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A B S T R A C T

Deep Convolutional Neural Network (DCNN) has recently advanced state-of-the-art performance on vision-
related tasks and its application is further extended to industrial fields. The paper focuses on the problem of
fabric defect detection to which an efficient DCNN architecture is developed. In contrast to previous methods
that directly apply existing DCNN models demonstrated on natural images to industrial images, the proposed
Efficient Defect Detectors (EDDs) are sufficiently optimized with consideration of the characteristics of fabric
surface images, i.e., resolution, defect appearance, etc. Firstly, lightweight backbone is suggested in EDD
to improve computational efficiency without reduction in image resolution. Secondly, a new feature fusion
strategy named L-shaped feature pyramid network (L-FPN) is proposed and utilized to make full use of low-
level texture features which are demonstrated to be more important than high-level semantic features in defect
recognition. Based on the configurations of lightweight backbone and L-FPN, we use only one hyper-parameter
to jointly adjust the proportion of resources occupied by width, depth and input resolution so that a family
of defect detectors under different resource constraints can be developed. Experiments are conducted on a
large fabric dataset to demonstrated the effectiveness of EDDs. Compared with the recent state-of-the-art
detector, EfficientDet-d3, EDD-d3 achieves higher mean Average Precision (mAP) (20.9 vs 19.9) but with
fewer parameters. EDD-d3 has 8.59M parameters and 31.78B FLOPs (floating point operation per second),
which respectively are 39.8% and 49.0% lower than EfficientDet-d3. The proposed EDDs achieve better trade-
off between accuracy and speed than previous methods. EDDs could be applied to fabric production sits with
different resource restrictions, which demonstrates that EDDs have important application value.
. Introduction

In the textile and apparel industry, surface defect is one of the
ost important factors influencing the quality of fabric, and defect
etection is a core link of quality management [1]. In the early days,
abric defect detection depends on manual subjective discrimination,
hich not only leads to high labor costs, but also lacks consistency and

eliability [2]. With the development of modern industry, speed and
ccuracy of manual inspection can no longer meet the demand.

Vision-based automatic inspection provides an efficient way to solve
he problem. In the inspection, product is inspected under standard pro-
edures, overcoming subjectivity and capriciousness of human. More-
ver, secondary injury of the products is prevented through non-contact
nspection manner [3]. Researches on this field have been carried out
or a long time, and significant progress is made. According to previous
ublications, existing methods can be roughly categorized into two
lasses [4]: texture analysis-based and deep learning-based methods.
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Texture analysis-based method is to distinguish defective images
and normal images through the analysis of texture characteristics, such
as tropism and homogeneity. This type of methods started early, dating
back to the 1980s [5], and can be divided into three classes [6]:
statistical [7,8], spectral [9,10] and model-based [11,12] methods.
The statistical methods analyze texture and recognize defects based
on the statistical distribution characteristics of gray-scale in product
images, and this type of methods are effective especially for stochastic
textures, such as ceramic tiles [7], castings [13], and wood [14]. The
spectral methods are based on the assumption that defects destroy the
structural consistency of uniform textures, and accurate defect detec-
tion could be accomplished according to response difference between
normal texture and defect [9]. The spectral methods are applicable to
repeated or regular texture to detect the defects which are difficult
to be identified only by gray-scale feature. The model-based methods
analyze texture attributes, establish texture image representation, and
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263-2241/© 2020 Elsevier Ltd. All rights reserved.

Co-first authors.

ttps://doi.org/10.1016/j.measurement.2020.108885
eceived 13 August 2020; Received in revised form 22 October 2020; Accepted 10
 December 2020

http://www.elsevier.com/locate/measurement
http://www.elsevier.com/locate/measurement
mailto:hu.su@ia.ac.cn
https://doi.org/10.1016/j.measurement.2020.108885
https://doi.org/10.1016/j.measurement.2020.108885
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2020.108885&domain=pdf


Measurement 172 (2021) 108885T. Zhou et al.
then detect defects by identifying abnormal textures. The models used
in surface defect detection include auto-regressive models [11], Markov
Random Field (MRF) [12] and Texture Exemplar (TEXEM) [15]. These
traditional fabric inspection techniques all aim at explicitly construct-
ing templates or features for images. They require manual designed
features and careful parameter adjustment. Since there is no explicit
guideline for choosing optimal representations, human experience plays
an important role in these technologies, leading to low efficiency and
poor performance.

In recent years, deep learning technology has achieved the best
performance on many visual tasks with automatic feature extraction,
avoiding the difficulty of manually designing features. The application
of DCNN is further extended to industrial fields. In order to obtain
different types of output, the defect detection network will be quite
different in structure, which can be divided into three classes [16]:
classification-, detection-, and segmentation-based methods. The
classification-based method obtains class label of image, which can
identify whether the image is defective. And in some multi-
classification tasks, it is also necessary to identify the type of de-
fect [17,18]. The detection-based method not only needs to determine
whether the current image is defective and the defect category, but
also needs to determine the location and the size of defect [19–21].
The segmentation-based method needs to determine whether each
pixel belongs to the defect target, so as to judge the quality of the
product [22,23]. However, the existing deep learning-based methods
focus on directly applying the detection network verified in natural
images to industrial images. Due to the large difference between natural
and industrial images in terms of resolution and target appearance,
speed and accuracy of the methods could not well meet industrial
requirements. As a result, the systems is unpractical in industrial
production.

Focusing on the problem of fabric defect detection and to overcome
the mentioned shortcomings, we have developed a new family of effi-
cient defect detectors, EDDs, which consistently achieve better accuracy
with much fewer parameters and FLOPs than previous methods. This
series of lightweight detectors can make better use of high resolution
image and low-level information, in which way the difference between
the two types of images are well addressed and the computational
efficiency is improved. Moreover, compound-scaling strategy is intro-
duced to jointly adjust the proportion of resources occupied by width,
depth and resolution. EDDs could be applied to fabric production sits
with different resource restrictions to achieve better trade-off between
accuracy and speed. Fig. 1 shows the performance comparison on fabric
defect dataset. The contribution of the paper could be summarized as

• The difference between natural image and fabric surface image
are analyzed based on which lightweight backbone is suggested
and a new feature fusion strategy, L-FPN, is proposed to pay more
attention to low-level features.

• The R-Compound Scaling (Resolution-Compound Scaling) strat-
egy is utilized to jointly balance related factors, including image
resolution, the depth and the width of DCNN. Accordingly, a
family of defect detectors under different resource constraints are
developed.

• The proposed EDDs can achieve better trade-off between speed
and accuracy than previous methods which is of significant im-
portance in industrial applications.

The remainder of this paper is organized as follows. Section 2
introduces the related work of this paper. Next, Section 3 describes
the framework of our proposed fabric defect detector. Section 4 carries
out extensive experiments, where the experimental results and related
analysis are provided. Finally, Section 5 gives the conclusion of this
paper.
2

Fig. 1. Comparison of different one-stage models. The horizontal axis represents FLOPs
and the vertical axis represents accuracy. The increase in input resolution improves the
accuracy of each model. Among them, the model closer to the upper left corner has
higher efficiency. One can find that EDDs have higher accuracy and fewer parameters.

2. Related work

2.1. Defect detection

In recent years, more and more DCNN-based methods [17–23] are
proposed to perform surface inspection tasks without the need of hand-
crafting a set of features like in traditional ways. As pointed out in [16],
the three types of DCNN-based methods, i.e., classification-, detection-,
and segmentation-based methods, have different forms of outputs and
accordingly, different human efforts involved in image labeling are
required in the methods. Bounding box and image tag annotations are
more economical than segmentation masks. The workload of labeling
segmentation masks is more than 15 times heavier than that of spot-
ting object locations [24]. The classification-based methods could not
provide size and location information of the defect which, however,
is important in the fabric quality judgment. Taken together, detection
strategy is adopted in the paper. Note that classification-based methods
are closely related to detection-based ones. To pursue a clarity and
complete description on previous works, both classification-based and
detection-based methods are introduced.

A significant number of methods [17,18,25–28] accomplish the task
by classifying normal and defect images. For example, MSPyrPool [17]
is proposed to solve the steel defect classification problem on arbitrarily
sized images. The network can be seen as a fully supervised hierarchical
bag-of-features extension that is trained online and can be fine-tuned
for any given task. Wang et al. [18] design a joint detection CNN ar-
chitecture that contains two major parts: the global frame classification
part and the sub-frame detection part. The former learns to classify
the whole image, and the later is implemented on the image patches
generated by the sliding-window method. Ren et al. [25] propose a
generic DCNN-based surface inspection approach. There are two phases
in the proposed method. The first phase includes supervised training of
patch classifier. In the second phase, the trained classifier is used to
extract patches, and then the heatmap of the whole image is generated
to predict the locations of defects. Based on the image partitioning
operation, these two methods achieve defect localization roughly by
using classification networks.

Benefited from the great success of object detection algorithms
applied in natural scenarios, Cha et al. [19] utilize Faster Region-based
Convolutional Neural Network (Faster R-CNN) [29] to detect multi-
ple types of damages accurately. Chen et al. [20] propose a cascade
network to localize defects in a coarse-to-fine manner. The network
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includes two detectors to sequentially localize the cantilever joints and
their fasteners and a classifier to diagnose the defects. Zhang et al. [21]
propose a method of automatic positioning and classification of yarn-
dyed fabric defects based on YOLOv2 (You Only Look Once) [30].
From the above researches, one can find that existing methods focus
primarily on directly applying the DCNN models demonstrated on
natural images to industrial images and the large difference between
the two types of images are not considered. Usually, speed and accuracy
of the methods could not well meet industrial requirements.

2.2. Object detection

Object detection is one of the basic tasks in computer vision. At
present, deep-learning methods are mainly divided into two categories:
two-stage object detection algorithm and one-stage object detection
algorithm. Two-stage object detection algorithm, such as the series of
region based CNN detectors [31–33], follows the pipeline that first
generates a series of candidate boxes as proposals, then classifies and
regresses these proposals through CNN. One-stage object detection
algorithm does not need to generate candidate boxes, but directly
converts the b-box positioning problem into a regression problem.
RetinaNet [34] is one of the most commonly used one-stage detec-
tor, which is designed to verify the effectiveness of Focal Loss. It
is essentially a simple structure composed of ResNet, Feature Pyra-
mid Networks (FPN) and two Fully Convolutional Networks (FCN)
sub-networks, but achieves competitive performance with two-stage
ones. The family of YOLO [30,35,36] are typical one-stage detectors,
which can predict all classes and bounding boxes in a image at the
same time. In addition, Single Shot Multi-Box Detector (SSD) [37]
uses one-stage idea to improve the detection speed, and generates
different scale predictions for different scale feature maps, which signif-
icantly improves accuracy. These two types of methods are obviously
different in performance. Two-stage networks are superior in detec-
tion accuracy, while one-stage networks have higher speed instead.
Recently, Google Brain team has systematically studied a variety of
object detector architectures and proposed several key optimizations
that can improve model efficiency: weighted bi-directional feature
pyramid network (BiFPN); a new compound scaling method. Based
on these optimizations, researchers develop a series of new object
detectors, EfficientDets [38]. Under extensive resource constraints, this
type of models still have obvious advantages over previous optimal
models. These two key optimizations will be introduced in detail in
the following:

Feature Network: Generally, FPN [39] is a typical multi-scale fea-
ture fusion structure. Since then, researchers also tried various dif-
ferent feature fusion methods, such as Path Aggregation Network
(PANet) [40] with bottom-up and top-down structure, a single-shot
object detector based on multi-level feature pyramid (M2Det) [41] with
skip-connection strategy. In EfficientDets, the node with only one input
edge was removed to simplify PANet and skip-connection was also
applied to fuse more features. In the previous pyramid-like module,
bilinear interpolation sampling is often used to fuse different scale
features. The author believes that it is unfair to add different scale
features directly. Considering that their final contribution to detection
performance should be different, a common idea is to introduce weight
parameters 𝜔𝑖 to automatically learn the importance of different scale
features. Thus, a simple and efficient feature fusion basic structure,
BiFPN, is realized. In this paper, we hope to obtain a new feature
network structure suitable for textile industry scenarios to fuse different
scale features efficiently.

Compound Scaling: In EfficientNets [42], authors re-examined sev-
ral dimensions of previous model scaling strategy to balance both
peed and accuracy. The previous model scaling strategy mostly enlarge
ne dimension to achieve higher accuracy. For example, ResNet [43]
3

an obtain higher accuracy by increasing depth of the network (e.g.,
ResNet-50 to ResNet-101). EfficientNet backbone jumps out of the
previous understanding of model scaling, thinks that depth, width and
resolution affect each other. Finally, a new strategy of scaling up all
dimensions of parameters is proposed, called compound scaling. This
strategy uses a coefficient 𝜙 to determine the proportion of resources
occupied by width, depth and resolution. Based on this, EfficientDets
further expand the compound scaling strategy. In feature network,
the number of BiFPN channels and repeated layers can also be con-
trolled. In addition, the number of layers in box/class network and
the resolution of input images are also parts of compound scaling
strategy. In the industrial scenario of this paper, combined with the
characteristics of large resolution, rich texture information and simple
semantic information, a new joint adjustment strategy is proposed to
improve the effectiveness of fabric defect detection.

3. Proposed method

To inspect fabric quality efficiently, we propose a series of
lightweight EDDs. An overview of our framework is illustrated in Fig. 2.
Specifically, the framework is divided into the following parts: the
backbone in which the lightweight EfficientNets are selected; L-FPN to
efficiently fuse multi-scale features; a structure similar to RetinaNet to
classification and regression of bounding boxes. The above components
can be adjusted by the proposed R-Compound Scaling strategy to
implement a series of detectors under different resource constrains. In
this section, more details for each part of our method will be described
individually.

3.1. Backbone

In this paper, the recent successful classification network Efficient-
Nets are selected as the backbone network in EDDs. This series of
backbones mainly have the following attractive advantages:

• The state-of-the-art EfficientNet backbone achieves better perfor-
mance visibly than previous backbones with the same parameters
and FLOPs, and fully considers more optimization metrics.

• EfficientNet backbone uses a simple and efficient composite coef-
ficient to uniformly scale the depth, width and resolution of the
network, so that the fabric defect detectors can adapt to different
resource constraints.

• By adopting EfficientNet backbone, the ImageNet-pretrained
checkpoints could be easily used. On the basis, the training time
is reduced and computational efficiency is improved.

In this paper, we choose EfficientNet-{b0, b1, b2} as our backbone
networks. The detailed structures of these three networks are shown
in Table 1. Their main building block is multiple mobile inverted
bottlenecks MBConv [44,45] with different specifications.

3.2. Feature network

Multi-scale feature fusion aims to combine features with different
resolutions, so that the network has a competitive ability to represent
semantic information and texture details.

Previous excellent feature fusion methods, such as FPN, has only one
top-down unidirectional information flow. And improvements based
on FPN, such as PANet, BiFPN [38], etc., provide bidirectional in-
formation flow to fuse low-level texture information and high-level
semantic information unbiasedly. All of them fuse features belonging
to different layers at equal times. Therefore, these kinds of feature
fusion methods are called unbiased feature fusion. Among them, PANet
will improve detection accuracy with the cost of more parameters and
computations. In order to utilize more low-level features while reducing
the proportion of high-level features, feature network needs to have

the ability to fuse features in a biased manner. Inspired by the idea
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Table 1
Architecture of Backbone Networks.

Model EfficientNet-b0 EfficientNet-b1 EfficientNet-b2

Conv 3 × 3, stride 2

Stage 1 [ MBConv1, 𝑘3 × 3 ]×1 [ MBConv1, 𝑘3 × 3 ]×2 [ MBConv1, 𝑘3 × 3 ]×2
Stage 2 [ MBConv6, 𝑘3 × 3 ]×2 [ MBConv6, 𝑘3 × 3 ]×3 [ MBConv6, 𝑘3 × 3 ]×3
Stage 3 [ MBConv6, 𝑘5 × 5 ]×2 [ MBConv6, 𝑘5 × 5 ]×3 [ MBConv6, 𝑘5 × 5 ]×3
Stage 4 [ MBConv6, 𝑘3 × 3 ]×3 [ MBConv6, 𝑘3 × 3 ]×4 [ MBConv6, 𝑘3 × 3 ]×4
Stage 5 [ MBConv6, 𝑘5 × 5 ]×3 [ MBConv6, 𝑘5 × 5 ]×4 [ MBConv6, 𝑘5 × 5 ]×4
Stage 6 [ MBConv6, 𝑘5 × 5 ]×4 [ MBConv6, 𝑘5 × 5 ]×5 [ MBConv6, 𝑘5 × 5 ]×5
Stage 7 [ MBConv6, 𝑘3 × 3 ]×1 [ MBConv6, 𝑘3 × 3 ]×2 [ MBConv6, 𝑘3 × 3 ]×2

Output Conv1 × 1, Pooling, FC
Fig. 2. EDDs Architecture. Features are extracted from each stage of backbone network EfficientNets, and then use our L-FPN to fuse them into multi-level features biasedly.
Finally, two FCN sub-networks are used for each feature map to implement bounding box classification and position regression tasks independently.
Fig. 3. Comparison of COCO 2017 and Fabric Dataset. (a) is an image in COCO 2017,
with rich semantic information and background information. (b) is a fabric image with
rich texture information.

of BiFPN, we propose a structure for biased feature fusion, L-FPN. The
design ideas and structural advantages of the proposed structure will
be introduced in detail in the following.

Based on the observation of defects in the fabric images, the process
of feature learning is obviously different from that in the natural scene.
As shown in Fig. 3, considering that the images in textile industry
scenario have rich texture information and simple semantic informa-
tion, an important property of our method is that it is biased. In
order to pay more attention to the utilization of low-level features,
we proposed L-FPN. To verify the importance of low-level features in
defect recognition, a counterpart of L-FPN, T-shaped feature pyramid
network (T-FPN), is proposed as well and the comparison between
them are conducted. The output feature maps {P3, P4, P5, P6, P7} are
selected as the input of L-FPN, which from the last 5 blocks (level 3–
7) of EfficientNets. In order to obtain the input of the final box/class
network, the multiple L-FPN structures are applied for feature fusion.
Inspired by the idea of bidirectional information flow, we add an
additional top-down information flow in FPN to increase the fusion
times of low-level features {P3-in, P4-in, P5-in}. At the same time,
the proportion of high-level features {P6-in, P7-in} is appropriately
4

Fig. 4. L-FPN Architecture Design. (a) is biased low-level feature fusion architecture.
We use top-down and bottom-up structures to fuse low-level texture information and
high-level semantic information biasedly. (b) is our L-FPN architecture, which uses less
computing resources, but has higher efficiency.

Fig. 5. T-FPN Architecture Design. (a) is biased high-level feature fusion architecture.
We increase the fusion times of high-level features to obtain more semantic information.
(b) is our T-FPN architecture.

reduced, so that our L-FPN can fuse features in a biased manner, as
shown in Fig. 4(a). In contrast, T-FPN focuses more on increasing the
fusion times of high-level features rather than low-level features, as
shown in Fig. 5(a). Section 4.4.1 compares the contributions of L-FPN
and T-FPN to the fabric defect detector. It is also demonstrated that
L-FPN is more suitable for this specific industrial scenario, that is, the
biased feature fusion has obvious advantages.
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Fig. 6. Simplified Biased Low-level Feature Fusion Architecture. We simplify biased
low-level feature fusion architecture by removing nodes with only one input edge.

Additionally, two enhancements are used to improve detection ef-
ficiency. Firstly, in order to solve this limitation of the large cost of
parameters and computations, the nodes that have less contribution
to feature fusion network are removed, that is, discard the nodes with
only one input, such as P𝑥, P𝑦 and P𝑧 in Fig. 6. Secondly, to improve
accuracy, the feature fusion times are increased. Short-cut and block-
repeat are used in our feature network, and the final structure of L-FPN
is shown in Fig. 4(b). Generally, given a series of multi-scale features
{P3𝑖𝑛, P4𝑖𝑛, P5𝑖𝑛, P6𝑖𝑛, P7𝑖𝑛}, the corresponding outputs after L-FPN are
as follows:

𝑃 7𝑜𝑢𝑡 = 𝑃7(0)𝑖𝑛 (1)

𝑃 6𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(
𝑤61 ⋅ 𝑃 6

(0)
𝑖𝑛 +𝑤62 ⋅ 𝑃 7

(0)
𝑖𝑛

𝑤61 +𝑤62
) (2)

𝑃 5𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(
𝑤51 ⋅ 𝑃 5

(0)
𝑖𝑛 +𝑤52 ⋅ 𝑃 5

(1)
𝑖𝑛 +𝑤53 ⋅ 𝑃 4𝑜𝑢𝑡

𝑤51 +𝑤52 +𝑤53
) (3)

4𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(
𝑤41 ⋅ 𝑃 4

(0)
𝑖𝑛 +𝑤42 ⋅ 𝑃 4

(2)
𝑖𝑛 +𝑤43 ⋅ 𝑃 3𝑜𝑢𝑡

𝑤41 +𝑤42 +𝑤43
) (4)

3𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣(
𝑤31 ⋅ 𝑃 3

(0)
𝑖𝑛 +𝑤32 ⋅ 𝑃 3

(1)
𝑖𝑛 +𝑤33 ⋅ 𝑃 4

(2)
𝑖𝑛

𝑤31 +𝑤32 +𝑤33
) (5)

here 𝑤𝑖𝑗 is the weight of the 𝑗th input of the output node at level
. The left sides of Eqs. (1)–(5) denote the output feature at the
orresponding level and the variables in the right sides denote the input
eatures of the nodes. For example, 𝑃 1𝑜𝑢𝑡 is the output feature at level
, and 𝑃 1(0)𝑖𝑛 , 𝑃 1(1)𝑖𝑛 and 𝑃1(2)𝑖𝑛 respectively denote the input features of
he first, the second and the third fusion nodes at level 1. Based on the
efinition, the variables P𝑥, P𝑦 and P𝑧 in Fig. 6 can be denoted as 𝑃7(0)𝑖𝑛 ,
5(1)𝑖𝑛 , 𝑃3(2)𝑖𝑛 , respectively. Other variables have similar meanings.

Following L-FPN, a similar structure to RetinaNet which uses two
CN sub-networks (they have the same structure but do not share
arameters) for each feature map is constructed to implement bounding
ox classification and position regression tasks independently.

.3. R-compound scaling

In the textile industry scenario, fabric images usually have the
haracteristics of large resolution, rich texture information, and simple
emantic information. To adjust the depth, width and resolution effi-
iently so that the defect detector can adapt to different resource con-
traints, how to implement a compound scaling strategy for industrial
cenarios is one of the biggest challenges.

Some recent works, using compound scaling strategies, have com-
etitive performance on computer vision tasks. Inspired by the com-
ound scaling strategy in EfficientNets and EfficientDets, a new series
5

f EDDs for large-scale inputs are proposed. Based on the baseline
DD-d0, we have developed a new strategy of scaling up all dimen-
ions of parameters, called R-Compound Scaling, which consistently
chieve much better accuracy than prior technique. Different with some
ommon object detection models with small-scale inputs, such as Reti-
aNet [34] and YOLO [35], our detectors need to adapt to larger-scale
abric images. In the case of limited resources, the most common idea is
o sacrifice width and depth of the network to increase the proportion
f resolution. With the configuration of backbone, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡−𝑏(𝜂−
), we got the following equations:

Input image resolution:

𝑖𝑛𝑝𝑢𝑡 = 640 + 128 ⋅ 𝜂 (6)

Feature network:

𝑙−𝑓𝑝𝑛 = 65 ⋅ (3∕𝑒)𝜂−1 (7)

𝐷𝑙−𝑓𝑝𝑛 = 2 + ⌊𝜂∕2⌋ (8)

Class/box network:

𝑐𝑙𝑎𝑠𝑠 = 2 + ⌊𝜂∕2⌋ (9)

here 𝜂 denotes a hyper-parameter that controls how much computing
esources are allocated to each part of backbone, feature network,
ox/class network. Due to the constraint of parameter 𝜂, EDDs can

reasonably and efficiently allocate resources to large-scale inputs bi-
asedly, which makes the detectors have a competitive effect on fabric
images with higher resolution. In this paper, the specific parameters of
EDD-{d0, d1, d2} are shown in Table 2.

3.4. Lightweight backbone

Generally, deep backbones are more conducive to mining high-
level semantic information. However, fabric images have more regular
background information and intuitively, texture information plays a
more important role in defect detection than semantic information.

In order to improve the efficiency of detector and reduce the cost of
consumption, EDDs use a series of lightweight backbones. Specifically,
compared with EfficientDet-{d1, d2, d3} at the same levels, EDDs use
lower-level backbones EfficientNet-{b0, b1, b2}. Section 4.4.3 proves
that sacrificing the width and depth of backbone does not significantly
reduce accuracy, but can save computing resources and improve model
efficiency.

4. Experiments

4.1. Dataset and metric

We use the fabric defect dataset provided by Tianchi Academic
Competitions held by Alibaba Cloud in 2019.2 The official provided
9576 images (2446 × 1000) for training, including 5913 defect images
and 3663 normal images. Conventionally, this dataset is divided into
training set and test set, which contain 4730 images and 1183 images
respectively. The defects commonly arose in textile production are
found in these images, which are divided into 20 categories. Note that
one image may contain more than one categories of defects. Compared
with natural real-world images, accurate object detection for these
fabric images is challenging due to the following key points.

• Uneven distribution of object categories.
• The large scale difference of objects, some targets are too small

and slender in the original image.
• Annotated bounding boxes usually include a lot of background

information due to the morphologies of defects.

2 https://tianchi.aliyun.com/competition/entrance/231748/introduction

https://tianchi.aliyun.com/competition/entrance/231748/introduction
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Table 2
R-Compound Scaling Strategy.

Model Input resolution Backbone network Feature network Box/Class network
R𝑖𝑛𝑝𝑢𝑡 W𝑙−𝑓𝑝𝑛 D𝑙−𝑓𝑝𝑛 D𝑐𝑙𝑎𝑠𝑠

EDD-d1 768 EfficientNet-b0 65 2 2
EDD-d2 896 EfficientNet-b1 70 3 3
EDD-d3 1024 EfficientNet-b2 80 3 3
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Table 3
Comparison With Other State-of-the-art Methods.

Model mAP Params Ratio FLOPs Ratio FPS Speedup

EDD-d1(768) 18.3 4.55M 1× 11.12B 1× 32.3 1×
EfficientDet-d1(640) 15.8 7.63M 1.7× 12.71B 1.1× 33.4 –
RetinaNet-R50(768) 16.4 36.5M 8.0× 122.5B 11.0× 29.3 0.91×
RetinaNet-R101(768) 17.8 56.5M 12.4× 178.5B 16.0× 27.0 0.83×

EDD-d2(896) 20.3 7.24M 1× 20.57B 1× 28.0 1×
EfficientDet-d2(768) 18.6 9.38M 1.3× 24.31B 1.2× 29.3 –
RetinaNet-R50(896) 19.7 36.5M 5.0× 166.7B 8.1× 27.0 0.96×
RetinaNet-R101(896) 20.5 56.5M 7.7× 226.3B 11.0× 23.1 0.82×

EDD-d3(1024) 20.9 8.59M 1× 31.78B 1× 24.3 1×
EfficientDet-d3(896) 19.9 14.28M 1.7× 62.4B 2.0× 26.0 –

Following experiments prove that these issues are well addressed by
he proposed EDDs and improved performance can be achieved.

The metric mAP is used to evaluate the defect detection results.
pecifically, the area under the Precision-Recall (PR) curve is called
verage Precision (AP). In COCO evaluation, the IoU threshold ranges

rom 0.5 to 0.95 with a step size of 0.05. We calculate mAP according
o the standard process.3

.2. Implementation details

The performance of EDDs is evaluated on a GeForce RTX 2080
i GPU. All pre-trained models we used in experiments are publicly
vailable. We directly use the same hyper-parameters with RetinaNet:
tochastic Gradient Descent (SGD) optimizer is used with a weight de-
ay of 4e-5 and a momentum of 0.9. Learning rate is linearly increased
rom 0 to 0.005 in the first training epoch and then decay 1/10 at 35
pochs and 45 epochs. Focal Loss with 𝛼 = 0.25, 𝛾 = 1.5 is used, and

at each pyramid level we use anchors at nine aspect ratios {1:50, 1:20,
1:10, 1:2, 1:1, 2:1, 10:1, 20:1, 50:1}.

4.3. Comparison with the state-of-the-art methods

Table 3 compares the performance of the proposed EDDs with the
state-of-the-art methods. And we can get the following conclusions:

• EDD-d3 achieves the top accuracy, 20.9 mAP. And when com-
paring with the same level detector, EfficientDet-d3, EDD-d3
achieves a significant improvement in accuracy but with re-
duced parameters and FLOPs (reduced by 39.8% and 49.0%,
respectively).

• The accuracy of EDD-d2 is similar to that of RetinaNet-R101, but
its parameters are reduced by 87.0% and the FLOPs are reduced
by 90.9%.

• For every level of EDDs and EfficientDets, EDDs achieve higher
accuracy with fewer parameters. Therefore, EDDs make better
trade-off between speed and accuracy than EfficientDets.

From the above analysis we can conclude that, EDDs can achieve
preferable accuracy at lower cost of computing resources when compar-
ing with other the state-of-the-art methods. From the application point
of view, our proposed methods are superiority over existing methods.

3 https://github.com/cocodataset/cocoapi
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Table 4
Comparison Among Different Feature Networks.

Model mAP Parameters FLOPs

EfficientNet-b1 + FPN 18.5 8.61M 25.19B
EfficientNet-b1 + BiFPN 19.4 7.24M 20.54B
EfficientNet-b1 + L-FPN 20.3 7.24M 20.57B
EfficientNet-b1 + T-FPN 19.3 7.24M 20.53B

4.4. Ablation studies

In this section, we conduct a series of ablation experiments of
our proposed EDDs on fabric images in textile industry scenario to
prove that L-FPN structure, R-Compound Scaling, and lightweight back-
bone can bring performance improvement to the fabric defect detector
significantly.

4.4.1. L-FPN
EDD-d2 is selected as the framework to compare different feature

networks. When the resolution of input image is set to 896 × 896, EDD-
2 is equipped with FPN, BiFPN, L-FPN and T-FPN, respectively. For
fair comparison, each of the networks uses the same backbone and

he same box/class network. Accordingly, the resolution of the input
mage and the strategies of training and testing are all the same (multi-
cale training with a ratio from 0.5 to 2.0 randomly). What is more,
here is only one bottom-up unidirectional information flow in FPN.
herefore, we repeat FPN 2 × 𝐷𝑙−𝑓𝑝𝑛 times to ensure that the feature
etwork formed by multiple FPNs has a similar structure to the feature
etwork in our EDDs. The performances are provided in Table 4.

From Table 4, one can find that L-FPN, T-FPN and BiFPN have fewer
arameters but achieves higher accuracy compared with FPN. The
ccuracy of T-FPN is competitive with that of BiFPN. L-FPN achieves
he top accuracy. For the mAP metric, it is raised by 1.8, 1.0 and
.9 when comparing with FPN, T-FPN and BiFPN, respectively. Among
he feature networks, FPN and BiFPN are unbiased structures while T-
PN and L-FPN are biased structures. Actually, the short-cut strategy
mployed in BiFPN also increases utilization of low-level features,
eading to improved accuracy than FPN and T-FPN. And L-FPN explores
he usefulness of low-level feature explicitly and sufficiently, result-
ng in further improvement on accuracy. In fabric defect recognition,
ow-level information plays a more important role than high-level
nformation. And L-FPN which makes better use of low-level features is
ore suitable for fabric defect detection. The experimental results are

onsistent with our analysis.

.4.2. R-compound scaling
In this section, we evaluate an efficient strategy to uniformly scale

he depth, width and resolution of our network, which is called R-
ompound Scaling. In this experiment, the contribution of R-Compound
caling is verified.

Fig. 7 shows a comparison of detector performance under different
arameter adjustment strategies. R-Compound Scaling have obviously
etter performance than single-factor adjustment strategies and as the
nput resolution increases, the advantages of R-Compound Scaling be-
ome more significant. One can find that although we adjust the
etwork from the same baseline network, the strategy of sacrificing the
idth and depth to increase the input resolution is more conducive to
btain higher efficiency and accuracy.

https://github.com/cocodataset/cocoapi
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Fig. 7. Comparison of different scale adjustment strategies. The horizontal axis
represents FLOPs and the vertical axis represents accuracy. Each strategy can improve
accuracy, but our R-Compound Scaling method achieves higher efficiency.

Table 5
Comparison Among Different Baseline Networks.

Model mAP Para. FLOPs

EDD-d1 𝑤 EfficientNet-b0 18.3 4.55M 11.12B
EDD-d1 𝑤 EfficientNet-b1 18.8 7.05M 13.34B

EDD-d2 𝑤 EfficientNet-b1 20.3 7.24M 20.57B
EDD-d2 𝑤 EfficientNet-b2 20.6 8.38M 21.96B

EDD-d3 𝑤 EfficientNet-b2 20.9 8.59M 31.78B
EDD-d3 𝑤 EfficientNet-b3 21.2 11.55M 38.17B

4.4.3. Lightweight backbone
In this section, we evaluate our detectors have better trade-off with

fewer parameters and FLOPs. It can be seen from Table 5 that reducing
depth and width of the backbone hardly effect the detection accuracy.
mAP of EDD-d1 and EDD-d3 drop by 0.5 and 0.3 respectively. But at
the same time, the efficiency of our detector has improved significantly.
Notably parameters of EDD-d1 drops by 2.5M (35.5%), parameters of
EDD-d3 drops by 2.96M (25.6%). We believe that it is worthwhile
to sacrifice the backbone size to improve detector efficiency. Espe-
cially, when the input resolution is large, the advantages of lightweight
backbone will be more obvious.

In order to further understand the advantages of our lightweight
backbone, Fig. 1 shows the trend of FLOPs and mAP with the increasing
input resolution of several common one-stage detectors. Notably, as the
input size increases, EDDs achieve higher efficiency. Our EDDs have
fewer parameters than other one-stage detectors, which also proves that
the proposed EDDs have more competitive performance in fabric defect
detection in industrial scenes.

5. Conclusion

In this paper, we present a family of EDDs for fabric quality in-
spection. The proposed EDDs utilize a R-Compound Scaling strategy to
adjust the depth, width and input resolution so that a series of detectors
can be defined. Based on the characters of fabric defect detection, the L-
FPN and lightweight backbone are developed to improve the efficiency
of EDDs. The former can guide the network to focus more low-level
feature which is significant for distinguishing the defects. The later can
retain more resources for larger size input, leading to improvement
on both accuracy and real-time performance. By adopting the above
strategies, EDDs show excellent performance when comparing exist-
ing detectors in fabric defect detection even with considerable fewer
parameters and FLOPs. As the better trade-off made by EDDs, it is
7

certainly helpful to be utilized in different fabric production scenarios
with different resource restrictions.

Future work will be carried out in the following aspects. Firstly,
lightweight EfficientNet is used as the backbone in the paper based
on the consideration of the characteristics of fabric defect. Although
effective, EfficientNet is developed for natural image. The design of
backbone network for defect detection would be investigated in the
future for further improvement. Secondly, owing to the low probability
of occurrence of defective samples in industrial production, it is difficult
to collect sufficient defective images. Moreover, accurate labeling of
defective images involves much human effort and is commercially
expensive, which hinders extensive application of DCNN in industrial
fields. In the future, we will investigate effective training strategy to
use fewer labeled defective images to accomplish the training process.
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