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Abstract: Large-scale multi-objective optimization problems (MOPs) that involve a large number of decision variables, have emerged
from many real-world applications. While evolutionary algorithms (EAs) have been widely acknowledged as a mainstream method for
MOPs, most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.
More recently, it has been reported that traditional multi-objective EAs (MOEAs) suffer severe deterioration with the increase of de-
cision variables. As a result, and motivated by the emergence of real-world large-scale MOPs, investigation of MOEASs in this aspect has
attracted much more attention in the past decade. This paper reviews the progress of evolutionary computation for large-scale multi-ob-
jective optimization from two angles. From the key difficulties of the large-scale MOPs, the scalability analysis is discussed by focusing
on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables. From the per-
spective of methodology, the large-scale MOEAs are categorized into three classes and introduced respectively: divide and conquer
based, dimensionality reduction based and enhanced search-based approaches. Several future research directions are also discussed.
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Scalability of MOEAs, which characterizes the chan-
ging trend of algorithm performance with the problem

1 Introduction

Many real-world optimization problems involve mul- size, is not only a long-standing concern in the evolution-

tiple objectives, which are called multi-objective optimiz- ary computation communityl'?; but also is critical to

ation problems (MOPs)[. The conflict between the mul-
tiple objectives makes it impossible to find a single solu-
tion that can optimize all objectives simultaneously.
Searching for the best trade-off solutions, called Pareto-
optimal solutions2, for MOPs is thus critical to a de-
cision maker. Evolutionary algorithms (EAs) are able to
approximate the whole set of Pareto-optimal solutions in
a single run due to their population-based nature and do
not make particular assumptions about problems like con-
tinuity or differentiability. Thus, the use of EAs to deal
with MOPs have been extensively studied5 and plenty
of powerful multi-objective EAs (MOEA) have been pro-
posed[6-11],
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whether MOEAs can be applied to broader real-world
problems. In the context of MOPs, the number of de-
cision variables and the number of objectives are two key
factors for the problem size. Scalability with respect to
the number of objectives, referred to as many-objective
optimization, has drawn steady attention in past decades
and a number of surveys are available[!3:14, On the other
hand, although scalability with respect to the number of
decision variables has attracted wide attention, there is
no review paper in this regard. In recent years, there has
been an increasing interest in the scalability of MOEAs
with respect to decision variables, as large-scale MOPs
(i.e., MOPs with a large number of decision variables) ap-
pear widely in various real-world applications. For ex-
ample, the training of deep neural networks (DNN) needs
to take into account both empirical risks (such as train-
ing errors) and structural risks (such as network sparse-
ness), while typical industrial DNNs often contain mil-
lions of weights to be trained[!5-17. Commercial promo-
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tion on social networks requires both influence maximiza-
tion and cost minimization, while the number of nodes in-
volved in real networks (such as Weibo, Facebook, twit-
ter, etc.) can be in the order of millions or even hundreds
of millions!819, Problems recently faced in logistics
scheduling(20:21], software engineering(??, pattern mining(23],
and many other fields have also shown the characterist-
ics of large-scale multi-objective optimization problems,
leading to an urgent need for efficient and effective ap-
proaches. Nonetheless, most current practice of MOEAs
has been restricted in MOPs with small-scale decision
variables (normally, no more than 30). More recently,
empirical studies have shown a severe decrease in effi-
ciency of traditional MOEAs when increasing the num-
ber of decision variables?425. As a result, evolutionary
computation for large-scale MOPs has attracted a lot of
research effort in the past decade, which mainly focuses
on two major problems:

1) What are the difficulties associated with large-scale
multi-objective optimization? The scalability of MOEAs
is determined jointly by their search mechanisms and the
problem properties. An in-depth analysis of the specific
difficulties associated with different large-scale MOPs
when adopting different MOEAs can benefit the evalu-
ation of algorithms, and thereby facilitate the develop-
ment of new and improved large-scale MOEAs. To this
end, there has been some work to systematically explore
the scalability of traditional MOEAs and put forward
some discoveries about the challenges faced by the al-
gorithms[26-28], This paper briefly reviews recent efforts in
this aspect.

2) How to enhance the scalability of an MOEA? As
mentioned above, research on designing MOEAs with
high scalability originates from practical needs. To this
end, basic ideas include simplifying large-scale MOPs via
divide-and-conquer methodology(?”) and dimensionality re-
duction% and improving the search ability of MOEAs by
rebalancing the exploration and exploitation28l. From
these three aspects, this paper summarizes the advances
in scalable algorithm designs. The main focus is on how
characteristics of MOPs and scalability challenges are in-
tegrated into the design of highly scalable MOEAs.

To summarize, this paper focuses on the scalability of
MOEAs with respect to the number of decision variables
and presents an extensive review of recent progresses on
evolutionary computation for large-scale multi-objective
optimization in the last decade. We first introduce the
study on the capabilities of traditional MOEAs to prop-
erly scale when increasing the number of decision vari-
ables as well as the difficulties encountered by these al-
gorithms, and then categorize recent developments on
scalable MOEAs into three classes based on the key idea
used: the divide-and-conquer, dimensionality reduction
and enhanced search-based approaches.
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The remainder of this paper is organized as follows.
Section 2 introduces the background of large-scale multi-
objective optimization. Section 3 briefly discusses the
scalability of traditional MOEAs and challenges associ-
ated with large-scale multi-objective optimization. Sec-
tion 4 summarizes the advances in scalable MOEA
designs. Finally, the paper is concluded in Section 5 with
some potential directions for future research.

2 Background of large-scale multi-

objective optimization

In this section, the background of large-scale multi-ob-
jective optimization is presented, including the problem
definition, the Pareto optimality, the scalability measure-
ments, benchmark problems and the concepts of variable
dependencies.

An MOP can be mathematically formulated as

min F(z) = (fi(z), -, fu(x))

x = (x1, - ,zp) €N

where the decision vector @ consists of ) decision
variables, the objective function vector F:Q — RM
consists of M objective functions, and  and R™ denote
the decision and objective spaces, respectively. Large-
scale MOPs refer to the subclass of MOPs with a large
number of decision variables. In this paper, we define a
large-scale MOP as an MOP with M > 2 and D > 100[29].
This is done to highlight the challenges posed by a large
number of decision variables to existing MOEAs[24:23]. As
stronger scalable MOEAs are developed in the future, the
number D would increase accordingly.

Given an MOP, the concept of Pareto optimality? is
defined as follows.

Definition 1. Given two solutions u,v and their cor-
responding objective vectors F(u), F(v), v dominates v
(denoted as w <wv) if and only if Vie{l,---,M},
fi(w) < fi(v) and 3j € {1, , M}, f;(u) < f(v).

Definition 2. A solution x* is Pareto-optimal if and
only if there exists no u € Q such that F(u) < F(x*). The
set of all Pareto-optimal solutions is called the Pareto set.
The corresponding objective vector set of the Pareto set
is called the Pareto front.

The goal of optimizing a large-scale MOP is to obtain
an approximation set P to the Pareto front (PF) with
two characteristics: 1) High convergence: All solutions in
P are as close as possible to the Pareto front; 2) High di-
versity: All solutions in P are as diverse as possible in the
objective spaceBl. To achieve such optimization goal, the
hypervolume indicator32:33] and inverted generational dis-
tance (IGD)BY which consider both convergence and di-
versity comprehensively are commonly adopted to meas-
ure the quality of an approximation set.

The scalability of an MOEA stands for the trend of its
solution performance with the number of decision vari-
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ables. It can be measured by identifying how the perform-
ance of the given algorithm changes as the number of de-
cision variables increases and the performance can be de-
scribed in terms of three aspects: the quality of the ob-
tained approximation set, the search efficiency, and the
search behaviors of the given algorithm in the objective
space. One way to evaluate the search efficiency is to cal-
culate the computational effort (e.g., the number of ob-
jective function evaluations) required by the given al-
gorithm to achieve the desired goal (e.g., an approxima-
tion set with expected quality). For example, the study in
[24] employs the number of objective function evalu-
ations needed by algorithms to produce a solution set
with a hypervolume value which is larger than 90% of the
hypervolume of the Pareto front. To study the search be-
haviors, one can plot the approximation sets obtained at
different evolutionary stages in the objective space or the
evolutionary curves of quantified quality indicators.

Benchmark problems for assessing the scalability of
MOEAs and designing large-scale MOEAs (i.e., MOEAs
for large-scale multi-objective optimization) are often ex-
pected to be scalable in terms of the number of decision
variables while keeping an invariant Pareto front. The
Zizler-Deb-Thiele (ZDT)B%, Deb-Thiele-Laumanns-Zizler
(DTLZ)B6l, walking-fish-group (WFG)B7, CEC 2009 com-
petition38 and large-scale multi-objective and many-ob-
jective optimization problem (LSMOP)B%40] test function
family are commonly used in the specialized literature.
These problems are characterized by multimodality, com-
plicated Pareto sets and Pareto fronts, separability
between decision variables and correlation between de-
cision variables and objectives, deception and epistasis(!2],
posing various difficulties for MOEAs to scale up to large-
scale MOPs.

Variable dependencies, including separability and con-
trol properties that characterize how a decision variable is
correlated to the convergence and diversity, are import-
ant aspects when considering scalability. A large-scale
MOP is separable if and only if each variable can be op-
timized independently, while there exist correlations
between at least two decision variables for non-separable
problems#ll. Thus, it is beneficial to solve a large-scale
MOP with high separability by decomposing it into sever-
al small-scale problems. The separability of some popular
benchmarks has been studied recently[243l. On the other
hand, the decision variables of an MOP can be categor-
ized into three types in terms of how they are mapped to
the objective space, i.e., the position variables, the dis-
tance variables and the mixed variables/ll. If modifying a
variable on its own only results in non-dominated object-
ive function vectors, it is called a position variable. If
modifying a variable on its own only results in dominat-
ing or dominated objective function vectors, it is called a
distance variable. The other decision variables are called
mixed variables. Thus, this property allows one to separ-
ate the convergence and diversity aspects of sets of solu-

tions for an MOP.

It should be noted that although many-objective op-
timization (M > 4) and large-scale single-objective optim-
ization (M =1,D > 100)446] are related to large-scale
multi-objective optimization, current studies in these two
directions do not yield effective MOEAs for large-scale
MOPs. On one hand, effective methods for high-dimen-
sional objective space (i.e., many-objective optimization)
may encounter degradation in high-dimensional decision
space (i.e., large-scale multi-objective optimization) be-
cause the mappings between decision variables and ob-
jectives can be quite complicated3847, On the other
hand, instead of searching for a single optimal solution as
that has been done in the large-scale single-objective op-
timization, MOPs aim at the Pareto set, implying a fun-
damental difference.

3 Scalability analysis

Generally, the main difficulty of MOEAs on large-
scale MOPs lies in that the search space of a problem ex-
pands exponentially with the dimensionality. Correspond-
ingly, the landscape of the search space may become
more complicated and the conflicts between multiple ob-
jectives may be more serious. Such an expanded and com-
plicated search space may quickly exceed the search abil-
ity of the existing MOEAs, and thus cannot be fully ex-
plored within a reasonable time budget. Therefore, it is
critical to consider the capabilities of MOEAs to prop-
erly scale when increasing the number of decision vari-
ables.

In the multi-objective research community, scalability
with respect to the number of decision variables has
rarely been considered before 2008. To our knowledge, the
only two related works in this direction before that are
the comparative study presented in [48] in which the per-
formance of four MOEAs (strength Pareto evolutionary
algorthm (SPEA)M) memetic-Pareto archive evolution
strategy (M-PAES)[3] Ishibuchi's and Murata's multiple-
objective genetic local search (IMMOGLS)P! and mul-
tiple-objective genetic local search (MOGLS)bY) are in-
vestigated on multi-objective 0/1 knapsack problems with
up to 750 decision variables, and a study on the scalabil-
ity of multi-objective estimation of distribution algori-
thms (MOEDASs)20l. An increasing interest in studying
the scalability of MOEAs has begun mainly since the sys-
tematic experimental studies were presented in [24,25],
where eight representative MOEAs (including nondomin-
ated sorting genetic algorithm II (NSGA-II)El, SPEA2(52]
Pareto envelop based search algorithm II (PESA-II)53,
Pareto archived evolution strategy (PAES)PY, one multi-
objective particle swarm optimizer (OMOPSO)[5), multi-
objective cellular genetic algorithm (MOCel)ll56], general-
ized differential evolution 3 (GDE3)P7 and archive-based
hybrid scatter search (AbYSS)8]) are examined on large-
scale benchmark problems with up to 2 048 decision vari-
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ables. By using the number of objective function evalu-
ations required by an algorithm to reach an acceptable
approximation of the Pareto front (i.e., an approximate
set with its hypervolume larger than 98% of the hyper-
volume of the Pareto front) as the evaluation criterion of
scalability, this work reveals the severe performance de-
terioration of the above eight MOEAs when increasing
the number of decision variables from 8 to 2 048. The
scalability of multi-objective evolutionary algorithm
based on decomposition (MOEA/D) is examined in [59]
by measuring the closeness of the obtained approxima-
tion set to the Pareto front under the same number of ob-
jective function evaluations. Unfortunately, the experi-
ment results show that the efficacy of the algorithms ex-
amined above decreases as the number of decision vari-
ables increases. Although OMOPSO generally performs
the best among the eight algorithms examined in terms of
the efficiency in reaching the Pareto front, the number of
objective function evaluations it requires can increase by
more than 1000 times, when the number of decision vari-
ables increases from 8 to 2 048. Thus, these algorithms
could hardly scale to large-scale MOPs efficiently.

The deficiency of these traditional MOEAs has thus
inspired further exploration of possible challenges faced
by these algorithms. For an in-depth analysis of the reas-
ons behind the inadequate scalability of these algorithms,
a systematic and comprehensive analysis is presented
in [28]. It empirically studies the performance of three
traditional MOEAs (NSGA-II, MOEA/DUl, S metric se-
lection evolutionary multi-objective optimization  al-
gorithm (SMS-EMOA)[0) and two MOEAs for large-
scale MOPs (weighted optimization framework-enhanced
speed-constrained multi-objective particle swarm optimiz-
ation (WOF-SMPSO)% and random embedding NSGA-
II (Re-NSGA)-IIBY) when applied to solve problems with
up to 8192 decision variables from the ZDT, DTLZ,
WFG and CEC 2009 competition benchmark sets. The
experiment results suggest two important phenomena.
First, it is found that the behaviors of the three tradition-
al MOEAs can be roughly used as a classification indicat-
or for the tested problems. More specifically, the prob-
lems can be categorized into three groups based on the
analysis: convergence-focused, diversity-type I and di-
versity-type II problems. The detailed results can be
found in [28]. Convergence-focused problems only require
MOEAs to have stronger convergence as a set of well-dis-
tributed solutions can be obtained relatively easily once
several good solutions have been found. Such problems
can thus be mitigated using techniques employed in large-
scale single-objective optimization. Diversity-type I prob-
lems require MOEAs to have stronger diversification but
ignore the correlation between position and distance func-
tions. Diversity-type II problems pose a great challenge to
the balance between diversification and convergence by
considering a correlation between position and distance
functions. The position and distance functions define the
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convergence and diversity aspects of sets of solutions for a
probleml]. For diversity-type problems, when the num-
ber of decision variables increases, achieving a good
spread along the Pareto front becomes more difficult and
the diversity of the algorithm deteriorates severely, which
is called the diversity loss. Such diversity loss associated
with diversity-type I problems is shown to be manage-
able by adopting NSGA-II, while the diversity loss associ-
ated with diversity-type II problems poses a great chal-
lenge for the three traditional MOEAs. A similar di-
versity loss is also reported for large-scale multi-objective
distance minimization problems in [27,61] by examining
NSGA-II, SPEA2 and MOEA/D. Second, when applying
the two recent large-scale MOEASs on these problems, it is
found that their performance deteriorates rapidly with
the increase of the number of decision variables espe-
cially on diversity-type II problems, which highlights the
need for further attention to these problems.

The separability of decision variables is a critical prop-
erty for large-scale multi-objective optimization. It has
been widely believed that fully-separable MOPs can be
solved simply by optimizing each variable in a fully inde-
pendent manner. Thus, some knowledge about separabil-
ity can be conducive to algorithm design and significantly
alleviates the curse of dimensionality. Motivated by this, a
simple but efficient algorithm called dimension-wise
MOEA (DW-MOEA) is presented in [28] so that one can
empirically analyze the separability property of a black-
box problem. It first divides the original D-dimensional
MOPs into D exclusive 1-dimensional sub-MOPs, and then
optimizes each sub-MOP separately. Indeed, experimental
studies on popular benchmarks including ZDT, DTLZ and
WFG show that DW-MOEA is able to achieve signific-
antly better efficiency than the representative NSGA-II,
MOEA/D and SMS-EMOA when applied to most separ-
able MOPs. Thus, DW-MOEA can be easily implemented
and employed as a quick attempt to check whether it is
worthy of developing more sophisticated algorithms. It
should be noted that this does not mean separable MOPs
are unworthy of studying. In fact, some of them can be
difficult due to other problem characteristics such as mul-
timodalityl62l. In [26], the scalability of MOEDAs are ex-
amined on a set of boundedly-difficult additively-separable
MOPs. Experiment results imply that even when the
separability can be identified preliminarily, the examined
MOEDASs can scale up exponentially with the number of
decision variables due to the combinatorial growth in the
number of Pareto-optimal solutions.

To summarize, this section reviews recent studies on
scalability analysis and challenge analysis with respect to
large-scale multi-objective optimization by taking into ac-
count different problem properties. It is expected that
such investigations can facilitate the development of new
and improved large-scale MOEAs, and can benefit the
design and evaluation of algorithms for specific aspects.
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4 Large-scale multi-objective evolution-
ary algorithms

To improve the scalability of MOEAs, basic ideas in-
clude simplifying large-scale MOPs via divide-and-con-
quer methodology and dimensionality reduction and im-
proving the search ability of MOEAs by rebalancing the
exploration and exploitation. Among them, divide-and-
conquer and dimensionality reduction approaches aim to
divide or transform the original search space of an MOP,
so that an algorithm only needs to search in one or more
subspaces. Since the subspaces are usually low-dimension-
al, such methods can alleviate the curse of dimensional-
ity caused by the increase in the number of decision vari-
ables. On the other hand, to avoid the issue that some
Pareto-optimal solutions fall outside the subspaces con-
structed via space division or transformation, which
would result in performance deficiencies, the enhanced
search-based directly explore the original search space,
but being equipped with enhanced search ability. These
strategies have also been adopted to solve some applica-
tions of large-scale MOPs, as presented in Table 1. In this
section, the progresses of large-scale MOEAs are re-
viewed from these three classes respectively.

Table 1 Applications of large-scale MOPs

icati Solution
Application Scale fechnique
Vehicle routing problem[63] 288 Divide and
conquer
N Divi
Capacitated arc routing problem[64] 375 ivide and
conquer
Feature selection[6%] 512 Divide and
conquer
Flight assignment![66] 1664 Divide and
conquer
Public transport network design[67] 2000 Divide and
conquer
Resource allocation[68] 1000000 Divide and
conquer
Sparse regression[69 1080000 Divide and
conquer
Enhanced
ineeri " [70]
Engineering design problem 145 search
Enhanced
isti ingl™1]
Emergency logistics scheduling 250 search
Software module clusteringl(72] 401 Enhanced
search
Service restoration in large-scale 15440 Enhanced
distribution systemsl[73] search

4.1 Large-scale MOEAs based on divide-
and-conquer methodology

In this type of large-scale MOEAs, cooperative coe-

volution29:74:75] has been one of the most popular ap-
proaches. Its main idea is to decompose the original high-
dimensional decision vector of the MOP into multiple
low-dimensional sub-components, which are expected to
be solvable more easily. More specifically, each decision
variable of the problem is assigned to a species popula-
tion based on some decomposition strategy and thus each
species population optimizes a particular part of the
large-scale MOP. After that, to assemble a full solution to
the original MOP, the objective function evaluations of
any individual from a species population is assigned based
on its interactions with individuals from other species
populations. Without prior knowledge about the object-
ive functions, a key challenge for this kind of algorithm is
how to decompose the problem while keeping the correla-
tions among different species population minimal. If two
or more decision variables with high correlation are as-
signed to different species populations and optimized sep-
arately, the search direction of the algorithm may be mis-
leading, resulting in performance degradation. For this
reason, various cooperative coevolutionary MOEAs with
different decomposition strategies are proposed for large-
scale multi-objective optimization.

Generally, the currently available decomposition ap-
proaches for large-scale multi-objective optimization can
be divided into two groups: those that decompose a de-
cision vector in a random way, and those that decom-
pose a decision vector based on an in-depth analysis or
learning of problem properties. Random decomposition-
based methods are mainly proposed for the reason that
dividing the decision vector into random groups could
provide better results than applying a deterministic
scheme, when dealing with non-separable problems[70].
Moreover, this kind of method can be further categorized
into static and dynamic methods. Dynamic methods are
proposed to further increase the chance of optimizing
highly-correlated decision variables together. The pioneer-
ing work in this direction starts the research on large-
scale MOEAs by introducing the first framework of co-
operative coevolution adopted within GDE3, namely co-
operative coevolutionary GDE3 (CCGDE3)2. The de-
cision variables are divided into multiple groups in a ran-
dom way and the cooperation among the groups takes
place in the objective function evaluation, where a ran-
dom individual is obtained from each species population
and then they are combined to form a complete set of
solutions. Results on ZDT problems with up to 5000 de-
cision variables verify the efficiency of CCGDE3. A simil-
ar random decomposition-based method adopted within
MOEA/D is proposed in [59] and verified on DTLZ prob-
lems with up to 1200 decision variables. However, since
it has been shown that ZDT and DTLZ problems are
mainly separable, their effectiveness when applied to non-
separable MOPs needs further analysis. A random-based
dynamic grouping strategy combined with MOEA/D for
large-scale multi-objective optimization is presented in
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[77]. It contains a random group size selection strategy
where a group size is dynamically selected with probabil-
ity in the evolution process. The efficacy of the resultant
algorithm is examined on WFG and CEC 2009 competi-
tion problems with up to 1 000 decision variables compar-
ing with two MOEA /D variants.

Analysis-based decomposition approaches aim at ex-
tracting some useful knowledge for the design of a suit-
able decomposition. Two types of variable dependencies
are commonly considered in the specialized literaturel4l],
One is the separability which considers correlations
among different decision variables and the other is the
control property towards convergence and diversity which
considers correlations between decision variables and ob-
jective functions. As these properties are often hard to
obtain in real-world problems, an empirical test method
based on decision variable analyses is integrated into
MOEAs, namely MOEA/DVA[™I. Tt first decomposes the
decision vector into two groups based on control proper-
ties of decision variables, and then further divides the
group consisting of distance variables into several groups
via an interdependence variable analysis. In this way, a
large-scale MOP can be effectively decomposed into smal-
ler and simpler problems and be conducive for solving
separable and partially separable MOPs. However, the
analyses are conducted by studying dominance-based re-
lationships between sampled solutions. Thus, it suffers
from prohibitively high computation costs and its benefit
deteriorates rapidly as the number of decision variables
increases. Concretely, the total number of objective func-
tion evaluations required for the variable analyses is
Dx NCA+15x NIAx D x (D —1), where NCA in-
dicates the evaluation number for control analysis, NIA
indicates that for interdependence analysis. This makes
MOEA/DVA difficult to scale up to large-scale MOPs
within a limited computation budget. A new variable
analysis method based on clustering to study the control
property towards convergence and diversity is presented
in [79]. It adopts the k-means method with features meas-
ured by the angles between sample solutions and the dir-
ection of convergence, where smaller angles indicate more
contributions to convergence and larger angles to di-
versity. This angle-based clustering method is shown to
be able to reduce the computation costs consumed for
variable analysis and the corresponding large-scale many-
objective evolutionary optimization (LMEA) could
provide better scalability. The total number of objective
function evaluations required for the variable analyses is
D x nSel x nPel + 1.5 x nCor x D x (D — 1), where nSel
indicates the number of selected solutions for variable
clustering, nPel indicates the number of perturbations on
each solution for variable clustering and nCor indicates
the number of selected solutions for variable interaction
analysis. Nevertheless, the computation costs required for
variable analysis also makes it difficult for LMEA to scale
up to large-scale MOPs.
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Unlike the above cooperative coevolutionary  ap-
proaches that optimize different groups of decision vari-
ables independently, WOF that optimizes the groups in a
different way is presented in [60,80]. The main idea of
WOF is to identify one promising reduced subspace based
on variable grouping and problem transformation. It first
decomposes decision variables into several groups, then
assigns a weight for each group by applying the same
weight value (in terms of multiplication) to every vari-
able in the same group. After that, it adopts a problem
transformation scheme to extend the concept of weight-
ing the decision variablesB!l to multiple objectives. There-
fore, given well-defined grouping and transformation func-
tions, the above weighting scheme is able to find a desir-
able reduced subspace. This is non-trivial, since such in-
formation can be hardly available in advance for real-
world problems. To solve this issue, WOF adopts an op-
timization-based method to search for the best configura-
tions. It formulates the above process as a weighting op-
timization problem to search for a best weight vector.
Due to the variable grouping, the weighting optimization
problem can be with low dimensionality and thus the
sub-problems face by WOF can be small-scale. It is worth
mentioning that instead of optimizing each group of de-
cision variables independently as was done in cooperative
coevolution based large-scale MOEAs, the grouping in
WOF is to find a set of weight variables. Based on the
weighting scheme, WOF optimizes the decision variables
as a whole and thus can be applicable to non-separable
MOPs. To overcome the drawback of limiting the search
space due to the weighting scheme, WOF alternates two
different phases of optimization: the weighting optimiza-
tion step and the normal multi-objective optimization
step. The performance of WOF is comprehensively stud-
ied by considering different grouping mechanisms, prob-
lem transformation functions and basic multi-objective
optimizers. More concretely, four grouping mechanisms
(random grouping, linear grouping, ordered grouping and
differential groupingl?), three transformation functions
(product transformation, p-value transformation, and in-
terval-intersection transformation) and thee classical
MOEAs (SMPSO, NSGA-II, GDE3) are examined to
verify the effectiveness of WOF. These WOF-based al-
gorithms are applied to solve ZDT, DTLZ, CEC 2009
competition and WFG problems with 1 000 decision vari-
ables and show superiority to state-of-the-art algorithms
especially in terms of efficiency. After WOF, the problem
transformation scheme is further studied and a novel
problem reformulation method by extending the unidirec-
tional search to a bi-directional search is proposed in [83].

There is also some work studying the influence of vari-
able grouping inside genetic operators for large-scale
multi-objective optimization. The work shown in [84] in-
vestigates the effect of grouping mechanisms inside the
mutation operators based on the well-known polynomial
mutation(8®l. Three types of mutation operators are pro-
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posed: the linked polynomial, the grouped polynomial and
the grouped linked polynomial mutations. The linked
polynomial mutation binds together the amount of
changes of the mutated variables per individual, assum-
ing that it would be beneficial to alter them by the same
amount. The grouped polynomial mutation separates
variables into distinct groups and then applies mutation
to a group as a whole, assuming that highly correlated
decision variables should usually be altered together. The
grouped linked polynomial mutation combines the above
two concepts. Two popular grouping mechanisms, i.e., the
ordered grouping and the differential grouping, are ex-
amined and the resultant mutation operators are adop-
ted within NSGA-II and SMPSO. Experiment results
conducted on WFG problems with 1000 decision vari-
ables indicate that the proposed mutation operators can
significantly improve the performance of existing MOEAs
for large-scale multi-objective optimization.

In recent years, with the popularization of computing
resources such as cloud computing platforms and high-
performance computing servers, some large-scale MOEAs
based on distributed or parallel mechanisms have also
been proposed. By using distributed resources or parallel
approaches to deal with multiple sub-problems obtained
by decomposition, the computational efficiency of the al-
gorithm can be increased significantlyl86. A message
passing interface-based distributed parallel cooperative
coevolutionary MOEA (DPCCMOEA) is presented
in [87]. It first decomposes decision variables into several
groups based on decision variable analyses similar to that
in [78] and then optimizes each group by a species sub-
population. The optimization of these groups is carried
out in a distributed platform. Within each species sub-
population, the individuals are further separated to sever-
al sets, each of which is assigned to a CPU, for a better
parallelism degree. Experimental studies on DTLZ and
WFG with 1000 decision variables show that DP-
CCMOEA could achieve a significant improvement in
terms of computation time with more than 200x spee-
dups compared with CCGDE3 and MOEA/DVA, when
using the Tianhe-2 supercomputer with 360 cores. The
work in [88] addresses large-scale MOPs by coevolution-
ary islands with overlapping search spaces. It follows the
basic framework of cooperative coevolutionary MOEAs
and each species subpopulation corresponds to an island.
Two kinds of coevolution among islands are investigated:
coevolution with disjoint islands where individuals in dif-
ferent subpopulations explore disjoint subsets of decision
variables and coevolution with overlapping islands where
overlapping of optimized decision variables is allowed.
Experiments on ZDT problems with up to 2 048 decision
variables show the efficiency of the proposed methods,
and also show that when increasing the number of is-
lands, the overlapping method significantly outperforms
the disjoint one.

Generally, the divide-and-conquer based large-scale

MOEAs have shown to be effective when applied to solve
most large-scale MOPs where no or weak correlations are
involved among decision variables. The problem is that
many real-world MOPs have highly complicated correla-
tions among decision variables, and thus the decomposi-
tion becomes harder to perform and the benefit of con-
suming large amounts of computing resources to analyze
correlations may be marginal.

4.2 Large-scale MOEAs based on dimen-
sionality reduction

The main idea of large-scale MOEAs based on dimen-
sionality reduction is to transform the original decision
space into a low-dimensional subspace, so that the origin-
al high-dimensional problem can be solved in the low-di-
mensional space. Two main difficulties in developing this
kind of approach are: 1) How to ensure the consistency
between the Pareto set of the transformed problem and
the Pareto set of the original problem; 2) How to get the
solution of the original problem after it is optimized in
the transformed space. In this section, some recent di-
mensionality reduction approaches for large-scale multi-
objective optimization are reviewed.

The intrinsic dimension of a problem which character-
izes the number of decision variables that would affect
objective functions significantly is a critical factor of a
large-scale MOP. If most decision variables of a given
large-scale MOP do not change objective functions
markedly, such problem is said to have low effective di-
mensionality®%. For this kind of problem, if an MOEA is
able to find their low-dimensional effective subspaces, it is
possible to improve the efficiency significantly. Random
embedding is a dimensionality reduction technique which
can exploit low effective dimensionality without knowing
which dimensions are important in advance and its effect-
iveness and efficiency has been shown when applied to
solve large-scale single-objective optimization problems
with low intrinsic dimensionality%9]. Inspired by this,
the random embedding technique is extended to large-
scale multi-objective optimization in [30]. A general, the-
oretically-grounded yet simple approach named multi-ob-
jective optimization via random embedding (ReMO) is
presented. ReMO can scale any derivative-free MOEA to
large-scale non-convex MOPs with low effective dimen-
sions using random embedding. It performs the optimiza-
tion in the low-dimensional effective subspace and evalu-
ates the objective functions of a solution through embed-
ding it into the original high-dimensional search space.
Theoretical and experimental results on modified ZDT
problems with 30 effective dimensions verify the scalabil-
ity of ReMO for large-scale MOPs with low intrinsic di-
mensionality. The drawback is that its performance may
deteriorate rapidly as the effective dimensionality be-
comes higher.

According to the Karush-Kuhn-Tucker condition(®l,
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the Pareto-optimal solutions of a continuous M-objective
optimization problem form a (M-1)-dimensional piece-
wise continuous manifold under some mild conditions,
e.g., the problem is differentiablel92l. That is, the original
search space is reducible under some mild conditions since
M is always much smaller than the number of decision
variables D. Based on this regularity property, an unsu-
pervised learning method to produce a low-dimensional
representation of training points from a high-dimensional
input space is presented in [93], namely Pareto-optimal
subspace learning-based MOEA (MOEA/PSL). It fo-
cuses on sparse large-scale MOPs in which most decision
variables of the Pareto-optimal solutions are zero. Unsu-
pervised neural networks are adopted to solve sparse
large-scale MOPs by learning the Pareto-optimal sub-
space. A sparse distribution of the decision variables is
learned by a restricted Boltzmann machine based on the
decision variables of the non-dominated solutions and a
compact representation is learned by a denoising autoen-
coder. The combination of the sparse distribution and
compact representation is regarded as an approximation
of the Pareto-optimal subspace, which allows the optimiz-
ation to be performed in the learnt low-dimensional sub-
space and the offspring solutions to be mapped back to
the original search space by the two neural networks. Ex-
periments on sparse large-scale MOPs with 0.1 sparsity
and 10000 decision variables verify the efficiency of
MOEA /PSL on this particular kind of large-scale MOPs.

Generally, the dimensionality reduction technique can
improve the scalability of an MOEA with a suitable
transformation. However, this is non-trivial since the
problem properties of real-world problems are usually un-
known. Thus, when applied to problems that are not con-
sistent to the assumption of the employed transformation,
the effectiveness of this kind of algorithm is not clear.

4.3 Enhanced
MOEAs

search-based large-scale

Different from the divide-and-conquer and dimension-
ality reduction-based approaches that improve the scalab-
ility by constructing low-dimensional space via division or
transformation, the enhanced search-based large-scale
MOEASs aim to improve the search ability of MOEAs by
rebalancing the diversification and convergence. This kind
of algorithms is suitable for dealing with large-scale
MOPs or sub-problems appearing in the division and
transformation that are difficult to divide and to reduce
dimensionality. For example, even additively-separable
MOPs can bring great challenges to the scalability of
MOEASs(20l, Thus, an enhanced search ability is critical
for large-scale multi-objective optimization.

As shown in Section 2, it is found that existing MOEAs
deteriorate severely and suffer a diversity loss with the in-
crease of the number of decision variables especially on a
type of MOPs that have highly-correlated relationships
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among different decision variables. Motivated by this ob-
servation, a scalable MOEA with an enhanced diversifica-
tion mechanism is developed in [28]. Its main idea is to
encourage diversity by forcing the search toward differ-
ent parts of the Pareto front. This is non-trivial because
the search space increases rapidly and the mappings
between the Pareto sets and Pareto front are complic-
ated. A new solution generator based on a novel dual loc-
al search (DLS) mechanism is employed to solve this is-
sue. In addition to the normal population which con-
siders the comprehensive performance of the algorithm on
both diversity and convergence, an external archive is
provided for the new solution generator to emphasize the
diversification ability. DLS is conducted on the archive to
generate a set of diverse new solutions. Two key points
shape the DLS. One is to search efficiently in the high-di-
mensional decision space, and the other is to keep di-
versity in the objective space simultaneously. First, con-
sidering that frequently changing the search direction of
an individual may reduce its search efficiency, an indicat-
or-based local search that limits the feasible search space
of an individual based on the local improvement of a cer-
tain indicator is employed. Second, in order to ensure
that different areas of the Pareto front can be fully ex-
plored, a local search is employed in the objective space.
That is, the individuals in the archive are explored in a
roll-polling way to avoid the diversity loss caused by loc-
al convergence. A synergy of the two parts constitutes
the DLS mechanism. After that, DLS is integrated with
the classical indicator-based SMS-EMOA to achieve a
better balance between convergence and diversity, lead-
ing to the resultant DLS-MOEA. Experimental studies on
ZDT, DTLZ, WFG and CEC 2009 competition problems
with up to 8 192 decision variables verify the competitive-
ness of DLS-MOEA compared with a number of state-of-
the-art algorithms and its advantage in the balance
between diversification and convergence. In particular,
the results on CEC 2009 competition show the superior-
ity of DLS-MOEA in terms of diversification ability.
Gradient-based methods are possible choices for
designing local search operators, which can make the
search more directional but require the objective func-
tions to be differentiable. To utilize this advantage, some
gradient-based information is employed in [94] for better
scalability. It defines descent direction as a unit vector
that intuitively represents a decrement in all objectives or
in most of them, and keeps the same value in the others.
The gradient-based information is integrated with MOEAs
and results in a two-stage algorithm named gradient-
based multi-objective evolutionary strategy (GBMES).
The first stage is to find a small set of Pareto-optimal
solutions and the second is to reconstruct the entire front
departing from a few points from such front. The gradi-
ent-based method is employed to perform a local search
for a small number of superior solutions with the aim of
accelerating the search toward the Pareto front. Experi-
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mental studies on DTLZ2 with up to 100 decision vari-
ables verify the scalability of GBMES.

Unlike most works that obtain a point in the object-
ive space by calculating the objective function values of
the decision vector, a model-based method for represent-
ing and searching non-dominated solutions is presented
in [95], so that a solution can be obtained through direct
sampling in the objective space. Its main idea is to con-
struct Gaussian process-based inverse models that map
all found non-dominated solutions from the objective
space to the decision space. These inverse models are
then used to generate new solutions by directly sampling
in the objective space. Experiment results on WFG and
modified ZDT and DTLZ problems with up to 104 de-
cision variables show the robust search performance of
this method. The drawback is that since the problem is
simplified severely to facilitate inverse modeling, its per-
formance on more complicated problems and problems
with larger scales may not be optimistic.

There are also some attempts to customize search op-
erators to improve the scalability of certain MOEAs9.97],
The work in [98] focuses on a specific type of large-scale
problems named large-scale sparse MOPs, where most de-
cision variables of the optimal solutions are zero. To deal
with this kind of problem and improve the sparsity of the
generated solutions, a new population initialization
strategy and genetic operators by taking the sparse
nature of the Pareto optimal solutions into consideration
are proposed. A test suite for large-scale sparse multi-ob-
jective optimization is also presented. Experiments on the
test suite with up to 1 000 decision variables and four ap-
plication examples (feature selection, pattern mining, crit-
ical node detection and neural network training problems)
with up to 1241 decision variables show its superiority in
solving large-scale sparse MOPs.

Parallel large-scale MOEAs have also been studied
within this category. Environment selection operators of
MOEAs play an important role in the balance between
convergence and diversity. Usually, environment selec-
tion operators are difficult to parallelize as the selection is
mainly performed after all candidates are evaluated.
Thus, this process can be computationally expensive
when faced with large-scale multi-objective optimization.
To accelerate the efficiency, a novel parallel framework,
namely parallel EA (PEA), that separates the environ-
mental selection operator from the entire evolutionary
process is proposed in [99]. The main idea is to separate
convergence and diversity aspects of the environmental
selection. More specifically, a series of independent sub-
populations are employed and optimized in parallel to
pursue a high convergence ability, and only a few repres-
entative solutions from different sub-populations are se-
lected as an archive to emphasize the diversification abil-
ity. The control properties including the concept of dis-
tance and position variables are used to remove the de-
pendencies among sub-processes (sub-populations) and

improve the parallelization of an algorithm. Experiment-
al results on the LSMOP benchmark problems with up to
1039 decision variables show the superiority of PEA in
terms of the convergence, diversity and speedup.

5 Conclusions and future directions

In this paper, the evolutionary computation for large-
scale multi-objective optimization during the past decade
of progress is reviewed. First, we summarize the scalabil-
ity analysis and challenges of traditional MOEAs when
applied to MOPs with a large number of decision vari-
ables. Second, the MOEAs for large-scale MOPs are di-
vided into three categories based on the mechanism of
improving the scalability of an algorithm: large-scale
MOEASs based on divide-and-conquer, large-scale MOEAs
based on dimension reduction and enhanced search-based
large-scale MOEAs. The research progress within each
category is reviewed and discussed respectively. In gener-
al, large-scale MOEAs, as an emerging research direction,
are still in their initial stage of development. Even though
a number of large-scale MOEAs have been proposed in
recent years, there are still many open problems that
need to be solved. Some directions that we believe are
worth investigating within this area are provided in the
following.

Large-scale MOP analysis system. The above-
mentioned scalability analysis and algorithmic character-
istic analysis imply that different types of large-scale
MOPs require different types of large-scale MOEAs. A
system that can analyze the characteristics of a large-
scale MOP systematically and comprehensively would be
conducive to providing fast algorithm design recommend-
ations for large-scale black-box MOPs and achieving the
best efficiency for a given problem. Although there are
some preliminary attempts in [25,28], it still lacks a sys-
tematic analysis, and thus it is worthy of further re-
search. On one hand, although characteristics of MOPs,
such as whether an evenly distributed sample of paramet-
er vectors in the search space maps to an evenly distrib-
uted set of objective vectors in fitness space (i.e., bias),
many-to-one mappings, and dissimilar parameter do-
mains, have been widely studied36-38] they are rarely
studied from the perspective of algorithm scalability.
Their respective impacts on the scalability of an al-
gorithm are worthy of in-depth analysis. On the other
hand, in the case that some characteristics are known to
have a key impact on algorithm scalability, a tool that
can detect these characteristics can help to provide some
prior knowledge for a black-box problem. Therefore, re-
search on such detection methods can be beneficial to the
design of algorithms.

In-depth analyses and understandings of the ef-
fectiveness of existing methods. The current practice
of validating large-scale MOEAs is mainly based on em-
pirical studies on artificially constructed test problems.
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Although they can reflect the difficulties of MOPs to
some extent, they are not specifically designed to study
the scalability of algorithms. Therefore, a test problem
set that can well reflect the characteristics of algorithms
in this respect is important for the research on algorithm
scalability. In spite of this, without a clear understand-
ing of the difficulties a real-world large-scale MOP
presents to an MOEA, the characteristics of the existing
test problems in the context of large-scale multi-object-
ive optimization are not well understood. Thus, it is diffi-
cult to assert the veracity of empirical studies conducted
on these test problems. In order to draw accurate conclu-
sions, it is imperative that the test problems employed be
well understood and be sufficiently representative of real-
world problems. On the other hand, the theoretical ana-
lysis of MOEAs has only been scarcely studied, and most
of them focus on the analysis of some relatively simple
discrete optimization problems such as pseudo-boolean
functions[t00,201] Therefore, more in-depth analyses and
understandings of large-scale MOEAs are needed. To be
specific, three aspects could be studied progressively.
First, in addition to MOP benchmark problems, further
studies of the performance of existing algorithms on real-
world large-scale MOPs are needed. Results observed
from these studies as well as prior knowledge of these
tested problems can be studied to reveal some new chal-
lenges induced by the increase of the number of decision
variables. Second, an in-depth analysis of these chal-
lenges should be conducted to discover new characterist-
ics that are important to the scalability of an algorithm
but are currently unknown. Such analyses would lead to a
test problem set tailed for scalability study. Third, on the
basis of the analyses as well as the newly constructed test
problems, the scalability of existing algorithms can be re-
assessed and studied, resulting in a systematic inference
about the advantages and disadvantages of existing meth-
ods.

Multi-method fusion. Many existing large-scale
MOEAs are not mutually exclusive. For example, many
enhanced search-based approaches can be used as an op-
timizer for sub-problems in decomposition-based ap-
proaches. The way to utilize the synergy of different
methods and integrate them to achieve a better scalabil-
ity has rarely been studied. Given a large-scale MOP, the
difficulties involved in the problem can be analyzed sys-
tematically through the above analysis system. Multiple
solution strategies could then be selected accordingly
from existing approaches, or designed from scratch. Fi-
nally, an algorithm that integrates these strategies adapt-
ively can be developed specifically for the target problem.
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