Service (BUPT),
Ministry of Education, Beijing 100876, China (e-mail: zuoxq@bupt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2021.1003982

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021 1079

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2021.1003982

tasks can be arbitrary. Thus, a workflow application may have
lots of different task scheduling sequences. Moreover, the
complex workflow structure makes a workflow have an
exponential number of different task scheduling sequences.
However, usually only a fixed task scheduling sequence is
used in current scheduling algorithms, which restricts the
search space for obtaining a better solution. It is necessary to
determine the most appropriate task scheduling sequence to
achieve a scheduling solution with better performance.

In addition, due to the precedence constraint amongst
workflow tasks, idle time slots exist on VM instances. The
more idle time slots a VM instance has, the lower its
utilization is. Moreover, the billing interval for VM instances
is usually set to one hour or one minute by cloud providers,
such as Amazon EC2 and Google compute engine cloud. That
means even if a VM instance is used for less than one billing
period (e.g., one hour), users must pay for the whole hour. If a
VM instance has an idle time slot between two running tasks
and another task can be run within the slot, scheduling the task
to that slot will save cost. It is vital to consider the scheduling
of tasks to the idle time slots of VM instances to reduce the
workflow’s cost and improve VMs’ utilization.

In this paper, we propose a new scheduling approach for the
deadline constrained cloud workflow scheduling problem,
with simultaneous consideration of aforementioned three
aspects. This approach, termed HPSO, combines PSO and idle
time slots-aware scheduling rules. To be specific, the VM type
required by each task and the priority of each task are
indicated by a particle in PSO. It means that a particle
represents a specific mapping of tasks to VM types and a
scheduling sequence of tasks. Idle time slot-aware scheduling
rules are proposed to decode a particle into a scheduling
solution. Those rules assign each task to a leased VM instance
or to a new instance, making full use of idle time slots of
VMs.

The contributions of this paper include:
1) A new approach for cloud workflow scheduling is

proposed, which combines a meta-heuristic (PSO) and
heuristic rules (idle time slot-aware scheduling rules).

2) A particle coding scheme is proposed, which represents
the assignment of VM types and scheduling sequences for all
tasks in workflow.

3) A PSO is devised to find the best particle, that is, the
most appropriate assignment of VM types for tasks and the
best task scheduling sequence, to achieve the best scheduling
performance. To avoid infeasible solutions during the search
of PSO, a repair method is devised to repair tasks’ invalid
priorities to generate a valid task scheduling sequence.

4) Idle time slot-aware scheduling rules are devised to
decode a particle into a scheduling solution. The decoding
procedure makes full use of idle time slots of leased VM
instances to improve VMs’ utilization and minimize costs.

The remainder of this paper is organized as follows. Section II
outlines current cloud workflow scheduling algorithms.
Section III introduces the model and the basic elements of the
scheduling problem. Section IV presents the details of the
proposed approach. Experimental results are described and
discussed in Section V. Finally, we conclude our work and

give insight into future works in Section VI.

II. Related Work

Cloud workflow scheduling is a well-known nondeter-
ministic polynomial (NP)-complete problem [7]. An exact
approach cannot find the optimal solution within acceptable
computational time for large-scale problem instances.
Therefore, current research typically adopts meta-heuristic or
heuristic rules to solve this problem. The former uses meta-
heuristics, such as PSO, genetic algorithm (GA), and ant
colony optimization (ACO) to find a near-optimal solution.
The latter obtains an approximate solution to the problem
quickly using scheduling rules. Compared with heuristic rules,
meta-heuristics can find higher quality solutions as they
explore solutions by a guided search but take longer runtime
[8].

In current research, many quality of service (QoS) metrics
such as cost, makespan [9]–[12], energy consumption
[13]–[15], budget [16]–[18], and security [19], [20] are often
regarded as optimization objectives or constraints of the
problem. This section mainly reviews literature on the
deadline constrained cloud workflow scheduling problem, as
those are related to our work. Approaches in those literature
can be divided into two parts: meta-heuristic based scheduling
approaches [21]–[30] and heuristic rules based scheduling
approaches [5], [31]–[36].

A. Meta-Heuristic Based Cloud Workflow Scheduling
Rodriguez and Buyya [21] adopted a PSO method (SPSO)

to minimize the workflow execution cost while meeting
deadline constraint, in which the effect of VM performance
variation is considered. SPSO maps tasks onto VM instances
by a particle and determines a scheduling solution without
considering idle time slots of leased VM instances. The
number of VM instances needs to be predetermined. In [22], a
GA-based approach was proposed for the cloud workflow
scheduling with deadline constraint, where an adaptive
penalty function is used for the strict constraints and the
coevolution approach is used to adjust the crossover and
mutation probabilities. Chen et al. [23] used dynamic
objective strategy and proposed a dynamic objective GA
approach to solve the cloud workflow scheduling with
deadline constraint. Chen et al. [24] further developed an
ACO-based approach to solve the same problem in [23].
Considering the uncertainty of the runtime of tasks, Jia et al.
[25] designed a new estimation model of the tasks’ runtime
based on historical data. On this basis, an adaptive ACO based
cloud workflow scheduling algorithm was proposed. In
addition to PSO, GA and ACO, other meta-heuristics, such as
flog leaping [26] and biogeography-based optimizations [27]
have been applied to workflow scheduling problems.

In those meta-heuristics, the coding of scheduling solution
usually represents the mapping of tasks to a set of VM
instances. However, due to the infinite number of VM
instances in clouds, a limited number of VM instances must
be predetermined. But, it is not easy to predetermine an
appropriate set of instances. Moreover, those algorithms
usually only use a single task scheduling sequence while

 1080 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

ignoring the impact of different task scheduling sequences on
the cloud workflow scheduling performance.

Zuo et al. [28] proposed a self-adaptive learning PSO-based
scheduling approach by considering multiple different task
scheduling sequences. However, the algorithm was used for
the scheduling of independent tasks on hybrid cloud, and not
for the workflow application. Wu et al. [29] proposed a meta-
heuristic algorithm (LACO) and employed ACO to carry out
deadline-constrained cost optimization. In LACO, different
task scheduling sequences are constructed by different ant
individuals. But the idle time slots on leased resources are not
exploited adequately, and the method of determining the VM
type required by each task is different from ours.

In addition, Yuan et al. [30] considered the uncertainty of
arriving tasks and deemed that the energy price of private
cloud data center (CDC) and the execution price of public
clouds have the temporal diversity. A hybrid scheduling
algorithm combining PSO and simulated annealing method
(TTSA) is proposed to solve them. TTSA is used to schedule
parallel tasks; not workflow tasks with data dependencies.
Moreover, TTSA is to schedule all parallel tasks from a
private CDC perspective, and our work is to schedule one
workflow application from the cloud users’ perspective.
Finally, the optimization objective of TTSA is to minimize the
cost for private CDC, including the energy cost of private
CDC and the execution cost generated by outsourcing tasks to
public clouds, whereas ours is to minimize the cost of
executing a workflow on a public cloud.

B. Heuristic Rules Based Cloud Workflow Scheduling
Heterogeneous earliest finish time (HEFT) [31] is one of the

most widely used heuristic scheduling rules. It is first used to
construct a task scheduling sequence based on tasks’
priorities, and then assigns each task in order of the
scheduling sequence to a processor that can meet the users’
needs, such as the earliest finish time. Although HEFT was
originally proposed for workflow scheduling in a limited
number of heterogeneous processors, many modified versions
of HEFT have been proposed for cloud workflow scheduling
[16], [37], [38].

Abrishami et al. [32] introduced the concept of partial
critical path (PCP) and proposed two algorithms, which are
called IaaS cloud partial critical paths (ICPCP) and IaaS cloud
partial critical paths with deadline distribution (ICPCPD2),
respectively. ICPCP tries to minimize the execution cost of a
workflow by scheduling a PCP path on a cheapest VM
instance, which can finish all the tasks of the PCP before their
latest finish time. Sahni and Vidgarthi [5] proposed a just-in-
time scheduling algorithm (JIT) while taking into account the
VM performance variability and instance acquisition.
Arabnejad et al. [33] proposed two algorithms, proportional
deadline constrained (PDC) and deadline constrained critical
path (DCCP), for the deadline-based workflow scheduling on
dynamically provisioned cloud resources. In the aforemen-
tioned algorithms, the VM type for each task is usually chosen
by heuristic information (such as the cheapest VM). More-
over, only the remaining time of the last time interval of
leased instances is typically used while ignoring the

availability of other idle time slots. Our approach selects the
best VM type for each task by a PSO and considers the
effective use of all idle time slots.

Recently, some studies [34]–[36] considered the efficient
use of idle time slots to improve the performance of workflow
scheduling. To mitigate the effect of performance variation of
resources on soft deadlines of workflow applications,
Calheiros and Buyya [34] used the idle time slots of leased
resources and budget surplus to replicate task so as to meet the
deadline constraint. The minimization of the execution cost of
a workflow is not considered in their work. By considering
realistic factors such as software setup time and data transfer
time, Li and Cai [35] proposed a multi-rules based heuristic to
solve the deadline-based workflow scheduling. Furthermore,
three priority rules are developed to allocate tasks to
appropriate available time slots. The heuristics for scheduling
workflow tasks are based on reserved resources in clouds.
How to determine the best task scheduling sequence was not
considered.

To our knowledge, our work is the first study considering
the following three aspects simultaneously: selecting the most
appropriate VM type for each task, determining the best task
scheduling sequence, and effectively using idle time slots. A
PSO combined with idle time slot-aware rules is proposed to
solve those aspects, to minimize the execution cost of a
workflow while meeting the deadline constraint.

III. Cloud Workflow Scheduling Problem and
Formulation

A. Workflow Model
A workflow is usually represented by a directed acyclic

graph (DAG) consisting of vertexes and edges [39]. A DAG is
formulated as a tuple G = <T, E>, where T = {t1, t2,..., tn} is a
set of vertices corresponding to tasks of a workflow, n denotes
the number of tasks, and E = {eij|ti, tj∈T} is a set of directed
edges reflecting data dependencies amongst tasks. For
instance, an edge eij means that there is the precedence
constraint between ti and tj, that is, ti is the direct predecessor
(parent) of tj, and tj is the direct successor (child) of ti. Every
edge eij has a weight to represent the size of data transferred
from ti to tj. A task may have one or more parents or children,
and the task cannot be executed until all its parents have been
executed and all input data required by the task has been
received. All direct predecessors and successors of ti are
defined respectively as follows:

ρ(ti) = {t j|e ji ∈ E and ti, t j ∈ T } (1)

s(ti) = {t j|ei j ∈ E and ti, t j ∈ T }. (2)
In DAG, a task without any parent is an entry task tentry.

Similarly, a task without any children is called an exit task
texit. There may be multiple entry tasks and exit tasks in a
DAG. Fig.1 shows an example workflow with 5 tasks, where
t1 is the entry task and t5 is the exit task.

B. Cloud Resource Model
The cloud model consists of a single data center and has

various VM types. A set П = {π1, π2, …, πm} represents all

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1081

VM types, and m is the number of VM types. In this paper, all
VM types are assumed to have enough memory to execute a
workflow and only the CPU and network bandwidth of each
VM type are considered. The number of instances a user can
rent from the cloud is unlimited.

This paper assumes that the CPU capacity represented by
floating-point operation per second (FLOPS) is available
either from a cloud provider or estimated by a performance
estimation method [40]. The workload of a task ti is assumed
to be known in advance. Therefore, the execution time of task
ti on VM instance λj, χ(ti, λj), is defined as follows:

χ(ti,λ j) =
w(ti)
α(λ j)

(3)

where α(λj) represents the CPU capacity of λj, and w(ti) is the
workload of ti.

All VM instances are in the same data center. The average
network bandwidth β between instances is roughly the same.
The data transfer time between ti and tj, γ(ti, tj), is defined as
(4), where the amount of data transferred between the two
tasks, μ(ti, tj), is known. Note that the transfer time between
two tasks is 0 when they are executed on the same VM
instance.

γ(ti, t j) =
µ(ti, t j)
β
. (4)

According to the pay-per-use strategy, all leased instances
are charged for the number of used billing intervals. This
paper assumes that the size of billing interval is one hour, just
like the on-demand VM instances of Amazon EC2. The cost
of data transfer is not considered because many commercial
cloud providers do not charge the cost within a data center. In
addition, we assume that the tasks of a workflow application
cannot be preempted.

C. Basic Conceptions
This section introduces some basic concepts of workflow

that are used in Section IV-D. The earliest start time of task ti
on one instance λj, EST(ti, λj), is determined by the finish time
of all parents of ti. It means that all parents of ti must be
completed before executing ti. Besides, if ti is an entry task, its
earliest start time on λj is 0. EST(ti, λj) is computed as follows:
 

ES T (tentry,λ j) = 0

ES T (ti,λ j) = max
ta∈ρ(ti)

{F(ta,λk)+γ(ta, ti)} (5)

where F(ta, λk) is the actual finish time of ta on instance λk, and

ta is a parent of ti and has been scheduled on λk. In order to
utilize the idle time slots of instance λj, the calculation of
EST(ti, λj) does not consider the final available time of λj in
this paper. The actual start time of ti on instance λj, S(ti, λj),
must be greater than or equal its earliest start time.

The actual finish time of ti, F(ti, λj), equals the sum of S(ti,
λj) and χ(ti, λj), and is computed as follows:

F(ti,λ j) = S (ti,λ j)+χ(ti,λ j). (6)
The latest finish time of ti, LFT(ti), is the latest time that ti

should be finished to ensure a workflow will be finished
before its deadline Δ.
 LFT (texit) = ∆

LFT (ti) = min
tc∈s(ti)

{LFT (tc)−MET (tc)−γ(ti, tc)} (7)

where MET(tc) is the execution time of tc based on the fastest
VM, and tc is a child task of ti.

For more details about the above basic concepts of
workflow, please refer to literature [31] and [39].

D. Cloud Scheduling Problem Description
This paper focuses on minimizing the cost of executing a

workflow in clouds while meeting a deadline constraint. A
scheduling solution is expressed as S = (R, M, Θ). R = {λ1,
λ2, …, λl} is a set of l leased VM instances that will be used to
execute tasks. Each VM instance in R has four attributes, that
is, λi = (πi, Bi, Zi, Li), representing the VM type of VM
instance λi, the lease start time and end time of λi, and tasks
list scheduled on the instance, respectively. M = {m1, m2, …,
mn} represents the mapping of tasks to instances in R. mi = (λj,
S(ti), F(ti)) means that task ti is scheduled on the instance λj
and is expected to start executing ti at time S(ti), and finish by
time F(ti). The size of M is equal to the number of tasks n in
the workflow, and the size of R is less than or equal to n. Θ is
a task scheduling sequence and must follow the dependencies
amongst tasks.

Based on S = (R, M, Θ), the execution cost Ψ and the execu
tion time Ω of a workflow are calculated by the following
formulas:

Ψ =

l∑
i=1

µπi ×
⌈
(Zi−Bi)
τ

⌉
(8)

Ω =max{F(ti), ti ∈ T }. (9)
⌈(Zi−Bi)/τ⌉

µπi

In (8), is the number of the billing intervals of
instance λi used by a workflow, is the unit price of the VM
type πi, and τ is the length of the billing interval. Ω in (9) is
also called the makespan. Thus, the cloud scheduling problem
studied in this paper is to optimize the following objective:

minimize Ψ

s. t. Ω ≤ ∆ . (10)
where Δ is the deadline of a workflow.

IV. Proposed Approach

PSO is a stochastic optimization algorithm which is inspired
by the foraging behavior of bird flocks [41]. Because PSO has
few parameters and is easy to implement, it has been widely

t2 t3
t4

t5

2
2

2

1
3

1

t1

Fig. 1. An example workflow with 5 tasks.

 1082 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

applied to numerous fields, including production scheduling
problems [42] and cloud resources scheduling [43], [44]. This
paper uses PSO combined with idle time slot-aware rules to
solve the workflow scheduling on clouds.

A. PSO for Cloud Workflow Scheduling

vt
i = (vt

i1,v
t
i2, ...,v

t
iD)

xt
i = (xt

i1, x
t
i2, ..., x

t
iD)

pt
i = (pt

i1, p
t
i2, ..., p

t
iD)

gt = (gt
1
,gt

2
, ...,gt

D
)

PSO has a population of particles and each particle
represents a possible solution to the problem. The population
size, N, refers to the number of particles in the population. The
search for the best solution is guided by a fitness function
which evaluates the quality of each particle. Each particle
consists of a position and velocity. The velocity of the ith
particle at the tth iteration is denoted as ,
and its position is , where D is the
dimensions of search space. The historical best position

 represents the best previous position
yielding the best fitness value for the ith particle at the tth
iteration. The global best particle is the
global best position found by all particles so far. At each of
iterations of PSO, the velocity and position of the dth
dimension of each particle is updated using the following
formulas:

vt+1
id = ωvt

id + c1r1(pt
id − xt

id)+ c2r2(gt
d − xt

id) (11)

xt+1
id = xt

id + vt+1
id (12)

where inertia weight ω is used to balance the global and local
search; r1 and r2 are uniform random numbers in [0, 1]; c1 and
c2 are acceleration factors to control the influence of the social
and cognitive components, and their values usually are set as
2 [41].

A pseudocode of PSO for the cloud workflow scheduling
problem is described in Algorithm 1. It evolves iteratively a
population of particles until the number of iterations is
reached (lines 5–15) and then the scheduling solution of the
global best particle is regarded as the final scheduling solution
(line 16).

There are several issues to consider when using the PSO to
solve the scheduling problem: the first is the encoding repre-
sentation of a particle, which is elaborated in Section IV-B;
the second is how to decode a particle into a scheduling
solution (decoding procedure), which is shown in line 9 and
detailed in Section IV-D; the third is to evaluate a particle by a
fitness function, which reflects the optimization objectives. In
this paper, the execution cost Ψ and the execution time Ω are
calculated in the fitness function (in Section IV-E), and Ψ is
used to evaluate a particle (line 10). The fourth issue is the
population initialization that is described in Section IV-F; and
the final issue is the treatment of the deadline constrain of the
scheduling problem.

During the search of the PSO, some infeasible solutions that
violate the deadline constraint may be generated. To handle
those infeasible solutions, the constraint handing technique in
[45] is introduced into the PSO. A solution is infeasible if it
does not satisfy the deadline constraint. There are three cases
for two solutions’ comparison: the solution with a better
fitness value (execution cost) is better if the two solutions are
both feasible; the feasible one is better if one solution is

feasible and the other is unfeasible; the solution with the
smaller execution time is better if both solutions are
unfeasible. In lines 11 and 13, the historical best position of a
particle and the global best particle are updated under the
constraint-handing technique.

In addition, in line 1, the workflow is preprocessed to merge
the “pipeline pair” tasks into a single task, which helps to
reduce the runtime overhead of the scheduling algorithm and
save the data transfer time between tasks [10]. The “pipeline
pair” tasks refer to a special pair of tasks ti and tj which have a
one to one relationship. That is, ti only has one child task tj
and tj only has one parent task ti.

Algorithm 1 PSO for Cloud Workflow Scheduling

Input: The DAG of a workflow G = <T, E>.
Output: The scheduling solution S = (R, M, Θ).
1: Preprocessing the workflow;
2: Set parameters, such as population size N and inertia weight;
3: Initialize the population;
4: Let the number of iterations, t = 1;

≤5: While t the total number of iterations do
6: For each particle qi, i∈{1, 2, …, N} do

vt
i7: Update the velocity by (11);

xt
i8: Update the position by (12);

9: Decode qi to a solution Si by Algorithm 3;
10: According to Si, calculate Ψ and Ω by Algorithm 4;
11: Update the historical best position pi of qi;
12: End for
13: Update the global best particle g;
14: t = t+1;
15: End while
16: Output the scheduling solution S of g;

B. Encoding Scheme
A key issue for PSO to solve a problem is to devise an

effective particle encoding. Although VM instances in clouds
are infinite, cloud providers provide a finite number of VM
types. Inspired by this, the particle encoding only needs to
consider the mapping of tasks to VM types (instead of VM
instances). Besides, the priority of each task, which
determines its scheduling order in all tasks, is encoded in the
particle. A task scheduling sequence is obtained by sorting
tasks’ priorities in ascending order. Therefore, a particle
contains two parts: the first part (dimensions from 1 to n)
embodies the mapping of tasks to VM types, and the second
part (dimensions from n+1 to 2n) determines the priority for
each task. The dimension of a particle D is equal to twice the
number of workflow tasks. The value of each dimension in the
first part falls within the real range of [1, m]. The values of the
second part can be any positive real number.

Because PSO is for continuous optimization problems,
whereas the workflow scheduling problem is a combinatorial
one, the value of each dimension must be rounded to the
nearest integer. Specifically, in the first part of a particle,
dimensions from 1 to n correspond to tasks t1 to tn,
respectively. The rounded nearest integer of each dimension
represents an index of VM type, which means the

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1083

corresponding task is assigned to an instance with the same
VM type. In the second part of a particle, the rounded nearest
integer of dimension i∈[n+1,2n] represents the priority of task
ti–n.

An example of an encoded particle for the workflow in Fig. 1
is shown in Fig. 2, where the number of VM types is assumed
to be 4. In this example, dimension 1 corresponds to task t1
and its value is 2.1. This means that the VM type required by
t1 is π2. The values of dimensions 2–5 follow the same logic.
The values of dimensions 6–10 are rounded to 2, 9, 11, 3, and
14, indicating the priorities of t1–t5, respectively. Sorting those
values in ascending order, the scheduling sequence of tasks is:
t1-> t4-> t2-> t3-> t5.

t1

t1->t4->t2->t3->t5t1->π2

t2 t3 t4 t5

t2->π3 t3->π2 t4->π1 t5->π2

t1 t2 t3 t4 t5

Dim 1 2 3 4 5 6 7 8 9 10
Value 2.1 2.8 1.6 1.1 1.8 2.3 8.8 11.2 3.4 13.8

The first part of
the particle

The second part
of the particle

Fig. 2. A particle encoding for the workflow in Fig. 1.

By this encoding, different mapping combinations of tasks
to VM types and different task scheduling sequences are
represented by different particles. On this basis, an idle time
slot-aware heuristic decoding procedure in Section IV-D can
identify the VM instances to be leased and the scheduling of
all tasks on those leased instances.

C. Repairing Method for Invalid Tasks ’s Priorities
A feasible task scheduling sequence must satisfy the data

dependencies amongst tasks. However, those cannot be
guaranteed during the iterative evolution because of the
stochastic feature of PSOs. This paper sorts priorities of all
tasks in ascending order to obtain a task scheduling sequence.
This means the priority of each task must be greater than those
of all its parents and cannot be the same as each other.
Otherwise, the priority of the task is invalid.

A simple repairing method is designed to repair tasks’
invalid priorities. Its main idea is to modify the invalid
priority of a task to the maximum value of the priorities of all
its parents plus 1, while ensuring that the modified priority is
not equal to any other tasks’ priorities.

Algorithm 2 gives the detailed steps of the repairing
procedure, where T is a set of workflow tasks, and set V is
used to store those tasks with valid priorities and is initially
set to be empty (line 2). The priority of an entry task tentry with
the minimum priority is deemed as valid (line 3). Based on
this priority, lines 5–18 gradually judge whether the priorities
of other tasks are valid. First, those tasks whose parents are in
set V are selected from T and represented by set Q (line 6,).
Then the following steps are to judge whether the priority of
each task tj in Q is valid one by one (lines 8–17). If the
priority of tj, η(j), is not bigger than the maximum priority
value of all its parents, pmax, it is modified to pmax + 1 (lines
10–12). Moreover, if the priority of tj is identical to that of one
task in set V, it is modified to vmax + 1 (lines 13–15), where

vmax is the maximum of the priorities of all tasks in set V (line 7).
Through this, the priority of each task is bigger than those

of all its parents and all tasks have different priorities. Finally,
once a task has a valid priority or the invalid priority of the
task has been modified to a valid one, the task is added into V
and removed from T (line 16).

Algorithm 2 Repair Invalid Priorities of Tasks.

Input: A particle q and a set of tasks T ={t1, t2, …, tn}.
Output: The repaired particle.
1: η(1:n) = round (q(n+1:2n));

∅2: V = ;
3: Find an entry task tentry with the minimum priority;
4: V = V∪{tentry}, and T = T\{tentry};
5: While (T is not empty)
6: Find all tasks whose parents are in V, denoted by Q;
7: vmax = max(priorities of tasks in V);
8: For (each task tj in Q)
9: pmax = max(priorities of tj’s parents);

≤10: If η(j) pmax

11: η(j) = pmax+1;
12: End if
13: If η(j) = = the priority of one task in V
14: η(j) = vmax +1;
15: End if
16: V = V∪{tj}, and T = T\{tj};
17: End for
18: End while
19: q(n+1:2n) = η(1:n);
20: Output the repaired particle;

D. Idle Time Slot-Aware Decoding Procedure
An idle time slot-aware decoding procedure is proposed to

decode a particle into a scheduling solution. The decoding
procedure makes full use of the idle time slots of leased VM
instances to improve resource utilization and decrease
execution cost of a workflow. Meanwhile, it can schedule
tasks under their precedence constraints and tends to schedule
them on the same VM instance to save the data transfer time
between them.

Algorithm 3 presents the detailed steps. In line 1, R, M, and
H are set as empty. Set H is used to store the applicable
instances of a task tj. Herein, if a leased instance has one or
more idle time slots that can be used to finish tj before tj’s
latest finish time, LFT(tj), it is termed an applicable instance
of tj. LFT(tj) is calculated by (7). Each task is scheduled in
order of the scheduling sequence Θ to a leased instance in R or
a new instance (lines 4–17). In line 5, the VM type πj, required
by tj is obtained from the jth dimension of the particle. Then,
serial and parallel instances with the same type πj, denoted by
X and Y, respectively, are selected from R (line 6). For tj,
serial instances refer to those instances that have one or more
parents of tj scheduled, and parallel instances are those that do
not schedule any one of tj’s parents. Note that the VM type of
an instance on which a task is scheduled must be the same as
that required by the task.

In order to save the data transfer time, those serial instances

 1084 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

which are applicable to tj are first selected from X and
recorded by H (line 7). If there is no applicable instance of tj
in X, namely the set H is empty (line 8), continue to find
parallel instances that applicable to tj in Y (line 9). Finally, if
there is still no applicable instance can be used to schedule tj
in Y (line 13), a new instance λn with πj is launched for tj (line
14).

There may be multiple applicable instances in H. The
instance λa, which has the smallest cost difference between its
execution cost before scheduling tj and that after scheduling tj,
is chosen to execute tj from H (lines 11–12). The execution
cost of an instance is calculated by (8), where l = 1. Further-
more, if there are multiple instances with the same smallest
cost difference in H, select one of those instances randomly
for tj.

Algorithm 3 An Idle Time Slot-Aware Decoding Procedure.

Input: A particle q (1:2n).
Output: A scheduling solution S = (R, M, Θ).

∅ ∅ ∅1: R = , M = , H = ;
2: Repair tasks’ invalid priorities in the particle q by Algorithm 2;
3: Get a feasible scheduling sequence Θ based on the particle q;
4: For each task tj, j∈{1, 2, …, n} in Θ do
5: πj = q (j);
6: Select serial and parallel instances with VM type πj from R,

 denoted as X and Y, respectively;
7: Search the applicable instances of tj from X, and recorded them

 by H;
8: If H is empty then
9: Continue to search the applicable instances of tj (also

 recorded by H) from Y;
10: End if
11: If H is not empty then
12: Allocate tj to the instance λa∈H with the smallest cost

 difference;
13: Else
14: Launch a new instance λn with πj for tj;
15: End if
16: Update R and M;
17: End for
18: Output S = (R, M, Θ).

All applicable instances of tj in X and Y (lines 7 and 9) are
identified by an insertion-based policy. The length of an idle
time slot is equal to the difference between the execution start
time and finish time of two tasks that were consecutively
scheduled on the same instance [31]. If an idle time slot
between tx and tk is available to tj, it means that S(tj) ≥ F(tx),
F(tj) ≤ S(tk), and F(tj) ≤ LFT(tj). Note that scheduling a task on
an idle time slot must satisfy its precedence constraints.
Therefore, the insertion-based policy first calculates the
EST(tj) of tj on an instance by (5), and then check all idle time
slots on the instance to determine whether available time slots
exists to execute tj.

There may be multiple idle time slots available for
executing tj on an applicable instance, and tj is scheduled in
the first time slot in chronological order. The S(tj) on an
applicable instance is finally determined during checking the

idle time slots by the insertion-based policy, and F(tj) is
calculated by (6).

E. Fitness Function
In this paper, the total execution cost of a scheduling

solution Si = (R, M, Θ) derived from a particle is used as the
fitness value of the particle. The total execution time of Si is
used to judge whether the particle is feasible. For example, if
the total execution cost of a particle q1 is less than that of
another particle q2, it means q1 is better than q2. If the total
execution time of a particle is bigger than the deadline, the
particle is unfeasible; otherwise, it is feasible.

Algorithm 4 Fitness Function.

Input: A solution Si = (R, M, Θ) of a particle
Output: The execution cost and time of a workflow, Ψ and Ω.
1: Ψ is calculated by (8), based on the R of Si;
2: Ω is computed by (9), according to the M of Si;
3: Output Ψ and Ω;

In Algorithm 4, all leased instances are in R, and the
mappings between tasks and leased instances are in M. The
lease expenses of all leased instances are summed up as the
total execution cost by (8), and the total execution time is
computed by (9). Finally, output the total execution cost and
time of Si = (R, M, Θ) (line 3).

F. Population Initialization
In order to generate N particles with valid task scheduling

sequences, the upward and downward ranks of a task, which
are usually used in the list-based scheduling algorithms, are
adopted to compute tasks’ priority in the initial population.

The upward rank of a task ti is the critical path length from ti
to the exit task, including ti’s average execution time. The
down rank of ti is the longest distance from the entry task to it,
excluding the average execution time of ti. Please refer to [39]
for the calculations of tasks’ upward and downward ranks.

In the initiation of population, two populations, Ο1 and Ο2,
are first generated randomly, and each population has N
particles. For each particle in Ο1, the value of dimension
i∈[n+1,2n] is set to the downward rank of task ti–n. Besides,
because this paper obtains the task scheduling sequence by
sorting tasks’ priorities in ascending order, the priority of each
task in Ο2 is set as σ–ru(ti), where σ represents the maximum
value of all tasks’ upward ranks and ru(ti) is the upward rank
of ti. Finally, N particles are selected as the initial population
from Ο1 and Ο2 in ascending order of their fitness values.

V. Performance Evaluation

A. Experimental Settings
Pegasus project [46] publishes some synthetic workflows

resembling those used by real world scientific applications,
including Montage, Epigenomics, Sipht, CyberShake, and
LIGO’s Inspiral Analysis (Inspiral). These workflows have
different characteristics and have been widely used to evaluate
workflow scheduling algorithms. The DAGs of the five
workflows are illustrated in Fig. 3. Each workflow has four
different task sizes: small (about 30 tasks), medium (about 50

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1085

tasks), large (about 100 tasks), and extra-large (about 1000
tasks). The details of each workflow, including its DAG
structure, the size of data transferring amongst tasks, and the
running time of each task, are stored in an XML file. The
corresponding XML files are available from the web site1.

(a) Montage (b) Epigenomics (c) Sipht

(d) CyberShake (e) Inspiral

Fig. 3. DAGs of five synthetic workflows.

We use these five workflows to evaluate the HPSO
algorithm. For each workflow, eight different deadlines are
used to evaluate the capability of HPSO to meet the deadline
constraint. These deadlines are calculated based on the fastest
and the slowest execution time of a workflow. The slowest
execution time, ζ, is the execution time of a workflow whose
tasks are all scheduled on the same VM instance with the
cheapest VM type. The fastest execution time of a workflow,
δ, is estimated by letting each task of the workflow be
scheduled separately on a different VM instance with the
fastest VM type. The data transmission time is ignored when
computing the two time values ζ and δ.

Moreover, the slowest execution time of a workflow is
usually two or even more orders of magnitude higher than the
fastest one, and the difference between them depends on the
structure of the workflow [25]. In order to reflect the
capability of different algorithms to meet deadlines, an
appropriate set of deadlines must be determined. By trial and
error, eight deadlines of a workflow are computed by the
following formula:

di =



δ+ (
ζ −13×δ

96
)× i

for Epigenomics, Sipht, or Inspiral

δ+ (
ζ −5×δ

32
)× i

for Montage or CyberShake

(13)

where the values of i are set as 1, 2, …, 8 to calculate eight
different deadlines with d1 being the tightest deadline and d8
being the loosest one.

A cloud computing environment was simulated using
CloudSim toolkit [47] to compare the performance of HPSO
and other methods. This paper selects ten VM types with

known number of computing unit (ECU) from Amazon EC2,
as shown in Table I. Reference [40] shows that an ECU is
roughly 4400 million floating point operations per second
(MFLOPS). All VM instances are assumed to be in the same
data center. The network bandwidth amongst VM instances is
roughly equal and is set to 20 Mbps [32]. The billing period of
all VM types is assumed to be one hour.

TABLE I
VM Types based on Amazon EC2

VM types ECUs Processing capacity
(MFLOPS)

Price per hour
($/hour)

m3.medium 3 13 200 0.07

m3.large 6.5 28 600 0.14

m3.xlarge 13 57 200 0.28

m3.2xlarge 26 114 400 0.56

c3.large 7 30 800 0.105

c3.xlarge 14 61 600 0.210

c3.2xlarge 28 123 200 0.42

c3.4xlarge 55 242 000 0.84

r3.large 13 57 200 0.35

r3.4xlarge 52 228 800 1.40

B. Compared Algorithms
To verify the performance of HPSO, five state-of-the-art

cloud workflow scheduling algorithms, namely PSO-based
scheduling algorithm (SPSO) [21], GA-based scheduling
algorithm (EMS-C) [9], ACO-based scheduling algorithm
(LACO) [29], and two heuristic scheduling algorithms ICPCP
[32] and JIT [5], are selected as comparative algorithms. In
current literature on cloud workflow scheduling problems,
those algorithms are often used as comparative algorithms.
The scheduling problem solved by SPSO, LACO, ICPCP, and
JIT is exactly the same as ours (minimizing the execution cost
of a workflow while meeting its deadline constraint). EMS-C
is a multi-objective optimization algorithm for minimizing the
execution time and cost of a workflow simultaneously.

SPSO adopts the PSO to solve the deadline constraint and
cost minimization problem, while considering fundamental
features of the dynamic provisioning and heterogeneity of
unlimited computing resources as well as VM performance
variation. It maps tasks onto VM instances by a particle and
determines a scheduling solution without considering idle
time slots of leased VM instances. The number of VM
instances needs to be predetermined.

ICPCP uses the concept of partial critical path (PCP). A
PCP contains many tasks and is first scheduled on an already
leased instance that can meet the latest finish time of the tasks.
If no such instance exists for the path, a new instance with the
cheapest VM type able to finish the tasks before their latest
finish time is leased for the PCP.

JIT aims to exploit the advantage offered by cloud
computing while considering the virtual machine (VM)
performance variability and instance acquisition delay to
identify a just-in-time schedule of a deadline constrained
scientific workflow at lesser costs.

1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

 1086 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

LACO employs ant colony optimization to carry out
deadline-constrained cost optimization: the ant constructs an
ordered task list according to the pheromone trail and
probabilistic upward rank. The reason to choose LACO for
comparison is that it considers different task scheduling
sequences by using different ants and uses a simple heuristic
method to decode an ant to a scheduling solution. However,
LACO does not consider the selection of the best VM type for
each task and the effective utilization of idle time slots of VM
instances.

The reason to choose EMS-C for comparison is that it is
based on GA. In EMS-C, the encoding of a chromosome
includes the mapping of tasks to VM instances, the mapping
of VM instances to VM types, and the scheduling order of
each task. Because EMS-C is for multi-objective workflow
scheduling, it is modified to fit the scheduling problem in this
paper. The modified EMS-C (MEMS for short) keeps the
single objective of minimizing the execution cost and adds
deadline constraint. Like HPSO, MEMS uses the constraint
handing technique in [45] to deal with infeasible solutions.
Other operations (e.g., crossover and mutation) of MEMS are
the same as those of original EMS-C.

C. Algorithm Parameter Discussions
HPSO does not contain any new parameter, except the

parameters of PSO (inertia weight ω, acceleration factors c1
and c2, population size N, and number of fitness function
evaluations Κ). Those parameters are determined by the
following two groups of experiments.

The first group experiment is to determine ω, c1 and c2. In
order to investigate how the three parameters affect the
performance of HPSO, three different values are set for each
parameter. For ω, its values are respectively set to 0.5,
decreased linearly from 0.9 to 0.4 (0.9~0.4), and decreased
linearly from 0.1 to 0.01 (0.1~0.01). The values of c1 and c2
are set to (2.0, 2.0), (2.0~0, 0~2.0), and (1.0~0, 0~1.0),
respectively. Here, (2.0, 2.0) represents that the values of c1
and c2 are all set to be 2.0. (2.0~0, 0~2.0) denotes that c1
decreases linearly from 2.0 to 0, whereas c2 increases linearly
from 0 to 2.0. The same logic is true for (1.0~0, 0~1.0). Table II
shows the average execution costs of Montage-100 under the
tightest deadline d1 for different values of ω, c1 and c2. Note
that the experiment assumes that N is 20 and K is 1000, which
are used to determine ω, c1 and c2. In Table II, $2.40 is the
lowest execution cost for Montage-100 under deadline d1.
Therefore, parameters ω, c1 and c2 of HPSO are set as
(0.1~0.01), (2.0~0), and (0~2.0), respectively.

The second group experiment is to determine the
appropriate N and K, i.e., population size and the number of
fitness function evaluations, to make a fair comparison of
HPSO, LACO, SPSO, and MEMS. Table III shows the
average execution costs of Montage-100 under deadline d1 for
different combinations of N and K.

Table III shows that with the increase of K and N, the
execution cost values obtained by HPSO (SPSO, MEMS) are
reduced from 2.4 (16.90, 23.02) to 1.79 (4.70, 11.79), and the
cost values obtained by LACO fall within the range of [2.5.
2.8]. Obviously, along with the increase of N and K, the

execution cost of SPSO and MEMS is improved, while the
cost of HPSO and LACO does not change much.

If N and K are set too large, the four meta-heuristic based
algorithms will consume too much time for extra-large and
large workflows. Thus, the N value of the four algorithms is
all set to 20. The K value of SPSO and MEMS is set to 10 000.
As HPSO and LACO converge for almost all workflows when
K is 1000 (see the third subsection of Section V-D), the K
value of HPSO and LACO is all set to be 1000.

The SPSO [21], MEMS [9], and LACO [29] are all
designed specifically for the cloud workflow scheduling
problem, and in literature [9], [21] and [29], appropriate
parameters are suggested. Therefore, other parameters of
SPSO, MEMS, and LACO are taken from their literature: for
SPSO, c1, c2, ω are set to 2, 2, 0.5, respectively; for MEMS,
the probabilities of crossover and mutation are given by 1.0
and 1.0/n, respectively, and n is the number of workflow
tasks; for LACO, the pheromone and the heuristic information
are set to 1 and 2, respectively, and the pheromone
evaporation coefficient is 0.2.

HPSO, SPSO, MEMS, and LACO perform 10 independent
runs for each workflow application.

D. Results and Discussions
1) Deadline Constraint Evaluation
For a workflow with a deadline di, if the average execution

time of the workflow scheduled by an algorithm is less than or

TABLE II
The Execution Costs of Montage-100 for Different Inertia

Weights and Acceleration Factors

ω
(c1, c2)

(2.0, 2.0) (2.0~0, 0~2.0) (1.0~0, 0~1.0)

0.5 2.49 2.65 2.42

0.9~0.4 2.56 2.56 2.63

0.1~0.01 2.70 2.40 2.42

TABLE III
The Execution Costs of the Montage-100 for Different

Population Sizes and Number of Evaluations

Size (N) Algorithms
Number of fitness function evaluations (K)

1000 2000 4000 6000 8000 10000

20

HPSO 2.40 2.37 2.28 2.14 1.91 2.14

LACO 2.84 2.75 2.66 2.71 2.62 2.65

SPSO 16.90 11.73 9.55 8.20 6.92 6.05

MEMS 21.69 18.25 17.49 13.07 14.92 13.03

50

HPSO 2.05 2.15 1.94 1.93 1.93 1.94

LACO 2.73 2.67 2.67 2.60 2.51 2.58

SPSO 11.28 9.19 8.34 6.65 5.75 5.04

MEMS 23.02 20.00 16.45 12.68 14.40 15.66

100

HPSO 2.04 2.03 1.93 1.95 1.89 1.79

LACO 2.69 2.65 2.56 2.58 2.51 2.57

SPSO 11.12 8.31 6.42 5.87 5.02 4.70

MEMS 22.80 20.62 17.32 14.07 11.79 14.40

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1087

equal to di, the algorithm meets the deadline constraint. This
paper uses the success rate sr, which is the percentage of
deadlines met by an algorithm among all deadlines, to
evaluate the capability of an algorithm to meet the deadline of
a workflow. The calculation of sr is as follows [17]:

sr =
κ

φ
×100% (14)

where κ is the number of deadlines met by an algorithm, φ is
the total number of deadlines. Table IV shows the success rate
of each algorithm for each workflow.

The upper-left region of Table IV shows that HPSO, SPSO,
ICPCP, and JIT have a 100% success rate for all extra-large
workflows with about 1000 tasks, which means the eight
deadlines of each extra-large workflow are met by them.
LACO meets all deadlines of each extra-large workflow
except Sipht-1000, for which the success rate of LACO is
87.5% because it fails to meet the tightest deadline d1. For
MEMS, its success rates for Inspiral-1000 and Montage-1000
are 12.5% and 75%, respectively, and the success rates for the
three other extra-large workflows are 100%.

For the large workflows with about 100 tasks, as shown in
the upper-right region of Table IV, the deadlines of all large
workflows are satisfied by HPSO. ICPCP, LACO, and JIT can
meet all deadlines of large workflows except CyberShake-
100, for which the success rates are 87.5%, 87.5% and 62.5%,
respectively. SPSO has a 100% success rate only for
Montage-100 and Sipht-100. Except Epigenomics-100,
MEMS does not have a 100% success rate for other large
workflows.

The lower-left and lower-right regions of Table IV show
that for medium and small workflows, the performance
differences in meeting deadlines amongst HPSO, LACO, and
the four other algorithms are more obvious. HPSO and LACO
can meet all deadlines of medium and small workflows,
whereas the other algorithms perform less well in meeting
deadlines as the size of a workflow decreases. Amongst small
workflows, the success rates of MEMS and JIT for
CyberShake-30 and the success rates of SPSO for
Epigenomics-24 are all 0. It is because the deadline of a
workflow calculated by (13) is shortened with the decrease of
a workflow’s size, thus reflecting the capacity of different

algorithms to meeting deadlines.
Overall, for all workflows with different sizes, HPSO has

100% success rates and is the best algorithm, followed by
LACO, ICPCP, JIT, and SPSO, while MEMS is the worst.
The main reasons of HPSO having good performance in
meeting the deadlines are as follows: one is that idle time slots
of leased instances are fully used, which means a task may be
completed as early as possible; the second is multiple different
task scheduling sequences are considered and used in the
proposed method. LACO’s performance is slightly inferior to
HPSO because idle time slots of a leased instance are not
considered. ICPCP uses the PCP as a whole scheduling object,
which means an instance must satisfy LFT values of all tasks
on the PCP, so it is not easy to meet the more urgent
deadlines. When choosing the cheapest VM type for a task,
JIT considers its effect on the children of the task. However,
there may be no existing VM types that can meet the
requirements of the task and its children, thus making JIT fail
to the tightest deadline of some workflows. For SPSO and
MEMS, they both randomly implement the mapping of tasks
to VM instances during the iteration process, and do not
consider the LFT of a task and the idle time slots of a leased
instance.

2) Execution Cost Evaluation
The performance of an algorithm in minimizing the

execution cost of a workflow is evaluated by the average
execution cost of the workflow scheduled by the algorithm.
Figs. 4–7 show the performance of comparison algorithms in
minimizing the execution cost of extra-large, large, medium,
and small workflows, respectively.

Each curve in the figures consists of eight points (cost
values), reflecting the average execution cost of a workflow
scheduled by an algorithm under different deadlines. In
figures, the point circled by an ellipse is an invalid point,
which indicates the algorithm fails to meet the corresponding
deadline. In this case, comparing the average execution costs
of valid points and invalid ones is meaningless.

Amongst extra-large workflows, the execution cost of
CyberShake-1000 scheduled by HPSO is lower than those sche-
duled by the five other algorithms, which is shown in Fig. 4(a);
for Inspiral-1000 shown in Fig. 4(b), HPSO and LACO have
better performance than other algorithms, and LACO is

TABLE IV
The Success Rates of Six Algorithms for All Workflows

Workflows HPSO SPSO ICPCP MEMS LACO JIT Workflows HPSO SPSO ICPCP MEMS LACO JIT

CyberShake-1000 100% 100% 100% 100% 100% 100% CyberShake-100 100% 87.5% 87.5% 75% 87.5% 62.5%

Montage-1000 100% 100% 100% 75% 100% 100% Montage-100 100% 100% 100% 87.5% 100% 100%

Inspiral-1000 100% 100% 100% 12.5% 100% 100% Inspiral-100 100% 75% 100% 37.5% 100% 100%

Sipht-1000 100% 100% 100% 100% 87.5% 100% Sipht-100 100% 100% 100% 87.5% 100% 100%

Epigenomics-997 100% 100% 100% 100% 100% 100% Epigenomics-100 100% 75% 100% 100% 100% 100%

CyberShake-50 100% 75% 87.5% 50% 100% 62.5% CyberShake-30 100% 62.5% 50% 0 100% 0

Montage-50 100% 100% 87.5% 87.5% 100% 87.5% Montage-25 100% 87.5% 75% 62.5% 100% 62.5%

Inspiral-50 100% 50% 100% 50% 100% 100% Inspiral-30 100% 25% 100% 50% 100% 100%

Sipht-60 100% 100% 100% 62.5% 100% 100% Sipht-30 100% 100% 100% 62.5% 100% 100%

Epigenomics-46 100% 25% 100% 75% 100% 100% Epigenomics-24 100% 0 100% 37.5% 100% 100%

 1088 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

inferior to HPSO; for Montage-1000 shown in Fig.4(c), HPSO
is slightly better than SPSO because the execution costs
obtained by HPSO under the top two tightest deadlines are
lower than those obtained by SPSO, and the performance of
HPSO is significantly better than LACO and other algorithms;
for Epigenomics-997 shown in Fig. 4(d), HPSO, LACO, and

JIT perform almost the same and better than ICPCP, SPSO,
and MEMS; for Sight-1000 and its top three tightest
deadlines, as shown in Fig. 4(e), the execution costs obtained
by HPSO are lower than those obtained by other algorithms.
Overall, the performance of HPSO in terms of minimizing the
execution cost of extra-large workflows is better than that of

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

10−1

100

101

102

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(a) CyberShake-1000

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

101

102

103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(b) Inspiral-1000

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

100

101

102

103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)
d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(e) Sight-1000

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

150

200

250
300
350
400
450
500
550

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(d) Epigenomics-997

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

10−1

100

101

102

103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(c) Montage-1000

Fig. 4. Comparsion of six algorithms in terms of minimizing the execution cost for extra-large workflows.

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

10−1

100

101

102

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(a) CyberShake-100

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

10−1

100

101

102

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(b) Inspiral-100

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

10−1

100

101

102

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(c) Montage-100

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

10−1

100

101

102

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(e) Sight-100

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

14

16

18

20

22

24
26

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(d) Epigenomics-100

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

Fig. 5. Comparsion of six algorithms in terms of minimizing the execution cost for large workflows.

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1089

other algorithms.
Amongst the large workflows shown in Fig. 5, the execution

cost of CyberShake-100 scheduled by LACO under the
tightest deadline d1 is significantly higher than that scheduled
by HPSO, and LACO fails to meet the deadline d1. For
Inspiral-100, the execution costs obtained by HPSO under the

deadlines from d4 to d8 are lower than those obtained by
LACO. Thus for CyberShake-100 and Inspiral-100 shown in
Figs. 5(a)–5(b), HPSO performs slightly better than LACO,
and both of them are better than others; for Montage-100,
HPSO has a similar performance to SPSO and is better than
LACO and other algorithms. Fig. 5(d) shows that HPSO and

2

3

4

5
6
7

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(d) Epigenomics-46

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

10−1

100

101

102

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(a) CyberShake-50

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

1

2

3

4
5
6
7

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(b) Inspiral-50

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

100

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)
d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(e) Sight-60

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

10−1

100

101

102

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(c) Montage-50

HPSO
SPSO
ICPCP
MEMS
LACO
JIT

Fig. 6. Comparsion of six algorithms in terms of minimizing the execution cost for medium workflows.

100

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

HPSO
SPSO
ICPCP

LACO
MEMS

JIT

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(a) CyberShake-30

10−1

100

101

102

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(c) Montage-25

HPSO
SPSO
ICPCP

LACO
MEMS

JIT

1.0

1.5

2.0

2.5

3.0
3.5

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(e) Sight-30

HPSO
SPSO
ICPCP

LACO
MEMS

JIT1.0

1.5

2.0

2.5
3.0
3.5

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(d) Epigenomics-24

HPSO
SPSO
ICPCP

LACO
MEMS

JIT

1.0

1.5

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(b) Inspiral-30

HPSO
SPSO
ICPCP

LACO
MEMS

JIT

Fig. 7. Comparsion of six algorithms in terms of minimizing the execution cost for small workflows.

 1090 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

LACO have similar performance for Epigenomics-100 and are
better than SPSO and other algorithms. For Sipht-100, the
execution cost obtained by HPSO, LACO, and SPSO is
similar under the deadlines from d3 to d8. Overall, compared
to LACO, HPSO can obtain lower execution costs for
CyberShake-100, Inspiral-100, and Montage-100. Similarly,
compared to SPSO, HPSO performs better for CyberShake-
100, Inspiral-100, and Epigenomics-100. For all large
workflows, HPSO performs better than ICPCP, JIT, and
EMES.

Amongst the medium and small workflows shown in Figs. 6–7,
the execution costs obtained by HPSO and LACO for
CyberShake-50, Epigenomcis-46/24, and Sipht-60/30 are
similar; for Inspiral-50/30 shown in Fig. 6(b) and Fig. 7(b),
the execution cost obtained by HPSO under deadlines d1–d4 is
higher than that obtained by LACO, while the cost obtained
by HPSO under d5–d8 is lower than that obtained by LACO.
For Montage-50/25 shown in Fig. 6(c) and Fig. 7(c), HPSO
performs better than LACO. Although Figs. 6–7 show that for
medium and small workflows LACO performs similar with
HPSO, HPSO can obtain lower execution costs than LACO
for extra-large and large workflows (see Figs. 4–5). That is, as
the size of the workflow increases, the performance of HPSO
is better than that of LACO. Furthermore, HPSO can meet
deadlines better than LACO for extra-large and large
workflows (see Table IV).

In general, HPSO can achieve a lower execution cost for
most workflows amongst the six algorithms, followed by
LACO, SPSO and ICPCP, and JIT and MEMS. The rule
based heuristic scheduling algorithms ICPCP and JIT can find
quickly a feasible solution for each workflow, but the solution

quality is lower than HPSO, LACO, and SPSO for most
workflows. MEMS performs worse because the execution
costs obtained in its different runs are significantly different,
resulting in high average cost. HPSO has the best performance
because HPSO combines PSO and idle time-aware rules,
having the advantage of both meta-heuristics (PSO) and
heuristic rules.

3) Convergence of HPSO, LACO, SPSO and MEMS
To observe the convergence of HPSO, LACO, SPSO, and

MEMS, along with the increase of the number of fitness
function evaluations, Fig. 8 shows the average evolutionary
curves of the four algorithms on large workflows under the
tightest deadline d1.

Fig. 8 shows that HPSO and LACO converge for almost all
large workflows when the number of fitness function
evaluations K reaches 1000. For CyberShake-100 and
Epigenomics-100, MEMS converges when K reaches 1000,
while for other large workflows MEMS converges when K is
about 10 000. Similarly, SPSO converges for all large work-
flows when K is about 10 000.

Evolutionary curves of LACO show that LACO cannot find
solutions with lower cost values as the number of fitness
function evaluations increases. This means that the
performance of LACO cannot be better than that of HPSO
even if a larger number of evaluations are given.

4) Impact of Task Scheduling Sequence on Execution Cost
In order to investigate the impact of multiple task

scheduling sequences and a single task scheduling sequence
on the execution cost of workflow, some modifications are
made to HPSO. The modified HPSO only uses a single task
scheduling sequence, which is obtained by topologically

1 2 4 6 8 10 1214 16 1820 222426 2830 323436
Number of fitness function evaluation ×103

0

5

10

15

20

25

30
A

ve
ra

ge
 e

xe
cu

tio
n

co
st

 ($
)

1 2 4 6 8 10 121416 1820 222426 2830 3234 36
Number of fitness function evaluation ×103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

1 2 4 6 8 10 1214 16 1820 2224 26 2830 323436
Number of fitness function evaluation ×103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

HPSO
LACO
SPSO
MEMS

HPSO
LACO
SPSO
MEMS HPSO

LACO
SPSO
MEMS

0

5

10

15

20

25

4

6

8

10

12

14

16

(a) CyberShake-100 (b) Montage-100 (c) Inspiral-100

1 2 4 6 8 10 1214 16 1820 2224 26 2830 3234 36
Number of fitness function evaluation ×103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)
1 2 4 6 8 10 1214 16 1820 222426 2830 323436
Number of fitness function evaluation ×103

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

) HPSO
LACO
SPSO
MEMSHPSO

LACO
SPSO
MEMS

14

16

18

20

22

24

26

28

30

32

0

5

10

15

20

25

30

35

(e) Sight-100(d) Epigenomics-100
Fig. 8. Average evolutionary curves of HPSO, LACO, SPSO and MEMS on large workflows under the tightest deadline d1.

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1091

sorting all tasks of a workflow. Therefore, each particle in
HPSO with a single task scheduling sequence only needs to
represent the mapping of tasks to VM types, not including the
priority of each task. Fig. 9 gives the performance comparison
between HPSO and HPSO with a single task scheduling
sequence, in terms of minimizing the execution cost of each
large workflow under each deadline. In the figure, “HPSO”
refers to HPSO with multiple task scheduling sequences.

Fig. 9 shows that under each deadline of each large
workflow, the average execution cost obtained by HPSO is
lower than or equal that obtained by HPSO with a single task
scheduling sequence. For example, in Fig. 9(b), 9(c), and 9(e),
the average execution cost of Montage-100, Insiral-100, and
Epigenomics-100 under the tightest deadline d1 scheduled by
HPSO is significantly lower than that scheduled by HPSO
with a single task scheduling sequence. Overall, HPSO with
multiple different tasks scheduling sequences can achieve
lower execution cost than HPSO with a single task scheduling
sequence.

5) Comparison of Runtime
Compared with heuristic rules, meta-heuristic based

scheduling algorithms usually need a longer computational
time. This section compares the runtime of HPSO, SPSO,
MEMS, and LACO. Fig. 10 gives the average runtime of each
algorithm for different workflow sizes (30, 50, 100, and
1000). The runtime is calculated by first summing up the
running time of an algorithm for each workflow instance and
then divided by the total number of workflow instances. All
four algorithms are coded in MATLAB R2016a and
implemented on a PC with Core i7 2.50 GHz and Windows 7
operation system.

Fig. 10 shows that the average runtime of HPSO and LACO
is less than that of SPSO and MEMS for workflows with 30
and 50 tasks, while the average runtime of HPSO for extra-
large workflows is longer than that of LACO, SPSO, and
MEMS. For workflows with 100 tasks, the average runtime of

the four algorithms is very close.

VI. Conclusions and Future Work

This paper proposes a hybrid particle swarm optimization
(HPSO) for cloud workflow scheduling problem that
considers three aspects, namely selecting the most appropriate
VM type for each task, determining the best scheduling
sequence for all tasks, and making full use of idle time slots.
The first two aspects are combinational optimization
problems, such that a PSO is used to solve them. In PSO, a
particle represents the VM type required by each task and the
scheduling sequence of tasks. Idle time slot-aware scheduling
rules are proposed to decode a particle to a scheduling
solution. During the decoding procedure, the rules assign each
task in the order of the scheduling sequence to a leased VM
instance or a new one, taking full use of idle time slots of
leased VMs. As the randomness of PSO may cause priorities
of some tasks to be invalid, making the task scheduling
sequence violate the tasks’ precedence constraint, a simple
repairing method is suggested to repair invalid priorities of

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

d1 d2 d3 d4 d5 d6 d7 d8

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

Deadline (min)

HPSO
HPSO with a single task
scheduling sequence

(a) CyberShake-100

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

d1 d2 d3 d4 d5 d6 d7 d8

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

Deadline (min)

HPSO
HPSO with a single task
scheduling sequence

(b) Montage-100

0
2
4
6
8

10
12
14

d1 d2 d3 d4 d5 d6 d7 d8

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

Deadline (min)

HPSO
HPSO with a single task
scheduling sequence

(c) Inspiral-100

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(d) Sight-100

0

0.5

1.0

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

)

HPSO
HPSO with a single task
scheduling sequence

1.5

2.0

2.5

3.0

d1 d2 d3 d4 d5 d6 d7 d8

Deadline (min)
(e) Epigenomics-100

0
2
4
6

A
ve

ra
ge

 e
xe

cu
tio

n
co

st
 ($

) HPSO
HPSO with a single task
scheduling sequence

8
10
12
14
16
18
20

Fig. 9. Comparison of HPSO and HPSO with a single task scheduling sequence in terms of minimizing the execution cost.

30 50 100 1000
Workflow size

101

102

103

104

R
un

tim
e

(s
)

HPSO
SPSO
MEMS
LACO

Fig. 10. The average runtime of HPSO, SPSO, MEMS, and LACO.

 1092 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

tasks.
Experimental results based on synthetic workflows show

that HPSO achieves 100% success rates in meeting
workflows’ deadlines and outperforms the five other
comparison algorithms. Moreover, compared with other
algorithms, HPSO has better performance in minimizing the
execution cost for most workflow applications.

In the future, we plan to implement a prototype system to
further test HPSO. In addition, it is hard to predict task
execution times exactly in advance. In [48], [49], a cloud
system is modeled as a discrete-time-state space to deal with
non-steady states of cloud system. Based on the idea of the
discrete-time-state cloud system, we plan to combine HPSO
with prediction technologies (such as analytic probabilistic
models or deep learning) to study dynamic cloud workflow
scheduling algorithms that considers the uncertainty of task
execution times.

References
 E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-
Science: An overview of workflow system features and capabilities,”
Futur. Gener. Comp. Syst., vol. 25, no. 5, pp. 528–540, May 2009.

[1]

 P. Mell and T. Grance, The NIST Definition of Cloud Computing,
document SP 800–145, NIST, Gaithersburg, MD, USA, 2001.

[2]

 F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: A survey,”
J. Supercomput., vol. 71, no. 9, pp. 3373–3418, 2015.

[3]

 Amazon elastic compute cloud (Amazon EC2) [Online]. Available:
http://aws.amazon.com/ec2/, Accessed on: Mar. 2020.

[4]

 J. Sahni and D. P. Vidyarthi, “A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 2–18, Jan.-
Mar. 2018.

[5]

 Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling
on heterogeneous computing systems using multiple priority queues,”
Inf. Sci., vol. 270, pp. 255–287, Jun. 2014.

[6]

 Ullman and D. Jeffrey, “NP-complete scheduling problems,” J. Comput.
Syst. Sci., vol. 10, no. 3, pp. 384–393, 1975.

[7]

 Z. H. Zhan, X. F. Liu, Y. J. Gong, J. Zhang, S.H. Chung, and Y. Li,
“Cloud computing resource scheduling and a survey of its evolutionary
approaches,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–33, Jul. 2015.

[8]

 Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344–1357, May 2016.

[9]

 Z. G. Chen , Z. H. Zhan, Y. Lin, Y. J. Gong, T. L. Gu, F. Zhao, H. Q.
Yuan, X. Chen, Q. Li, and J. Zhang, “Multi-objective cloud workflow
scheduling: a multiple populations ant colony system approach,” IEEE
Trans. Cloud Comput., vol. 49, no. 8, pp. 2912–2926, Aug. 2019.

[10]

 S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. IEEE Int. Conf. Adv. Inf.
Netw. Appl., Perth, WA, Australia, 2010, pp. 400–407.

[11]

 H. Y. Hu, Z. J. Li, H. Hu, J. Chen, J. D. Ge, C. Y. Li, and V. Chang,
“Multi-objective scheduling for scientific workflow in multicloud
environment,” J. Netw. Comput. Appl., vol. 114, pp. 108–122, Jul. 2018.

[12]

 H. R. Faragardi, S. Dehnavi, T. Nolte, M. Kargahi, and T. Fahringer,
“An energy-aware resource provisioning scheme for real-time
applications in a cloud data center,” Softw., Practice Experience,
vol. 48, no. 10, pp. 1734–1757, 2018.

[13]

 X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An energy-aware
resource allocation method for scientific workflow executions in cloud
environment,” IEEE Trans. Cloud Comput., vol. 4, no. 2, pp. 166–179,
Apr.–Jun. 2016.

[14]

 M. S. Kumar, I. Gupta, and P. K. Jana, “Resource-aware energy
efficient workflow scheduling in Cloud Infrastructure,” in Proc. IEEE
Int. Conf. Adv. Comput., Commun. Inf., Bangalore, India, 2018, pp.
293–299.

[15]

 H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer,
and N. Rasouli, “GRP-HEFT: A budget-bonstrained resource
provisioning scheme for workflow scheduling in IaaS clouds,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1239–1254, Jun. 2020.

[16]

 V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget and deadline aware
e-science workflow scheduling in clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 1, pp. 29–44, Jan. 2019.

[17]

 M. A. Rodriguez and R. Buyya, “Budget-driven scheduling of scientific
workflows in IaaS clouds with fine-grained billing periods,” ACM
Trans. Auton. Adapt. Syst., vol. 12, no. 2, pp. 1–22, May 2017.

[18]

 H. Chen, X. Zhu, D. Qiu, L. Liu and Z. Du, “Scheduling for workflows
with security-sensitive intermediate data by selective tasks duplication
in clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9, pp. 2674–
2688, Sept. 2017.

[19]

 Z. J. Li, J. D. Ge, H. J. Yang, L. G. Huang, H. Y. Hu, H. Hu, and B.
Luo, “A security and cost aware scheduling algorithm for heterogeneous
tasks of scientific workflow in clouds,” Futur. Gener. Comp. Syst.,
vol. 65, pp. 140–152, Dec. 2016.

[20]

 M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds,” IEEE
Trans. Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr.–Jun. 2014.

[21]

 L. Liu, M. Zhang, R. Buyya, and Q. Fan, “Deadline-constrained
coevolutionary genetic algorithm for scientific workflow scheduling in
cloud computing,” Concurr. Comput.-Pract. Exp., vol. 20, no. 5,
pp. 1–12, Mar. 2017.

[22]

 Z. G. Chen, K. J. Du, Z. H. Zhan, and J. Zhang, “Deadline constrained
cloud computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm,” in Proc. IEEE Congr. Evol.
Comput., Sendai, Japan, 2015, pp. 708–714.

[23]

 Z. G. Chen, Z. H. Zhan, H. H. Li, K. J. Du, J. H. Zhong, Y. W. Foo, Y.
Li, and J. Zhang, “Deadline constrained cloud computing resources
scheduling through an ant colony system approach,” in Proc. IEEE Int.
Conf. Cloud Comput. Res. Innov., Singapore, 2015, pp. 112–119.

[24]

 Y. H. Jia, W. N. Chen, H. Q. Yuan, T. L. Gu, H. X. Zhang, Y. Gao, and
J. Zhang, “An intelligent cloud workflow scheduling system with
time estimation and adaptive ant colony optimization,” IEEE Trans.
Syst. Man Cybern.-Syst., to be published, DOI: 10.1109/TSMC.2018.
2881018

[25]

 P. Kaur and S. Mehta, “Resource provisioning and workflow scheduling
in clouds using augmented Shuffled Frog Leaping Algorithm,” J.
Parallel Distrib. Comput., vol. 101, pp. 41–50, 2017.

[26]

 Z. Tong, H. J. Chen, X. M. Deng, K. L. Li, and K. Q. Li, “A novel task
scheduling scheme in a cloud computing environment using hybrid
biogeography-based optimization,” Soft Comput., vol. 23, pp. 11035–
11054, 2019.

[27]

 X. Zuo, G. Zhang and W. Tan, “Self-adaptive learning PSO-based
deadline constrained task scheduling for hybrid IaaS cloud,” IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 564–573, Apr. 2014.

[28]

 Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, and J. Wen, “Deadline-constrained
cost optimization approaches for workflow scheduling in clouds,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 12, pp. 3401–3412, Dec. 2017.

[29]

 H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li and J. Li, “TTSA: An
effective scheduling approach for delay bounded tasks in hybrid
clouds,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov.
2017.

[30]

 H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, 2002.

[31]

 S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for Infrastructure as a
Service Clouds,” Futur. Gener. Comp. Syst., vol. 29, no. 1, pp. 158–169,
Jan. 2013.

[32]

 V. Arabnejad, K. Bubendorfer, and B. Ng, “Scheduling deadline
constrained scientific workflows on dynamically provisioned cloud
resources,” Futur. Gener. Comp. Syst., vol. 75, pp. 348–364, Oct. 2017.

[33]

 R. Calheiros and R. Buyya, “Meeting deadlines of scientific workflows
in public clouds with tasks replication,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 7, pp. 1787–1796, Jul. 2014.

[34]

 X. Li and Z. Cai, “Elastic resource provisioning for cloud workflow
applications,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 1195–
1210, April. 2017.

[35]

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1093

http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1007/s11227-015-1438-4
http://aws.amazon.com/ec2/
http://dx.doi.org/10.1109/TCC.2015.2451649
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1109/TPDS.2015.2446459
http://dx.doi.org/10.1016/j.jnca.2018.03.028
http://dx.doi.org/10.1109/TCC.2015.2453966
http://dx.doi.org/10.1109/TPDS.2019.2961098
http://dx.doi.org/10.1109/TPDS.2019.2961098
http://dx.doi.org/10.1109/TPDS.2018.2849396
http://dx.doi.org/10.1109/TPDS.2018.2849396
http://dx.doi.org/10.1109/TPDS.2017.2678507
http://dx.doi.org/10.1016/j.future.2015.12.014
http://dx.doi.org/10.1109/TCC.2014.2314655
http://dx.doi.org/10.1109/TCC.2014.2314655
http://dx.doi.org/10.1016/j.jpdc.2016.11.003
http://dx.doi.org/10.1016/j.jpdc.2016.11.003
http://dx.doi.org/10.1007/s00500-018-3657-0
http://dx.doi.org/10.1109/TASE.2013.2272758
http://dx.doi.org/10.1109/TASE.2013.2272758
http://dx.doi.org/10.1109/TPDS.2017.2735400
http://dx.doi.org/10.1109/TPDS.2017.2735400
http://dx.doi.org/10.1109/TCYB.2016.2574766
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2017.01.002
http://dx.doi.org/10.1109/TPDS.2013.238
http://dx.doi.org/10.1109/TPDS.2013.238
http://dx.doi.org/10.1109/TASE.2015.2500574
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1007/s11227-015-1438-4
http://aws.amazon.com/ec2/
http://dx.doi.org/10.1109/TCC.2015.2451649
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://dx.doi.org/10.1109/TPDS.2015.2446459
http://dx.doi.org/10.1016/j.jnca.2018.03.028
http://dx.doi.org/10.1109/TCC.2015.2453966
http://dx.doi.org/10.1109/TPDS.2019.2961098
http://dx.doi.org/10.1109/TPDS.2019.2961098
http://dx.doi.org/10.1109/TPDS.2018.2849396
http://dx.doi.org/10.1109/TPDS.2018.2849396
http://dx.doi.org/10.1109/TPDS.2017.2678507
http://dx.doi.org/10.1016/j.future.2015.12.014
http://dx.doi.org/10.1109/TCC.2014.2314655
http://dx.doi.org/10.1109/TCC.2014.2314655
http://dx.doi.org/10.1016/j.jpdc.2016.11.003
http://dx.doi.org/10.1016/j.jpdc.2016.11.003
http://dx.doi.org/10.1007/s00500-018-3657-0
http://dx.doi.org/10.1109/TASE.2013.2272758
http://dx.doi.org/10.1109/TASE.2013.2272758
http://dx.doi.org/10.1109/TPDS.2017.2735400
http://dx.doi.org/10.1109/TPDS.2017.2735400
http://dx.doi.org/10.1109/TCYB.2016.2574766
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2017.01.002
http://dx.doi.org/10.1109/TPDS.2013.238
http://dx.doi.org/10.1109/TPDS.2013.238
http://dx.doi.org/10.1109/TASE.2015.2500574

 H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-aware online
scheduling for real-time workflows in cloud service environment,”
IEEE Trans. Serv. Comput. to be published, DOI: 10.1109/TSC.2018.
2866421.

[36]

 X. M. Zhou, G. X. Zhang, J. Sun, J. L. Zhou, T. Q. Wei, and S. Y. Hu,
“Multi-objective workflow scheduling in Amazon EC2,” Cluster
Comput., vol. 17, pp. 169–189, 2014.

[37]

 X. M. Zhou, G. X. Zhang, J. Sun, J. L. Zhou, T. Q. Wei, and S. Y. Hu,
“Minimizing cost and makespan for workflow scheduling in cloud using
fuzzy dominance sort based HEFT,” Futur. Gener. Comp. Syst., vol. 93,
pp. 278–289, 2019.

[38]

 Y. K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, Dec. 1999.

[39]

 S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema, et al., “A performance analysis of EC2 cloud computing
services for scientific computing,” in Proc. Lect. Notes Inst. Comput.
Sci. Soc. Informatics Telecommun. Eng., Berlin, Heidelberg, Germany,
2009, pp. 115–131.

[40]

 Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization”, in Proc. IEEE Congr. Evol. Comput., Washington DC,
USA, 1999, pp.1945–1950.

[41]

 L. Tang and X. Wang, “An Improved Particle Swarm Optimization
Algorithm for the Hybrid Flowshop Scheduling to Minimize Total
Weighted Completion Time in Process Industry,” IEEE Trans. Control
Syst. Technol., vol. 18, no. 6, pp. 1303–1314, Nov. 2010.

[42]

 J. Bi, H. Yuan, Y. Fan, W. Tan, and J. Zhang, “Dynamic fine-grained
resource provisioning for heterogeneous applications in virtualized
cloud data center,” in Proc. IEEE Int. Conf. on Cloud Computing, New
York, NY, USA, 2015, pp. 429–436.

[43]

 H. Yuan, J. Bi, B. H. Li, and W. Tan, “Cost-aware request routing in
multi-geography cloud data centres using software-defined
networking,” Enterp. Inf. Syst., vol. 11, no. 3, pp. 359–388, Mar. 2017.

[44]

 K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[45]

 G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and profiling scientific workflows,” Futur.
Gener. Comp. Syst., vol. 29, no. 3, pp. 682–692, Mar. 2013.

[46]

 R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R.
Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning

[47]

algorithms,” Softw.: Practice Experience, vol. 41, no. 1, pp. 23–50, 2011.
 H. T. Yuan, J. Bi, M. C. Zhou, Q. Liu, and A. C. Ammari, “Biobjective
task scheduling for distributed green data centers,” IEEE Trans. Autom.
Sci. Eng., to be published, DOI: 10.1109/TASE.2019.2958979.

[48]

 J. Bi, H. T. Yuan, W. Tan, M. C. Zhou, Y. S. Fan, J. Zhang, and J. Q.
Li, “Application-Aware Dynamic Fine-Grained Resource Provisioning
in a Virtualized Cloud Data Center,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[49]

Yun Wang received the B.Sc. degree in computer
science from Sichuan University, China, in 2001, and
the M.Sc. degree in computer science from
Nanchang University, China, in 2008. She is
currently a Ph.D. candidate in computer science and
technology at the School of Computing Science,
Beijing University of Posts and Telecommunications,
China. She is also currently an Associate Professor
with the School of Information Engineering,
Nanchang Institute of Technology, China. Her main

research interests include workflow scheduling, cloud computing, and
evolutionary computation.

Xingquan Zuo (SM’14) received the Ph.D. degree
in control theory and control engineering from
Harbin Institute of Technology, Harbin, China, in
2004. He is currently a Professor in the School of
Computer Science, Beijing University of Posts and
Telecommunications, China. From 2004 to 2006, he
was a Postdoctoral Research Fellow in Automation
Department, Tsinghua University, China. From 2012
to 2013, he was a Visiting Scholar in Industrial and
System Engineering Department, Auburn University,

AL, USA. His research interests include intelligent optimization and
scheduling, data mining, artificial intelligence, and intelligent transportation
systems. He has published over 100 research papers in journals and
conferences, two books and several book chapters. He is a Senior Member of
IEEE, Senior Member of China Computer Federation, and Senior Member of
Chinese Association for Artificial Intelligence. He is Committee Member of
Intelligent Simulation Optimization and Scheduling Society and
Transportation Model and Simulation Society of Chinese Association for
System Simulation, and Committee Member of Intelligent Service Society of
Chinese Association for Artificial Intelligence. He served in Program
Committee or Program Chair of more than 10 international conferences.

 1094 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 5, MAY 2021

http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1080/17517575.2015.1048833
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2015.2503325
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1080/17517575.2015.1048833
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2015.2503325
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1080/17517575.2015.1048833
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2015.2503325
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1080/17517575.2015.1048833
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1109/TSC.2018.2866421
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1007/s10586-013-0325-0
http://dx.doi.org/10.1016/j.future.2018.10.046
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1080/17517575.2015.1048833
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2015.2503325
http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1109/TASE.2015.2503325

	I Introduction
	II Related Work
	A Meta-Heuristic Based Cloud Workflow Scheduling
	B Heuristic Rules Based Cloud Workflow Scheduling

	III Cloud Workflow Scheduling Problem and Formulation
	A Workflow Model
	B Cloud Resource Model
	C Basic Conceptions
	D Cloud Scheduling Problem Description

	IV Proposed Approach
	A PSO for Cloud Workflow Scheduling
	B Encoding Scheme
	C Repairing Method for Invalid Tasks ’s Priorities
	D Idle Time Slot-Aware Decoding Procedure
	E Fitness Function
	F Population Initialization

	V Performance Evaluation
	A Experimental Settings
	B Compared Algorithms
	C Algorithm Parameter Discussions
	D Results and Discussions

	VI Conclusions and Future Work

