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   Abstract—Workflow  scheduling  is  a  key  issue  and  remains  a
challenging  problem  in  cloud  computing.  Faced  with  the  large
number  of  virtual  machine  (VM)  types  offered  by  cloud
providers,  cloud  users  need  to  choose  the  most  appropriate  VM
type for  each task.  Multiple  task  scheduling  sequences  exist  in  a
workflow application. Different task scheduling sequences have a
significant impact on the scheduling performance. It is not easy to
determine the most appropriate set of VM types for tasks and the
best task scheduling sequence. Besides, the idle time slots on VM
instances  should  be  used  fully  to  increase  resources’ utilization
and save  the  execution cost  of  a  workflow.  This  paper  considers
these three aspects simultaneously and proposes a cloud workflow
scheduling  approach  which  combines  particle  swarm
optimization (PSO) and idle time slot-aware rules, to minimize the
execution  cost  of  a  workflow  application  under  a  deadline
constraint.  A  new  particle  encoding  is  devised  to  represent  the
VM  type  required  by  each  task  and  the  scheduling  sequence  of
tasks. An idle time slot-aware decoding procedure is proposed to
decode  a  particle  into  a  scheduling  solution.  To  handle  tasks’
invalid  priorities  caused  by  the  randomness  of  PSO,  a  repair
method  is  used  to  repair  those  priorities  to  produce  valid  task
scheduling  sequences.  The  proposed  approach  is  compared  with
state-of-the-art  cloud  workflow  scheduling  algorithms.
Experiments  show  that  the  proposed  approach  outperforms  the
comparative algorithms in terms of both of the execution cost and
the success rate in meeting the deadline.
    Index Terms—Cloud  computing,  idle  time  slot,  particle  swarm
optimization, task scheduling sequence, workflow scheduling.
  

I.  Introduction

IN  scientific  computing  communities,  such  as  astronomy,
physics, and bioinformatics, there are many large-scale and

complex  workflow  applications  consisting  of  tasks  with  data
dependencies  amongst  them  [1].  Those  applications  must  be
deployed  in  high-performance  distributed  computing
environments for rapid execution. Cloud computing [2] offers
cloud users elastic resources that can be acquired and released
on demand. Cloud users pay for the leased resources on a pay-
as-you-go basis. Such flexible resource provisioning and pay-
as-you-go  strategy  attract  enterprises  or  research  institutes  to
run their workflow applications on clouds at low costs without
the need of purchasing and maintaining any infrastructure.

In cloud computing, IT resources are often encapsulated as
virtual  machines  (VMs).  The  running  VMs  are  called  VM
instances. Cloud users usually want to obtain the computation
result  of  a  workflow  within  a  given  deadline  at  lower
execution  cost.  Generally,  the  more  computing  power  a  VM
has,  the  higher  its  price.  To  balance  the  execution  cost  and
runtime  of  a  workflow,  scheduling  the  tasks  of  a  workflow
onto  VM  instances  [3]  is  very  vital  for  cloud  computing.
However, the flexible management of cloud resources and the
complex  workflow  structure  makes  the  cloud  workflow
scheduling challenging.

Cloud  providers  offer  various  VM  types  with  different
configurations  (e.g.,  CPU,  memory  and  disk  size,  and  price)
for  users  to  choose.  The  number  of  VM  types  has  been
increasing. For example, the number of VM types provided by
Amazon  elastic  computing  cloud  (Amazon  EC2)  has  been
recently increased from 8 to more than 35 [4]. Faced with so
many  VM  types,  scheduling  algorithms  need  to  choose  the
most appropriate VM type for each task to achieve the lowest
cost for the whole workflow. However, when choosing a VM
type  for  a  task,  current  scheduling  algorithms  typically  only
consider the VM type that has the cheapest price and can meet
the resources needed to complete the task, while ignoring the
impact of the chosen VM type on other subsequent tasks. This
manner of choosing VM type may encourage subsequent tasks
to be scheduled on faster VM instances, thereby increasing the
cost of a workflow [5].

Scheduling algorithms usually assign each task in the order
of  a  task  scheduling  sequence  to  a  VM  instance.  The  task
scheduling sequence has a significant impact on the execution
time and cost  of  a  workflow application [6].  For  a  workflow
application,  although  precedence  constraints  exist  for  many
tasks, there are many parallel tasks which do not directly have
data dependencies with each other. On the premise of keeping
the  dependencies  of  tasks,  the  scheduling  order  of  parallel
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tasks can be arbitrary. Thus, a workflow application may have
lots  of  different  task  scheduling  sequences.  Moreover,  the
complex  workflow  structure  makes  a  workflow  have  an
exponential  number  of  different  task  scheduling  sequences.
However,  usually  only  a  fixed  task  scheduling  sequence  is
used  in  current  scheduling  algorithms,  which  restricts  the
search space for obtaining a better solution. It is necessary to
determine  the  most  appropriate  task  scheduling  sequence  to
achieve a scheduling solution with better performance.

In  addition,  due  to  the  precedence  constraint  amongst
workflow  tasks,  idle  time  slots  exist  on  VM  instances.  The
more  idle  time  slots  a  VM  instance  has,  the  lower  its
utilization is. Moreover, the billing interval for VM instances
is  usually  set  to  one  hour  or  one  minute  by  cloud  providers,
such as Amazon EC2 and Google compute engine cloud. That
means even if a VM instance is used for less than one billing
period (e.g., one hour), users must pay for the whole hour. If a
VM instance has an idle time slot between two running tasks
and another task can be run within the slot, scheduling the task
to that slot will save cost. It is vital to consider the scheduling
of  tasks  to  the  idle  time  slots  of  VM instances  to  reduce  the
workflow’s cost and improve VMs’ utilization.

In this paper, we propose a new scheduling approach for the
deadline  constrained  cloud  workflow  scheduling  problem,
with  simultaneous  consideration  of  aforementioned  three
aspects. This approach, termed HPSO, combines PSO and idle
time slots-aware scheduling rules. To be specific, the VM type
required  by  each  task  and  the  priority  of  each  task  are
indicated  by  a  particle  in  PSO.  It  means  that  a  particle
represents  a  specific  mapping  of  tasks  to  VM  types  and  a
scheduling sequence of tasks. Idle time slot-aware scheduling
rules  are  proposed  to  decode  a  particle  into  a  scheduling
solution. Those rules assign each task to a leased VM instance
or  to  a  new  instance,  making  full  use  of  idle  time  slots  of
VMs.

The contributions of this paper include:
1)  A  new  approach  for  cloud  workflow  scheduling  is

proposed,  which  combines  a  meta-heuristic  (PSO)  and
heuristic rules (idle time slot-aware scheduling rules).

2)  A particle  coding  scheme is  proposed,  which  represents
the assignment of VM types and scheduling sequences for all
tasks in workflow.

3)  A  PSO  is  devised  to  find  the  best  particle,  that  is,  the
most  appropriate  assignment  of  VM  types  for  tasks  and  the
best task scheduling sequence, to achieve the best scheduling
performance.  To  avoid  infeasible  solutions  during  the  search
of  PSO,  a  repair  method  is  devised  to  repair  tasks’ invalid
priorities to generate a valid task scheduling sequence.

4)  Idle  time  slot-aware  scheduling  rules  are  devised  to
decode  a  particle  into  a  scheduling  solution.  The  decoding
procedure  makes  full  use  of  idle  time  slots  of  leased  VM
instances to improve VMs’ utilization and minimize costs.

The remainder of this paper is organized as follows. Section II
outlines  current  cloud  workflow  scheduling  algorithms.
Section III introduces the model and the basic elements of the
scheduling  problem.  Section  IV  presents  the  details  of  the
proposed  approach.  Experimental  results  are  described  and
discussed  in  Section  V.  Finally,  we  conclude  our  work  and

give insight into future works in Section VI.  

II.  Related Work

Cloud  workflow  scheduling  is  a  well-known  nondeter-
ministic  polynomial  (NP)-complete  problem  [7].  An  exact
approach  cannot  find  the  optimal  solution  within  acceptable
computational  time  for  large-scale  problem  instances.
Therefore,  current  research typically  adopts  meta-heuristic  or
heuristic  rules  to  solve  this  problem.  The  former  uses  meta-
heuristics,  such  as  PSO,  genetic  algorithm  (GA),  and  ant
colony  optimization  (ACO)  to  find  a  near-optimal  solution.
The  latter  obtains  an  approximate  solution  to  the  problem
quickly using scheduling rules. Compared with heuristic rules,
meta-heuristics  can  find  higher  quality  solutions  as  they
explore  solutions  by a  guided search but  take  longer  runtime
[8].

In  current  research,  many  quality  of  service  (QoS)  metrics
such  as  cost,  makespan  [9]–[12],  energy  consumption
[13]–[15],  budget  [16]–[18],  and security [19],  [20] are often
regarded  as  optimization  objectives  or  constraints  of  the
problem.  This  section  mainly  reviews  literature  on  the
deadline  constrained  cloud  workflow  scheduling  problem,  as
those  are  related  to  our  work.  Approaches  in  those  literature
can be divided into two parts: meta-heuristic based scheduling
approaches  [21]–[30]  and  heuristic  rules  based  scheduling
approaches [5], [31]–[36].  

A.  Meta-Heuristic Based Cloud Workflow Scheduling
Rodriguez  and  Buyya  [21]  adopted  a  PSO method (SPSO)

to  minimize  the  workflow  execution  cost  while  meeting
deadline  constraint,  in  which  the  effect  of  VM  performance
variation is  considered.  SPSO maps tasks onto VM instances
by  a  particle  and  determines  a  scheduling  solution  without
considering  idle  time  slots  of  leased  VM  instances.  The
number of VM instances needs to be predetermined. In [22], a
GA-based  approach  was  proposed  for  the  cloud  workflow
scheduling  with  deadline  constraint,  where  an  adaptive
penalty  function  is  used  for  the  strict  constraints  and  the
coevolution  approach  is  used  to  adjust  the  crossover  and
mutation  probabilities.  Chen et  al. [23]  used  dynamic
objective  strategy  and  proposed  a  dynamic  objective  GA
approach  to  solve  the  cloud  workflow  scheduling  with
deadline  constraint.  Chen et  al. [24]  further  developed  an
ACO-based  approach  to  solve  the  same  problem  in  [23].
Considering the uncertainty of the runtime of tasks,  Jia et al.
[25]  designed  a  new  estimation  model  of  the  tasks’ runtime
based on historical data. On this basis, an adaptive ACO based
cloud  workflow  scheduling  algorithm  was  proposed.  In
addition to PSO, GA and ACO, other meta-heuristics, such as
flog  leaping  [26]  and  biogeography-based  optimizations  [27]
have been applied to workflow scheduling problems.

In  those  meta-heuristics,  the  coding  of  scheduling  solution
usually  represents  the  mapping  of  tasks  to  a  set  of  VM
instances.  However,  due  to  the  infinite  number  of  VM
instances  in  clouds,  a  limited  number  of  VM  instances  must
be  predetermined.  But,  it  is  not  easy  to  predetermine  an
appropriate  set  of  instances.  Moreover,  those  algorithms
usually  only  use  a  single  task  scheduling  sequence  while
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ignoring the impact of different task scheduling sequences on
the cloud workflow scheduling performance.

Zuo et al. [28] proposed a self-adaptive learning PSO-based
scheduling  approach  by  considering  multiple  different  task
scheduling  sequences.  However,  the  algorithm  was  used  for
the scheduling of independent tasks on hybrid cloud, and not
for the workflow application. Wu et al. [29] proposed a meta-
heuristic  algorithm (LACO) and employed ACO to carry out
deadline-constrained  cost  optimization.  In  LACO,  different
task  scheduling  sequences  are  constructed  by  different  ant
individuals. But the idle time slots on leased resources are not
exploited adequately, and the method of determining the VM
type required by each task is different from ours.

In  addition,  Yuan et  al. [30]  considered  the  uncertainty  of
arriving  tasks  and  deemed  that  the  energy  price  of  private
cloud  data  center  (CDC)  and  the  execution  price  of  public
clouds  have  the  temporal  diversity.  A  hybrid  scheduling
algorithm  combining  PSO  and  simulated  annealing  method
(TTSA) is proposed to solve them. TTSA is used to schedule
parallel  tasks;  not  workflow  tasks  with  data  dependencies.
Moreover,  TTSA  is  to  schedule  all  parallel  tasks  from  a
private  CDC  perspective,  and  our  work  is  to  schedule  one
workflow  application  from  the  cloud  users’ perspective.
Finally, the optimization objective of TTSA is to minimize the
cost  for  private  CDC,  including  the  energy  cost  of  private
CDC and the execution cost generated by outsourcing tasks to
public  clouds,  whereas  ours  is  to  minimize  the  cost  of
executing a workflow on a public cloud.  

B.  Heuristic Rules Based Cloud Workflow Scheduling
Heterogeneous earliest finish time (HEFT) [31] is one of the

most widely used heuristic scheduling rules. It is first used to
construct  a  task  scheduling  sequence  based  on  tasks’
priorities,  and  then  assigns  each  task  in  order  of  the
scheduling  sequence  to  a  processor  that  can  meet  the  users’
needs,  such  as  the  earliest  finish  time.  Although  HEFT  was
originally  proposed  for  workflow  scheduling  in  a  limited
number of heterogeneous processors, many modified versions
of HEFT have been proposed for cloud workflow scheduling
[16], [37], [38].

Abrishami et  al. [32]  introduced  the  concept  of  partial
critical  path  (PCP)  and  proposed  two  algorithms,  which  are
called IaaS cloud partial critical paths (ICPCP) and IaaS cloud
partial  critical  paths  with  deadline  distribution  (ICPCPD2),
respectively. ICPCP tries to minimize the execution cost of a
workflow  by  scheduling  a  PCP  path  on  a  cheapest  VM
instance, which can finish all the tasks of the PCP before their
latest finish time. Sahni and Vidgarthi [5] proposed a just-in-
time scheduling algorithm (JIT) while taking into account the
VM  performance  variability  and  instance  acquisition.
Arabnejad et  al. [33]  proposed  two  algorithms,  proportional
deadline  constrained  (PDC)  and  deadline  constrained  critical
path (DCCP), for the deadline-based workflow scheduling on
dynamically  provisioned  cloud  resources.  In  the  aforemen-
tioned algorithms, the VM type for each task is usually chosen
by  heuristic  information  (such  as  the  cheapest  VM).  More-
over,  only  the  remaining  time  of  the  last  time  interval  of
leased  instances  is  typically  used  while  ignoring  the

availability  of  other  idle  time  slots.  Our  approach  selects  the
best  VM  type  for  each  task  by  a  PSO  and  considers  the
effective use of all idle time slots.

Recently,  some  studies  [34]–[36]  considered  the  efficient
use of idle time slots to improve the performance of workflow
scheduling. To mitigate the effect of performance variation of
resources  on  soft  deadlines  of  workflow  applications,
Calheiros  and  Buyya  [34]  used  the  idle  time  slots  of  leased
resources and budget surplus to replicate task so as to meet the
deadline constraint. The minimization of the execution cost of
a  workflow  is  not  considered  in  their  work.  By  considering
realistic factors such as software setup time and data transfer
time, Li and Cai [35] proposed a multi-rules based heuristic to
solve  the  deadline-based  workflow  scheduling.  Furthermore,
three  priority  rules  are  developed  to  allocate  tasks  to
appropriate available time slots. The heuristics for scheduling
workflow  tasks  are  based  on  reserved  resources  in  clouds.
How to determine the best  task scheduling sequence was not
considered.

To  our  knowledge,  our  work  is  the  first  study  considering
the following three aspects simultaneously: selecting the most
appropriate VM type for  each task,  determining the best  task
scheduling  sequence,  and  effectively  using  idle  time  slots.  A
PSO combined with idle time slot-aware rules is  proposed to
solve  those  aspects,  to  minimize  the  execution  cost  of  a
workflow while meeting the deadline constraint.  

III.  Cloud Workflow Scheduling Problem and
Formulation

  

A.  Workflow Model
A  workflow  is  usually  represented  by  a  directed  acyclic

graph (DAG) consisting of vertexes and edges [39]. A DAG is
formulated as a tuple G = <T, E>, where T = {t1, t2,..., tn} is a
set of vertices corresponding to tasks of a workflow, n denotes
the number of tasks, and E = {eij|ti, tj∈T} is a set of directed
edges  reflecting  data  dependencies  amongst  tasks.  For
instance,  an  edge eij means  that  there  is  the  precedence
constraint between ti and tj, that is, ti is the direct predecessor
(parent) of tj, and tj is the direct successor (child) of ti.  Every
edge eij has  a  weight  to  represent  the  size  of  data  transferred
from ti to tj. A task may have one or more parents or children,
and the task cannot be executed until all its parents have been
executed  and  all  input  data  required  by  the  task  has  been
received.  All  direct  predecessors  and  successors  of ti are
defined respectively as follows:
 

ρ(ti) = {t j|e ji ∈ E and ti, t j ∈ T } (1)
 

s(ti) = {t j|ei j ∈ E and ti, t j ∈ T }. (2)
In  DAG,  a  task  without  any  parent  is  an  entry  task tentry.

Similarly,  a  task  without  any  children  is  called  an  exit  task
texit.  There  may  be  multiple  entry  tasks  and  exit  tasks  in  a
DAG. Fig.1 shows an example workflow with 5 tasks, where
t1 is the entry task and t5 is the exit task.  

B.  Cloud Resource Model
The  cloud  model  consists  of  a  single  data  center  and  has

various  VM types.  A  set П =  {π1, π2,  …, πm}  represents  all
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VM types, and m is the number of VM types. In this paper, all
VM types  are  assumed to  have enough memory to  execute  a
workflow and only  the  CPU and network  bandwidth  of  each
VM type are considered. The number of instances a user can
rent from the cloud is unlimited.

This  paper  assumes  that  the  CPU  capacity  represented  by
floating-point  operation  per  second  (FLOPS)  is  available
either  from  a  cloud  provider  or  estimated  by  a  performance
estimation method [40]. The workload of a task ti is assumed
to be known in advance. Therefore, the execution time of task
ti on VM instance λj, χ(ti, λj), is defined as follows:
 

χ(ti,λ j) =
w(ti)
α(λ j)

(3)

where α(λj) represents the CPU capacity of λj, and w(ti) is the
workload of ti.

All  VM instances are in the same data center.  The average
network bandwidth β between instances  is  roughly the  same.
The data transfer time between ti and tj, γ(ti, tj),  is  defined as
(4),  where  the  amount  of  data  transferred  between  the  two
tasks, μ(ti, tj),  is  known.  Note  that  the  transfer  time  between
two  tasks  is  0  when  they  are  executed  on  the  same  VM
instance.
 

γ(ti, t j) =
µ(ti, t j)
β
. (4)

According  to  the  pay-per-use  strategy,  all  leased  instances
are  charged  for  the  number  of  used  billing  intervals.  This
paper assumes that the size of billing interval is one hour, just
like  the  on-demand VM instances  of  Amazon EC2.  The cost
of  data  transfer  is  not  considered  because  many  commercial
cloud providers do not charge the cost within a data center. In
addition,  we assume that  the  tasks  of  a  workflow application
cannot be preempted.  

C.  Basic Conceptions
This  section  introduces  some  basic  concepts  of  workflow

that are used in Section IV-D. The earliest start time of task ti
on one instance λj, EST(ti, λj), is determined by the finish time
of  all  parents  of ti.  It  means  that  all  parents  of ti must  be
completed before executing ti. Besides, if ti is an entry task, its
earliest start time on λj is 0. EST(ti, λj) is computed as follows:
 

ES T (tentry,λ j) = 0

ES T (ti,λ j) = max
ta∈ρ(ti)

{F(ta,λk)+γ(ta, ti)} (5)

where F(ta, λk) is the actual finish time of ta on instance λk, and

ta is  a  parent  of ti and  has  been  scheduled  on λk.  In  order  to
utilize  the  idle  time  slots  of  instance λj,  the  calculation  of
EST(ti, λj)  does  not  consider  the  final  available  time  of λj in
this  paper.  The  actual  start  time  of ti on  instance λj, S(ti, λj),
must be greater than or equal its earliest start time.

The actual finish time of ti, F(ti, λj),  equals the sum of S(ti,
λj) and χ(ti, λj), and is computed as follows:
 

F(ti,λ j) = S (ti,λ j)+χ(ti,λ j). (6)
The latest  finish time of ti, LFT(ti),  is  the latest  time that ti

should  be  finished  to  ensure  a  workflow  will  be  finished
before its deadline Δ.
 LFT (texit) = ∆

LFT (ti) = min
tc∈s(ti)

{LFT (tc)−MET (tc)−γ(ti, tc)} (7)

where MET(tc) is the execution time of tc based on the fastest
VM, and tc is a child task of ti.

For  more  details  about  the  above  basic  concepts  of
workflow, please refer to literature [31] and [39].  

D.  Cloud Scheduling Problem Description
This  paper  focuses  on  minimizing  the  cost  of  executing  a

workflow  in  clouds  while  meeting  a  deadline  constraint.  A
scheduling  solution  is  expressed  as S =  (R, M, Θ). R =  {λ1,
λ2, …, λl} is a set of l leased VM instances that will be used to
execute tasks. Each VM instance in R has four attributes, that
is, λi =  (πi, Bi, Zi, Li),  representing  the  VM  type  of  VM
instance λi,  the  lease  start  time  and  end  time  of λi,  and  tasks
list scheduled on the instance, respectively. M = {m1, m2, …, 
mn} represents the mapping of tasks to instances in R. mi = (λj,
S(ti), F(ti))  means  that  task ti is  scheduled  on  the  instance λj
and is expected to start executing ti at time S(ti), and finish by
time F(ti). The size of M is equal to the number of tasks n in
the workflow, and the size of R is less than or equal to n. Θ is
a task scheduling sequence and must follow the dependencies
amongst tasks.

Based on S = (R, M, Θ), the execution cost Ψ and the execu
tion  time Ω of  a  workflow  are  calculated  by  the  following
formulas:
 

Ψ =

l∑
i=1

µπi ×
⌈
(Zi−Bi)
τ

⌉
(8)

 

Ω =max{F(ti), ti ∈ T }. (9)
⌈(Zi−Bi)/τ⌉

µπi

In (8),  is the number of the billing intervals of
instance λi used by a workflow,  is the unit price of the VM
type πi,  and τ is  the  length  of  the  billing interval. Ω in  (9)  is
also called the makespan. Thus, the cloud scheduling problem
studied in this paper is to optimize the following objective:
 

minimize Ψ

s. t. Ω ≤ ∆ . (10)
where Δ is the deadline of a workflow.  

IV.  Proposed Approach

PSO is a stochastic optimization algorithm which is inspired
by the foraging behavior of bird flocks [41]. Because PSO has
few parameters  and is  easy to  implement,  it  has  been widely
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Fig. 1.     An example workflow with 5 tasks.
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applied  to  numerous  fields,  including  production  scheduling
problems [42] and cloud resources scheduling [43], [44]. This
paper  uses  PSO  combined  with  idle  time  slot-aware  rules  to
solve the workflow scheduling on clouds.  

A.  PSO for Cloud Workflow Scheduling
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PSO  has  a  population  of  particles  and  each  particle
represents a possible solution to the problem. The population
size, N, refers to the number of particles in the population. The
search  for  the  best  solution  is  guided  by  a  fitness  function
which  evaluates  the  quality  of  each  particle.  Each  particle
consists  of  a  position  and  velocity.  The  velocity  of  the ith
particle  at  the tth  iteration  is  denoted  as ,
and  its  position  is ,  where D is  the
dimensions  of  search  space.  The  historical  best  position

 represents  the  best  previous  position
yielding  the  best  fitness  value  for  the ith  particle  at  the tth
iteration.  The  global  best  particle  is  the
global  best  position  found  by  all  particles  so  far.  At  each  of
iterations  of  PSO,  the  velocity  and  position  of  the dth
dimension  of  each  particle  is  updated  using  the  following
formulas:
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where inertia weight ω is used to balance the global and local
search; r1 and r2 are uniform random numbers in [0, 1]; c1 and
c2 are acceleration factors to control the influence of the social
and cognitive components, and their values usually are set as
2 [41].

A  pseudocode  of  PSO  for  the  cloud  workflow  scheduling
problem  is  described  in  Algorithm  1.  It  evolves  iteratively  a
population  of  particles  until  the  number  of  iterations  is
reached  (lines  5–15)  and  then  the  scheduling  solution  of  the
global best particle is regarded as the final scheduling solution
(line 16).

There are several issues to consider when using the PSO to
solve the scheduling problem: the first  is  the encoding repre-
sentation  of  a  particle,  which  is  elaborated  in  Section  IV-B;
the  second  is  how  to  decode  a  particle  into  a  scheduling
solution  (decoding  procedure),  which  is  shown  in  line  9  and
detailed in Section IV-D; the third is to evaluate a particle by a
fitness function, which reflects the optimization objectives. In
this paper, the execution cost Ψ and the execution time Ω are
calculated  in  the  fitness  function  (in  Section  IV-E),  and Ψ is
used  to  evaluate  a  particle  (line  10).  The  fourth  issue  is  the
population initialization that is described in Section IV-F; and
the final issue is the treatment of the deadline constrain of the
scheduling problem.

During the search of the PSO, some infeasible solutions that
violate  the  deadline  constraint  may  be  generated.  To  handle
those infeasible solutions, the constraint handing technique in
[45]  is  introduced  into  the  PSO.  A solution  is  infeasible  if  it
does not satisfy the deadline constraint. There are three cases
for  two  solutions’ comparison:  the  solution  with  a  better
fitness value (execution cost) is better if the two solutions are
both  feasible;  the  feasible  one  is  better  if  one  solution  is

feasible  and  the  other  is  unfeasible;  the  solution  with  the
smaller  execution  time  is  better  if  both  solutions  are
unfeasible. In lines 11 and 13, the historical best position of a
particle  and  the  global  best  particle  are  updated  under  the
constraint-handing technique.

In addition, in line 1, the workflow is preprocessed to merge
the “pipeline  pair” tasks  into  a  single  task,  which  helps  to
reduce the runtime overhead of the scheduling algorithm and
save the  data  transfer  time between tasks  [10].  The “pipeline
pair” tasks refer to a special pair of tasks ti and tj which have a
one  to  one  relationship.  That  is, ti only  has  one  child  task tj
and tj only has one parent task ti.

Algorithm 1 PSO for Cloud Workflow Scheduling

Input: The DAG of a workflow G = <T, E>.
Output: The scheduling solution S = (R, M, Θ).
1: Preprocessing the workflow;
2: Set parameters, such as population size N and inertia weight;
3: Initialize the population;
4: Let the number of iterations, t = 1;

≤5: While t  the total number of iterations do
6:      For each particle qi, i∈{1, 2, …, N} do

vt
i7:            Update the velocity  by (11);

xt
i8:            Update the position  by (12);

9:            Decode qi to a solution Si by Algorithm 3;
10:           According  to Si,  calculate Ψ and Ω by  Algorithm  4;
11:          Update the historical best position pi of qi;
12:    End for
13:    Update the global best particle g;
14:    t = t+1;
15: End while
16: Output the scheduling solution S of g;

  

B.  Encoding Scheme
A  key  issue  for  PSO  to  solve  a  problem  is  to  devise  an

effective particle encoding. Although VM instances in clouds
are  infinite,  cloud  providers  provide  a  finite  number  of  VM
types.  Inspired  by  this,  the  particle  encoding  only  needs  to
consider  the  mapping  of  tasks  to  VM  types  (instead  of  VM
instances).  Besides,  the  priority  of  each  task,  which
determines its scheduling order in all tasks, is encoded in the
particle.  A  task  scheduling  sequence  is  obtained  by  sorting
tasks’ priorities  in  ascending  order.  Therefore,  a  particle
contains  two  parts:  the  first  part  (dimensions  from  1  to n)
embodies  the  mapping of  tasks  to  VM types,  and the  second
part  (dimensions  from n+1 to  2n)  determines  the  priority  for
each task. The dimension of a particle D is equal to twice the
number of workflow tasks. The value of each dimension in the
first part falls within the real range of [1, m]. The values of the
second part can be any positive real number.

Because  PSO  is  for  continuous  optimization  problems,
whereas the workflow scheduling problem is  a combinatorial
one,  the  value  of  each  dimension  must  be  rounded  to  the
nearest  integer.  Specifically,  in  the  first  part  of  a  particle,
dimensions  from  1  to n correspond  to  tasks t1 to tn,
respectively.  The  rounded  nearest  integer  of  each  dimension
represents  an  index  of  VM  type,  which  means  the
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corresponding  task  is  assigned  to  an  instance  with  the  same
VM type. In the second part of a particle, the rounded nearest
integer of dimension i∈[n+1,2n] represents the priority of task
ti–n.

An example of an encoded particle for the workflow in Fig. 1
is shown in Fig. 2, where the number of VM types is assumed
to  be  4.  In  this  example,  dimension  1  corresponds  to  task t1
and its value is 2.1. This means that the VM type required by
t1 is π2.  The values of dimensions 2–5 follow the same logic.
The values of dimensions 6–10 are rounded to 2, 9, 11, 3, and
14, indicating the priorities of t1–t5, respectively. Sorting those
values in ascending order, the scheduling sequence of tasks is:
t1-> t4-> t2-> t3-> t5.
 

t1

t1->t4->t2->t3->t5t1->π2

t2 t3 t4 t5

t2->π3 t3->π2 t4->π1 t5->π2

t1 t2 t3 t4 t5

Dim 1 2 3 4 5 6 7 8 9 10
Value 2.1 2.8 1.6 1.1 1.8 2.3 8.8 11.2 3.4 13.8

The first part of
the particle

The second part
of the particle

 
Fig. 2.     A particle encoding for the workflow in Fig. 1.
 

By this  encoding,  different  mapping  combinations  of  tasks
to  VM  types  and  different  task  scheduling  sequences  are
represented  by  different  particles.  On  this  basis,  an  idle  time
slot-aware  heuristic  decoding  procedure  in  Section  IV-D can
identify the VM instances to be leased and the scheduling of
all tasks on those leased instances.  

C.  Repairing Method for Invalid Tasks ’s Priorities
A  feasible  task  scheduling  sequence  must  satisfy  the  data

dependencies  amongst  tasks.  However,  those  cannot  be
guaranteed  during  the  iterative  evolution  because  of  the
stochastic  feature  of  PSOs.  This  paper  sorts  priorities  of  all
tasks in ascending order to obtain a task scheduling sequence.
This means the priority of each task must be greater than those
of  all  its  parents  and  cannot  be  the  same  as  each  other.
Otherwise, the priority of the task is invalid.

A  simple  repairing  method  is  designed  to  repair  tasks’
invalid  priorities.  Its  main  idea  is  to  modify  the  invalid
priority of a task to the maximum value of the priorities of all
its parents plus 1, while ensuring that the modified priority is
not equal to any other tasks’ priorities.

Algorithm  2  gives  the  detailed  steps  of  the  repairing
procedure,  where T is  a  set  of  workflow  tasks,  and  set V is
used  to  store  those  tasks  with  valid  priorities  and  is  initially
set to be empty (line 2). The priority of an entry task tentry with
the  minimum  priority  is  deemed  as  valid  (line  3).  Based  on
this priority, lines 5–18 gradually judge whether the priorities
of other tasks are valid. First, those tasks whose parents are in
set V are  selected  from T and  represented  by  set Q (line  6,).
Then the following steps are to judge whether  the priority of
each  task tj in Q is  valid  one  by  one  (lines  8–17).  If  the
priority  of tj, η(j),  is  not  bigger  than  the  maximum  priority
value of  all  its  parents, pmax,  it  is  modified to pmax + 1 (lines
10–12). Moreover, if the priority of tj is identical to that of one
task  in  set V,  it  is  modified  to vmax +  1  (lines  13–15),  where

vmax is the maximum of the priorities of all tasks in set V (line 7).
Through this,  the  priority  of  each  task  is  bigger  than  those

of all its parents and all tasks have different priorities. Finally,
once  a  task  has  a  valid  priority  or  the  invalid  priority  of  the
task has been modified to a valid one, the task is added into V
and removed from T (line 16).

Algorithm 2 Repair Invalid Priorities of Tasks.

Input: A particle q and a set of tasks T ={t1, t2, …, tn}.
Output: The repaired particle.
1: η(1:n) = round (q(n+1:2n));

∅2: V = ;
3: Find an entry task tentry with the minimum priority;
4: V = V∪{tentry}, and T = T\{tentry};
5: While (T is not empty)
6:      Find all tasks whose parents are in V, denoted by Q;
7:      vmax  = max(priorities of tasks in V);
8:      For (each task tj in Q)
9:         pmax = max(priorities of tj’s parents);

≤10:       If η(j)  pmax

11:           η(j) = pmax+1;
12:      End if
13:      If η(j) = = the priority of one task in V
14:       η(j) = vmax +1;
15:      End if
16:      V = V∪{tj}, and T = T\{tj};
17:    End for
18: End while
19: q(n+1:2n) = η(1:n);
20: Output the repaired particle;

  

D.  Idle Time Slot-Aware Decoding Procedure
An idle  time slot-aware  decoding procedure  is  proposed to

decode  a  particle  into  a  scheduling  solution.  The  decoding
procedure makes full  use of the idle time slots of leased VM
instances  to  improve  resource  utilization  and  decrease
execution  cost  of  a  workflow.  Meanwhile,  it  can  schedule
tasks under their precedence constraints and tends to schedule
them on the same VM instance to save the data transfer time
between them.

Algorithm 3 presents the detailed steps. In line 1, R, M, and
H are  set  as  empty.  Set H is  used  to  store  the  applicable
instances  of  a  task tj.  Herein,  if  a  leased  instance  has  one  or
more  idle  time  slots  that  can  be  used  to  finish tj before tj’s
latest  finish  time, LFT(tj),  it  is  termed  an  applicable  instance
of tj. LFT(tj)  is  calculated  by  (7).  Each  task  is  scheduled  in
order of the scheduling sequence Θ to a leased instance in R or
a new instance (lines 4–17). In line 5, the VM type πj, required
by tj is obtained from the jth dimension of the particle. Then,
serial and parallel instances with the same type πj, denoted by
X and Y,  respectively,  are  selected  from R (line  6).  For tj,
serial instances refer to those instances that have one or more
parents of tj scheduled, and parallel instances are those that do
not schedule any one of tj’s parents. Note that the VM type of
an instance on which a task is scheduled must be the same as
that required by the task.

In order to save the data transfer time, those serial instances
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which  are  applicable  to tj are  first  selected  from X and
recorded by H (line 7). If there is no applicable instance of tj
in X,  namely  the  set H is  empty  (line  8),  continue  to  find
parallel instances that applicable to tj in Y (line 9). Finally, if
there is still  no applicable instance can be used to schedule tj
in Y (line 13), a new instance λn with πj is launched for tj (line
14).

There  may  be  multiple  applicable  instances  in H.  The
instance λa, which has the smallest cost difference between its
execution cost before scheduling tj and that after scheduling tj,
is  chosen  to  execute tj from H (lines  11–12).  The  execution
cost of an instance is calculated by (8), where l = 1. Further-
more,  if  there  are  multiple  instances  with  the  same  smallest
cost  difference  in H,  select  one  of  those  instances  randomly
for tj.

Algorithm 3 An Idle Time Slot-Aware Decoding Procedure.

Input: A particle q (1:2n).
Output: A scheduling solution S = (R, M, Θ).

∅ ∅ ∅1: R = , M = , H = ;
2: Repair tasks’ invalid priorities in the particle q by Algorithm 2;
3: Get a feasible scheduling sequence Θ based on the particle q;
4: For each task tj, j∈{1, 2, …, n} in Θ do
5:        πj = q (j);
6:       Select serial and parallel instances with VM type πj from R,

              denoted as X and Y, respectively;
7:        Search the applicable instances of tj from X, and recorded them

              by H;
8:        If H is empty then
9:             Continue  to  search  the  applicable  instances  of tj (also

                      recorded by H) from Y;
10:      End if
11:      If H is not empty then
12:            Allocate tj to  the instance λa∈H with the smallest  cost

                      difference;
13:      Else
14:             Launch a new instance λn with πj for tj;
15:      End if
16:      Update R and M;
17: End for
18: Output S = (R, M, Θ).

All applicable instances of tj in X and Y (lines 7 and 9) are
identified by an insertion-based policy.  The length of  an idle
time slot is equal to the difference between the execution start
time  and  finish  time  of  two  tasks  that  were  consecutively
scheduled  on  the  same  instance  [31].  If  an  idle  time  slot
between tx and tk is  available to tj,  it  means that S(tj)  ≥ F(tx),
F(tj) ≤ S(tk), and F(tj) ≤ LFT(tj). Note that scheduling a task on
an  idle  time  slot  must  satisfy  its  precedence  constraints.
Therefore,  the  insertion-based  policy  first  calculates  the
EST(tj) of tj on an instance by (5), and then check all idle time
slots on the instance to determine whether available time slots
exists to execute tj.

There  may  be  multiple  idle  time  slots  available  for
executing tj on  an  applicable  instance,  and tj is  scheduled  in
the  first  time  slot  in  chronological  order.  The S(tj)  on  an
applicable  instance  is  finally  determined  during  checking  the

idle  time  slots  by  the  insertion-based  policy,  and F(tj)  is
calculated by (6).  

E.  Fitness Function
In  this  paper,  the  total  execution  cost  of  a  scheduling

solution Si = (R, M, Θ) derived from a particle is used as the
fitness  value of  the  particle.  The total  execution time of Si is
used to judge whether the particle is feasible. For example, if
the  total  execution  cost  of  a  particle q1 is  less  than  that  of
another  particle q2,  it  means q1 is  better  than q2.  If  the  total
execution  time  of  a  particle  is  bigger  than  the  deadline,  the
particle is unfeasible; otherwise, it is feasible.

Algorithm 4 Fitness Function.

Input: A solution Si = (R, M, Θ) of a particle
Output: The execution cost and time of a workflow, Ψ and Ω.
1: Ψ is calculated by (8), based on the R of Si;
2: Ω is computed by (9), according to the M of Si;
3: Output Ψ and Ω;

In  Algorithm  4,  all  leased  instances  are  in R,  and  the
mappings  between  tasks  and  leased  instances  are  in M.  The
lease  expenses  of  all  leased  instances  are  summed  up  as  the
total  execution  cost  by  (8),  and  the  total  execution  time  is
computed by (9).  Finally,  output  the  total  execution cost  and
time of Si = (R, M, Θ) (line 3).  

F.  Population Initialization
In  order  to  generate N particles  with  valid  task  scheduling

sequences,  the  upward and downward ranks  of  a  task,  which
are  usually  used  in  the  list-based  scheduling  algorithms,  are
adopted to compute tasks’ priority in the initial population.

The upward rank of a task ti is the critical path length from ti
to  the  exit  task,  including ti’s  average  execution  time.  The
down rank of ti is the longest distance from the entry task to it,
excluding the average execution time of ti. Please refer to [39]
for the calculations of tasks’ upward and downward ranks.

In the initiation of population, two populations, Ο1 and Ο2,
are  first  generated  randomly,  and  each  population  has N
particles.  For  each  particle  in Ο1,  the  value  of  dimension
i∈[n+1,2n]  is  set  to  the  downward rank of  task ti–n.  Besides,
because  this  paper  obtains  the  task  scheduling  sequence  by
sorting tasks’ priorities in ascending order, the priority of each
task in Ο2 is set as σ–ru(ti),  where σ represents the maximum
value of all tasks’ upward ranks and ru(ti) is the upward rank
of ti.  Finally, N particles are selected as the initial population
from Ο1 and Ο2 in ascending order of their fitness values.  

V.  Performance Evaluation
  

A.  Experimental Settings
Pegasus  project  [46]  publishes  some  synthetic  workflows

resembling  those  used  by  real  world  scientific  applications,
including  Montage,  Epigenomics,  Sipht,  CyberShake,  and
LIGO’s  Inspiral  Analysis  (Inspiral).  These  workflows  have
different characteristics and have been widely used to evaluate
workflow  scheduling  algorithms.  The  DAGs  of  the  five
workflows  are  illustrated  in Fig. 3.  Each  workflow  has  four
different task sizes: small (about 30 tasks), medium (about 50
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tasks),  large  (about  100  tasks),  and  extra-large  (about 1000
tasks).  The  details  of  each  workflow,  including  its  DAG
structure,  the size of  data  transferring amongst  tasks,  and the
running  time  of  each  task,  are  stored  in  an  XML  file.  The
corresponding XML files are available from the web site1.
 

(a) Montage     (b) Epigenomics           (c) Sipht

(d) CyberShake (e) Inspiral
 
Fig. 3.     DAGs of five synthetic workflows.
 

We  use  these  five  workflows  to  evaluate  the  HPSO
algorithm.  For  each  workflow,  eight  different  deadlines  are
used to evaluate the capability of HPSO to meet the deadline
constraint. These deadlines are calculated based on the fastest
and  the  slowest  execution  time  of  a  workflow.  The  slowest
execution time, ζ,  is the execution time of a workflow whose
tasks  are  all  scheduled  on  the  same  VM  instance  with  the
cheapest VM type. The fastest execution time of a workflow,
δ,  is  estimated  by  letting  each  task  of  the  workflow  be
scheduled  separately  on  a  different  VM  instance  with  the
fastest  VM type. The data transmission time is ignored when
computing the two time values ζ and δ.

Moreover,  the  slowest  execution  time  of  a  workflow  is
usually two or even more orders of magnitude higher than the
fastest  one,  and  the  difference  between  them depends  on  the
structure  of  the  workflow  [25].  In  order  to  reflect  the
capability  of  different  algorithms  to  meet  deadlines,  an
appropriate set of deadlines must be determined. By trial and
error,  eight  deadlines  of  a  workflow  are  computed  by  the
following formula:
 

di =



δ+ (
ζ −13×δ

96
)× i

for Epigenomics, Sipht, or Inspiral

δ+ (
ζ −5×δ

32
)× i

for Montage or CyberShake

(13)

where  the  values  of i are  set  as  1,  2,  …, 8  to  calculate  eight
different  deadlines  with d1 being the  tightest  deadline  and d8
being the loosest one.

A  cloud  computing  environment  was  simulated  using
CloudSim toolkit  [47]  to  compare  the  performance  of  HPSO
and  other  methods.  This  paper  selects  ten  VM  types  with

known number of computing unit (ECU) from Amazon EC2,
as  shown  in Table I.  Reference  [40]  shows  that  an  ECU  is
roughly 4400 million  floating  point  operations  per  second
(MFLOPS). All VM instances are assumed to be in the same
data center. The network bandwidth amongst VM instances is
roughly equal and is set to 20 Mbps [32]. The billing period of
all VM types is assumed to be one hour.
 

TABLE I  
VM Types based on Amazon EC2

VM types ECUs Processing capacity
(MFLOPS)

Price per hour
($/hour)

m3.medium 3 13 200 0.07

m3.large 6.5 28 600 0.14

m3.xlarge 13 57 200 0.28

m3.2xlarge 26 114 400 0.56

c3.large 7 30 800 0.105

c3.xlarge 14 61 600 0.210

c3.2xlarge 28 123 200 0.42

c3.4xlarge 55 242 000 0.84

r3.large 13 57 200 0.35

r3.4xlarge 52 228 800 1.40
  

B.  Compared Algorithms
To  verify  the  performance  of  HPSO,  five  state-of-the-art

cloud  workflow  scheduling  algorithms,  namely  PSO-based
scheduling  algorithm  (SPSO)  [21],  GA-based  scheduling
algorithm  (EMS-C)  [9],  ACO-based  scheduling  algorithm
(LACO) [29], and two heuristic scheduling algorithms ICPCP
[32]  and  JIT  [5],  are  selected  as  comparative  algorithms.  In
current  literature  on  cloud  workflow  scheduling  problems,
those  algorithms  are  often  used  as  comparative  algorithms.
The scheduling problem solved by SPSO, LACO, ICPCP, and
JIT is exactly the same as ours (minimizing the execution cost
of a workflow while meeting its deadline constraint). EMS-C
is a multi-objective optimization algorithm for minimizing the
execution time and cost of a workflow simultaneously.

SPSO adopts  the  PSO to  solve  the  deadline  constraint  and
cost  minimization  problem,  while  considering  fundamental
features  of  the  dynamic  provisioning  and  heterogeneity  of
unlimited  computing  resources  as  well  as  VM  performance
variation.  It  maps  tasks  onto  VM instances  by  a  particle  and
determines  a  scheduling  solution  without  considering  idle
time  slots  of  leased  VM  instances.  The  number  of  VM
instances needs to be predetermined.

ICPCP  uses  the  concept  of  partial  critical  path  (PCP).  A
PCP contains many tasks and is first scheduled on an already
leased instance that can meet the latest finish time of the tasks.
If no such instance exists for the path, a new instance with the
cheapest  VM  type  able  to  finish  the  tasks  before  their  latest
finish time is leased for the PCP.

JIT  aims  to  exploit  the  advantage  offered  by  cloud
computing  while  considering  the  virtual  machine  (VM)
performance  variability  and  instance  acquisition  delay  to
identify  a  just-in-time  schedule  of  a  deadline  constrained
scientific workflow at lesser costs.

  
1 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub
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LACO  employs  ant  colony  optimization  to  carry  out
deadline-constrained  cost  optimization:  the  ant  constructs  an
ordered  task  list  according  to  the  pheromone  trail  and
probabilistic  upward  rank.  The  reason  to  choose  LACO  for
comparison  is  that  it  considers  different  task  scheduling
sequences by using different  ants  and uses a  simple heuristic
method  to  decode  an  ant  to  a  scheduling  solution.  However,
LACO does not consider the selection of the best VM type for
each task and the effective utilization of idle time slots of VM
instances.

The  reason  to  choose  EMS-C  for  comparison  is  that  it  is
based  on  GA.  In  EMS-C,  the  encoding  of  a  chromosome
includes  the  mapping of  tasks  to  VM instances,  the  mapping
of  VM  instances  to  VM  types,  and  the  scheduling  order  of
each  task.  Because  EMS-C  is  for  multi-objective  workflow
scheduling, it is modified to fit the scheduling problem in this
paper.  The  modified  EMS-C  (MEMS  for  short)  keeps  the
single  objective  of  minimizing  the  execution  cost  and  adds
deadline  constraint.  Like  HPSO,  MEMS  uses  the  constraint
handing  technique  in  [45]  to  deal  with  infeasible  solutions.
Other operations (e.g., crossover and mutation) of MEMS are
the same as those of original EMS-C.  

C.  Algorithm Parameter Discussions
HPSO  does  not  contain  any  new  parameter,  except  the

parameters  of  PSO  (inertia  weight ω,  acceleration  factors c1
and c2,  population  size N,  and  number  of  fitness  function
evaluations Κ).  Those  parameters  are  determined  by  the
following two groups of experiments.

The first  group experiment is  to determine ω, c1 and c2.  In
order  to  investigate  how  the  three  parameters  affect  the
performance of  HPSO, three different  values are set  for  each
parameter.  For ω,  its  values  are  respectively  set  to  0.5,
decreased  linearly  from  0.9  to  0.4  (0.9~0.4),  and  decreased
linearly  from 0.1  to  0.01 (0.1~0.01).  The values  of c1 and c2
are  set  to  (2.0,  2.0),  (2.0~0,  0~2.0),  and  (1.0~0,  0~1.0),
respectively.  Here,  (2.0,  2.0)  represents  that  the  values  of c1
and c2 are  all  set  to  be  2.0.  (2.0~0,  0~2.0)  denotes  that c1
decreases linearly from 2.0 to 0, whereas c2 increases linearly
from 0 to 2.0. The same logic is true for (1.0~0, 0~1.0). Table II
shows the average execution costs of Montage-100 under the
tightest  deadline d1 for different values of ω, c1 and c2.  Note
that the experiment assumes that N is 20 and K is 1000, which
are  used  to  determine ω, c1 and c2.  In Table II,  $2.40  is  the
lowest  execution  cost  for  Montage-100  under  deadline d1.
Therefore,  parameters ω, c1 and c2 of  HPSO  are  set  as
(0.1~0.01), (2.0~0), and (0~2.0), respectively.

The  second  group  experiment  is  to  determine  the
appropriate N and K,  i.e.,  population  size  and  the  number  of
fitness  function  evaluations,  to  make  a  fair  comparison  of
HPSO,  LACO,  SPSO,  and  MEMS. Table III shows  the
average execution costs of Montage-100 under deadline d1 for
different combinations of N and K.

Table III shows  that  with  the  increase  of K and N,  the
execution cost values obtained by HPSO (SPSO, MEMS) are
reduced from 2.4 (16.90, 23.02) to 1.79 (4.70, 11.79), and the
cost  values  obtained  by  LACO  fall  within  the  range  of  [2.5.
2.8].  Obviously,  along  with  the  increase  of N and K,  the

execution  cost  of  SPSO  and  MEMS  is  improved,  while  the
cost of HPSO and LACO does not change much.

If N and K are  set  too  large,  the  four  meta-heuristic  based
algorithms  will  consume  too  much  time  for  extra-large  and
large  workflows.  Thus,  the N value  of  the  four  algorithms  is
all set to 20. The K value of SPSO and MEMS is set to 10 000.
As HPSO and LACO converge for almost all workflows when
K is 1000 (see  the  third  subsection  of  Section  V-D),  the K
value of HPSO and LACO is all set to be 1000.

The  SPSO  [21],  MEMS  [9],  and  LACO  [29]  are  all
designed  specifically  for  the  cloud  workflow  scheduling
problem,  and  in  literature  [9],  [21]  and  [29],  appropriate
parameters  are  suggested.  Therefore,  other  parameters  of
SPSO, MEMS, and LACO are taken from their literature: for
SPSO, c1, c2, ω are set  to 2,  2,  0.5,  respectively;  for MEMS,
the  probabilities  of  crossover  and  mutation  are  given  by  1.0
and  1.0/n,  respectively,  and n is  the  number  of  workflow
tasks; for LACO, the pheromone and the heuristic information
are  set  to  1  and  2,  respectively,  and  the  pheromone
evaporation coefficient is 0.2.

HPSO, SPSO, MEMS, and LACO perform 10 independent
runs for each workflow application.  

D.  Results and Discussions
1) Deadline Constraint Evaluation
For a workflow with a deadline di, if the average execution

time of the workflow scheduled by an algorithm is less than or

 

TABLE II  
The Execution Costs of Montage-100 for Different Inertia

Weights and Acceleration Factors

ω
(c1, c2)

(2.0, 2.0) (2.0~0, 0~2.0) (1.0~0, 0~1.0)

0.5 2.49 2.65 2.42

0.9~0.4 2.56 2.56 2.63

0.1~0.01 2.70 2.40 2.42
 

 

TABLE III  
The Execution Costs of the Montage-100 for Different

Population Sizes and Number of Evaluations

Size (N) Algorithms
Number of fitness function evaluations (K)

1000 2000 4000 6000 8000 10000

20

HPSO 2.40 2.37 2.28 2.14 1.91 2.14

LACO 2.84 2.75 2.66 2.71 2.62 2.65

SPSO 16.90 11.73 9.55 8.20 6.92 6.05

MEMS 21.69 18.25 17.49 13.07 14.92 13.03

50

HPSO 2.05 2.15 1.94 1.93 1.93 1.94

LACO 2.73 2.67 2.67 2.60 2.51 2.58

SPSO 11.28 9.19 8.34 6.65 5.75 5.04

MEMS 23.02 20.00 16.45 12.68 14.40 15.66

100

HPSO 2.04 2.03 1.93 1.95 1.89 1.79

LACO 2.69 2.65 2.56 2.58 2.51 2.57

SPSO 11.12 8.31 6.42 5.87 5.02 4.70

MEMS 22.80 20.62 17.32 14.07 11.79 14.40
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equal  to di,  the  algorithm meets  the  deadline  constraint.  This
paper  uses  the  success  rate sr,  which  is  the  percentage  of
deadlines  met  by  an  algorithm  among  all  deadlines,  to
evaluate the capability of an algorithm to meet the deadline of
a workflow. The calculation of sr is as follows [17]:
 

sr =
κ

φ
×100% (14)

where κ is the number of deadlines met by an algorithm, φ is
the total number of deadlines. Table IV shows the success rate
of each algorithm for each workflow.

The upper-left region of Table IV shows that HPSO, SPSO,
ICPCP,  and  JIT  have  a  100% success  rate  for  all  extra-large
workflows  with  about 1000 tasks,  which  means  the  eight
deadlines  of  each  extra-large  workflow  are  met  by  them.
LACO  meets  all  deadlines  of  each  extra-large  workflow
except  Sipht-1000,  for  which  the  success  rate  of  LACO  is
87.5% because  it  fails  to  meet  the  tightest  deadline d1.  For
MEMS, its success rates for Inspiral-1000 and Montage-1000
are 12.5% and 75%, respectively, and the success rates for the
three other extra-large workflows are 100%.

For the large workflows with about 100 tasks,  as shown in
the  upper-right  region  of Table IV,  the  deadlines  of  all  large
workflows are satisfied by HPSO. ICPCP, LACO, and JIT can
meet  all  deadlines  of  large  workflows  except  CyberShake-
100, for which the success rates are 87.5%, 87.5% and 62.5%,
respectively.  SPSO  has  a  100% success  rate  only  for
Montage-100  and  Sipht-100.  Except  Epigenomics-100,
MEMS  does  not  have  a  100% success  rate  for  other  large
workflows.

The  lower-left  and  lower-right  regions  of Table IV show
that  for  medium  and  small  workflows,  the  performance
differences in meeting deadlines amongst HPSO, LACO, and
the four other algorithms are more obvious. HPSO and LACO
can  meet  all  deadlines  of  medium  and  small  workflows,
whereas  the  other  algorithms  perform  less  well  in  meeting
deadlines as the size of a workflow decreases. Amongst small
workflows,  the  success  rates  of  MEMS  and  JIT  for
CyberShake-30  and  the  success  rates  of  SPSO  for
Epigenomics-24  are  all  0.  It  is  because  the  deadline  of  a
workflow calculated by (13) is shortened with the decrease of
a  workflow’s  size,  thus  reflecting  the  capacity  of  different

algorithms to meeting deadlines.
Overall,  for  all  workflows  with  different  sizes,  HPSO  has

100% success  rates  and  is  the  best  algorithm,  followed  by
LACO,  ICPCP,  JIT,  and  SPSO,  while  MEMS  is  the  worst.
The  main  reasons  of  HPSO  having  good  performance  in
meeting the deadlines are as follows: one is that idle time slots
of leased instances are fully used, which means a task may be
completed as early as possible; the second is multiple different
task  scheduling  sequences  are  considered  and  used  in  the
proposed method. LACO’s performance is slightly inferior to
HPSO  because  idle  time  slots  of  a  leased  instance  are  not
considered. ICPCP uses the PCP as a whole scheduling object,
which means an instance must satisfy LFT values of all tasks
on  the  PCP,  so  it  is  not  easy  to  meet  the  more  urgent
deadlines.  When  choosing  the  cheapest  VM  type  for  a  task,
JIT considers  its  effect  on the children of  the task.  However,
there  may  be  no  existing  VM  types  that  can  meet  the
requirements of the task and its children, thus making JIT fail
to  the  tightest  deadline  of  some  workflows.  For  SPSO  and
MEMS, they both randomly implement the mapping of  tasks
to  VM  instances  during  the  iteration  process,  and  do  not
consider the LFT of a task and the idle time slots of a leased
instance.

2) Execution Cost Evaluation
The  performance  of  an  algorithm  in  minimizing  the

execution  cost  of  a  workflow  is  evaluated  by  the  average
execution  cost  of  the  workflow  scheduled  by  the  algorithm.
Figs. 4–7 show the performance of  comparison algorithms in
minimizing  the  execution  cost  of  extra-large,  large,  medium,
and small workflows, respectively.

Each  curve  in  the  figures  consists  of  eight  points  (cost
values),  reflecting  the  average  execution  cost  of  a  workflow
scheduled  by  an  algorithm  under  different  deadlines.  In
figures,  the  point  circled  by  an  ellipse  is  an  invalid  point,
which indicates the algorithm fails to meet the corresponding
deadline.  In this  case,  comparing the average execution costs
of valid points and invalid ones is meaningless.

Amongst  extra-large  workflows,  the  execution  cost  of
CyberShake-1000 scheduled by HPSO is lower than those sche-
duled by the five other algorithms, which is shown in Fig. 4(a);
for  Inspiral-1000 shown in Fig. 4(b),  HPSO and LACO have
better  performance  than  other  algorithms,  and  LACO  is

 

TABLE IV  
The Success Rates of Six Algorithms for All Workflows

Workflows HPSO SPSO ICPCP MEMS LACO JIT Workflows HPSO SPSO ICPCP MEMS LACO JIT

CyberShake-1000 100% 100% 100% 100% 100% 100% CyberShake-100 100% 87.5% 87.5% 75% 87.5% 62.5%

Montage-1000 100% 100% 100% 75% 100% 100% Montage-100 100% 100% 100% 87.5% 100% 100%

Inspiral-1000 100% 100% 100% 12.5% 100% 100% Inspiral-100 100% 75% 100% 37.5% 100% 100%

Sipht-1000 100% 100% 100% 100% 87.5% 100% Sipht-100 100% 100% 100% 87.5% 100% 100%

Epigenomics-997 100% 100% 100% 100% 100% 100% Epigenomics-100 100% 75% 100% 100% 100% 100%

CyberShake-50 100% 75% 87.5% 50% 100% 62.5% CyberShake-30 100% 62.5% 50% 0 100% 0

Montage-50 100% 100% 87.5% 87.5% 100% 87.5% Montage-25 100% 87.5% 75% 62.5% 100% 62.5%

Inspiral-50 100% 50% 100% 50% 100% 100% Inspiral-30 100% 25% 100% 50% 100% 100%

Sipht-60 100% 100% 100% 62.5% 100% 100% Sipht-30 100% 100% 100% 62.5% 100% 100%

Epigenomics-46 100% 25% 100% 75% 100% 100% Epigenomics-24 100% 0 100% 37.5% 100% 100%
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inferior to HPSO; for Montage-1000 shown in Fig.4(c), HPSO
is  slightly  better  than  SPSO  because  the  execution  costs
obtained  by  HPSO  under  the  top  two  tightest  deadlines  are
lower  than  those  obtained  by  SPSO,  and  the  performance  of
HPSO is significantly better than LACO and other algorithms;
for  Epigenomics-997  shown in Fig. 4(d),  HPSO,  LACO,  and

JIT  perform  almost  the  same  and  better  than  ICPCP,  SPSO,
and  MEMS;  for  Sight-1000 and  its  top  three  tightest
deadlines, as shown in Fig. 4(e), the execution costs obtained
by HPSO are  lower  than those  obtained by other  algorithms.
Overall, the performance of HPSO in terms of minimizing the
execution cost  of  extra-large  workflows is  better  than that  of
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Fig. 4.     Comparsion of six algorithms in terms of minimizing the execution cost for extra-large workflows.
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Fig. 5.     Comparsion of six algorithms in terms of minimizing the execution cost for large workflows.
 

WANG AND ZUO: AN EFFECTIVE CLOUD WORKFLOW SCHEDULING APPROACH COMBINING PSO AND IDLE TIME SLOT-AWARE RULES 1089 



other algorithms.
Amongst the large workflows shown in Fig. 5, the execution

cost  of  CyberShake-100  scheduled  by  LACO  under  the
tightest deadline d1 is significantly higher than that scheduled
by  HPSO,  and  LACO  fails  to  meet  the  deadline d1.  For
Inspiral-100, the execution costs obtained by HPSO under the

deadlines  from d4 to d8 are  lower  than  those  obtained  by
LACO.  Thus  for  CyberShake-100  and  Inspiral-100  shown in
Figs. 5(a)–5(b),  HPSO  performs  slightly  better  than  LACO,
and  both  of  them  are  better  than  others;  for  Montage-100,
HPSO has  a  similar  performance  to  SPSO and  is  better  than
LACO and other  algorithms. Fig. 5(d) shows that  HPSO and
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Fig. 6.     Comparsion of six algorithms in terms of minimizing the execution cost for medium workflows.
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Fig. 7.     Comparsion of six algorithms in terms of minimizing the execution cost for small workflows.
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LACO have similar performance for Epigenomics-100 and are
better  than  SPSO  and  other  algorithms.  For  Sipht-100,  the
execution  cost  obtained  by  HPSO,  LACO,  and  SPSO  is
similar  under  the  deadlines  from d3 to d8.  Overall,  compared
to  LACO,  HPSO  can  obtain  lower  execution  costs  for
CyberShake-100,  Inspiral-100,  and  Montage-100.  Similarly,
compared  to  SPSO,  HPSO  performs  better  for  CyberShake-
100,  Inspiral-100,  and  Epigenomics-100.  For  all  large
workflows,  HPSO  performs  better  than  ICPCP,  JIT,  and
EMES.

Amongst the medium and small workflows shown in Figs. 6–7,
the  execution  costs  obtained  by  HPSO  and  LACO  for
CyberShake-50,  Epigenomcis-46/24,  and  Sipht-60/30  are
similar;  for  Inspiral-50/30  shown  in Fig. 6(b) and Fig. 7(b),
the execution cost obtained by HPSO under deadlines d1–d4 is
higher  than  that  obtained  by  LACO,  while  the  cost  obtained
by HPSO under d5–d8 is  lower  than that  obtained by LACO.
For  Montage-50/25  shown  in Fig. 6(c) and Fig. 7(c),  HPSO
performs better than LACO. Although Figs. 6–7 show that for
medium  and  small  workflows  LACO  performs  similar  with
HPSO,  HPSO  can  obtain  lower  execution  costs  than  LACO
for extra-large and large workflows (see Figs. 4–5). That is, as
the size of the workflow increases, the performance of HPSO
is  better  than  that  of  LACO.  Furthermore,  HPSO  can  meet
deadlines  better  than  LACO  for  extra-large  and  large
workflows (see Table IV).

In  general,  HPSO  can  achieve  a  lower  execution  cost  for
most  workflows  amongst  the  six  algorithms,  followed  by
LACO,  SPSO  and  ICPCP,  and  JIT  and  MEMS.  The  rule
based heuristic scheduling algorithms ICPCP and JIT can find
quickly a feasible solution for each workflow, but the solution

quality  is  lower  than  HPSO,  LACO,  and  SPSO  for  most
workflows.  MEMS  performs  worse  because  the  execution
costs  obtained  in  its  different  runs  are  significantly  different,
resulting in high average cost. HPSO has the best performance
because  HPSO  combines  PSO  and  idle  time-aware  rules,
having  the  advantage  of  both  meta-heuristics  (PSO)  and
heuristic rules.

3) Convergence of HPSO, LACO, SPSO and MEMS
To  observe  the  convergence  of  HPSO,  LACO,  SPSO,  and

MEMS,  along  with  the  increase  of  the  number  of  fitness
function  evaluations, Fig. 8 shows  the  average  evolutionary
curves  of  the  four  algorithms  on  large  workflows  under  the
tightest deadline d1.

Fig. 8 shows that HPSO and LACO converge for almost all
large  workflows  when  the  number  of  fitness  function
evaluations K reaches  1000.  For  CyberShake-100  and
Epigenomics-100,  MEMS  converges  when K reaches 1000,
while for other large workflows MEMS converges when K is
about  10 000.  Similarly,  SPSO converges  for  all  large  work-
flows when K is about 10 000.

Evolutionary curves of LACO show that LACO cannot find
solutions  with  lower  cost  values  as  the  number  of  fitness
function  evaluations  increases.  This  means  that  the
performance  of  LACO  cannot  be  better  than  that  of  HPSO
even if a larger number of evaluations are given.

4) Impact of Task Scheduling Sequence on Execution Cost
In  order  to  investigate  the  impact  of  multiple  task

scheduling  sequences  and  a  single  task  scheduling  sequence
on  the  execution  cost  of  workflow,  some  modifications  are
made  to  HPSO.  The  modified  HPSO only  uses  a  single  task
scheduling  sequence,  which  is  obtained  by  topologically
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Fig. 8.     Average evolutionary curves of HPSO, LACO, SPSO and MEMS on large workflows under the tightest deadline d1.
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sorting  all  tasks  of  a  workflow.  Therefore,  each  particle  in
HPSO  with  a  single  task  scheduling  sequence  only  needs  to
represent the mapping of tasks to VM types, not including the
priority of each task. Fig. 9 gives the performance comparison
between  HPSO  and  HPSO  with  a  single  task  scheduling
sequence,  in  terms  of  minimizing  the  execution  cost  of  each
large  workflow  under  each  deadline.  In  the  figure, “HPSO”
refers to HPSO with multiple task scheduling sequences.

Fig. 9 shows  that  under  each  deadline  of  each  large
workflow,  the  average  execution  cost  obtained  by  HPSO  is
lower than or equal that obtained by HPSO with a single task
scheduling sequence. For example, in Fig. 9(b), 9(c), and 9(e),
the  average  execution  cost  of  Montage-100,  Insiral-100,  and
Epigenomics-100 under the tightest  deadline d1 scheduled by
HPSO  is  significantly  lower  than  that  scheduled  by  HPSO
with  a  single  task  scheduling  sequence.  Overall,  HPSO  with
multiple  different  tasks  scheduling  sequences  can  achieve
lower execution cost than HPSO with a single task scheduling
sequence.

5) Comparison of Runtime
Compared  with  heuristic  rules,  meta-heuristic  based

scheduling  algorithms  usually  need  a  longer  computational
time.  This  section  compares  the  runtime  of  HPSO,  SPSO,
MEMS, and LACO. Fig. 10 gives the average runtime of each
algorithm  for  different  workflow  sizes  (30,  50,  100,  and
1000).  The  runtime  is  calculated  by  first  summing  up  the
running time of an algorithm for each workflow instance and
then  divided  by  the  total  number  of  workflow  instances.  All
four  algorithms  are  coded  in  MATLAB  R2016a  and
implemented on a PC with Core i7 2.50 GHz and Windows 7
operation system.

Fig. 10 shows that the average runtime of HPSO and LACO
is  less  than that  of  SPSO and MEMS for  workflows with  30
and  50  tasks,  while  the  average  runtime  of  HPSO  for  extra-
large  workflows  is  longer  than  that  of  LACO,  SPSO,  and
MEMS. For workflows with 100 tasks, the average runtime of

the four algorithms is very close.  

VI.  Conclusions and Future Work

This  paper  proposes  a  hybrid  particle  swarm  optimization
(HPSO)  for  cloud  workflow  scheduling  problem  that
considers three aspects, namely selecting the most appropriate
VM  type  for  each  task,  determining  the  best  scheduling
sequence for all  tasks, and making full  use of idle time slots.
The  first  two  aspects  are  combinational  optimization
problems,  such  that  a  PSO  is  used  to  solve  them.  In  PSO,  a
particle represents the VM type required by each task and the
scheduling sequence of tasks. Idle time slot-aware scheduling
rules  are  proposed  to  decode  a  particle  to  a  scheduling
solution. During the decoding procedure, the rules assign each
task  in  the  order  of  the  scheduling  sequence  to  a  leased  VM
instance  or  a  new  one,  taking  full  use  of  idle  time  slots  of
leased VMs. As the randomness of PSO may cause priorities
of  some  tasks  to  be  invalid,  making  the  task  scheduling
sequence  violate  the  tasks’ precedence  constraint,  a  simple
repairing  method  is  suggested  to  repair  invalid  priorities  of
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Fig. 9.     Comparison of HPSO and HPSO with a single task scheduling sequence in terms of minimizing the execution cost.
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tasks.
Experimental  results  based  on  synthetic  workflows  show

that  HPSO  achieves  100% success  rates  in  meeting
workflows’ deadlines  and  outperforms  the  five  other
comparison  algorithms.  Moreover,  compared  with  other
algorithms,  HPSO  has  better  performance  in  minimizing  the
execution cost for most workflow applications.

In  the  future,  we  plan  to  implement  a  prototype  system  to
further  test  HPSO.  In  addition,  it  is  hard  to  predict  task
execution  times  exactly  in  advance.  In  [48],  [49],  a  cloud
system is  modeled as  a  discrete-time-state  space to  deal  with
non-steady  states  of  cloud  system.  Based  on  the  idea  of  the
discrete-time-state  cloud  system,  we  plan  to  combine  HPSO
with  prediction  technologies  (such  as  analytic  probabilistic
models  or  deep  learning)  to  study  dynamic  cloud  workflow
scheduling  algorithms  that  considers  the  uncertainty  of  task
execution times.
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