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Abstract: Objective image quality assessment (IQA) plays an important role in various visual communication systems, which can
automatically and efficiently predict the perceived quality of images. The human eye is the ultimate evaluator for visual experience, thus
the modeling of human visual system (HVS) is a core issue for objective IQA and visual experience optimization. The traditional model
based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively, while the model
based on physiological simulation is hard to integrate into practical visual communication services due to its high computational com-
plexity. For bridging the gap between signal distortion and visual experience, in this paper, we propose a novel perceptual no-reference
(NR) IQA algorithm based on structural computational modeling of HVS. According to the mechanism of the human brain, we divide
the visual signal processing into a low-level visual layer, a middle-level visual layer and a high-level visual layer, which conduct pixel in-
formation processing, primitive information processing and global image information processing, respectively. The natural scene statist-
ics (NSS) based features, deep features and free-energy based features are extracted from these three layers. The support vector regres-
sion (SVR) is employed to aggregate features to the final quality prediction. Extensive experimental comparisons on three widely used
benchmark IQA databases (LIVE, CSIQ and TID2013) demonstrate that our proposed metric is highly competitive with or outperforms
the state-of-the-art NR IQA measures.
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1 Introduction

In the 21st century, an informative network era, the
Internet has become an important way for people to ac-
quire the latest information and entertainment. Visual in-
formation, including images and videos, has accounted for
more than 80% of the total Internet traffic. High quality
visual experience is the common basis of major applica-
tions such as the digital media industry and network in-
formation service. Image quality assessment (IQA), dedic-
ated to evaluating human visual perception and predict
image quality, has been a fundamental issue in image pro-
cessing fieldsll. Although subjective IQA is the most ac-
curate approach, the slowness, time-consuming, laborious-
ness and difficult repetition of subjective IQA immensely
limit its progress. By contrast, objective IQA that re-
sorts to mathematical metrics for predicting the per-
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ceived quality of images automatically and efficiently has
been widely researched. In common IQA databases, the
distorted images are usually degraded from a pristine im-
age called the reference image. According to the avail-
able information of the reference image, objective IQA al-
gorithms can be classified into full-reference (FR), re-
duced-reference (RR) and no-reference (NR) algorithms,
respectively.

FR IQA models calculate the target image quality
with fully accessible reference images, and they usually
measure the “distance” between the perfect original im-
age and its degraded imagel. The mean-squared error
(MSE) and peak signal-to-noise ratio (PSNR) are two
classic and widely used metrics proposed long ago.
However, they have a poor correlation with subjective
perceptions in some conditionsll. For this purpose, Wang
et al.Ml propose the structural similarity index (SSIM)
combining luminance information, contrast information
and structure information based on the assumption that
the human visual system (HVS) is highly sensitive to the
structures in the image. In addition, plenty of successful
FR IQA algorithms are subsequently designed, such as
the visual information fidelity (VIF)Pl, the visual signal-
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to-noise ratio (VSNR)I6l and the perceptual similarity
(PSIM)[7l. When only partial information about the ori-
ginal image is available, RR IQA models take full advant-
age of this information to evaluate the image quality.
Wang et al.l8l propose an effective method using the nat-
ural scene statistics (NSS) features in the transform do-
main. In the spatial domain, Liu et al.l¥ report a RR
model compositing the bottom-up and top-down features
as reference data. Soundararajan and Bovik[l%9 develop
the reduced reference entropic differencing (RRED) met-
ric via the wavelet coefficients of original and distorted
images to assess their qualities. Min et al.[')l measure im-
age quality based on the saliency similarity.

However, the pristine image is nonexistent or unavail-
able in most of the actual scenarios, and thus NR IQA
models are highly desirable which require no original ref-
erences. Since there is no prior knowledge of the refer-
ence image, NR IQA is more difficult and challenging
than FR and RR IQA. In fact, the development of NR
IQA has been rapid and brilliant in recent years. Based
on the design philosophies of the measures, the NR IQA
algorithms can be divided into three types, which are
NSS-based, learning-based and HVS-based measures.
NSS-based NR IQA models are the earliest NR metrics
and their motivation is that high quality natural images
possess some kind of statistical properties, while de-
graded images no longer possess such properties. Typical
NSS-based NR models follow three major steps: feature
extraction, NSS modeling, and feature regression[!2l. In
the literature, Moorthy and Bovik[!3] propose a distortion
identification based image verity and integrity evaluation
(DIIVINE) model based on the statistical properties of
wavelet coefficients. Mittal et al.l'4 design a natural im-
age quality evaluator (NIQE) using the NSS of image
patches with high image contrast in the spatial domain.
Min et al.l'sl develop a blind IQA model called blind
pseudo-reference image based metric (BPRI) based on the
NSS of pseudo-reference images. Liu et al.[l!l propose an
unsupervised method with the structure, naturalness, and
the perception quality variations based on a pristine mul-
tivariate Gaussian model. An increasing number of learn-
ing-based NR measures have been proposed in recent
years, which try to learn and integrate the quality fea-
tures. For example, Ye et al.l7 report an unsupervised
feature learning framework method CORNIA (codebook
representation for no-reference image assessment) by con-
structing an unlabeled codebook from raw image patches
via K-means clustering. Xu et al.['8! introduce a NR IQA
metric based on high order statistics aggregation
(HOSA). A blind image evaluator using an optimized
end-to-end convolutional neural network is proposed by
Kim and Leel'9].

The human eye is the final receiver of visual signals
and the ultimate criterion of visual experience for human
beings. Computational modeling of HVS is a key scientif-
ic problem in visual experience optimization. Thus, in ad-
dition to the above two categories of NR models, the
HVS-based NR metric is also an important component of

NR algorithms, which is motivated by some properties of
the HVS, and extracts some perceptual-based features to
predict the image quality. Zhai et al.[29 propose a psycho-
visual image no-reference free-energy-based quality met-
ric (NFEQM) inspired by the free-energy principle inter-
preting the perception of an image as an active inference
process. Gu et al.2!l put forward a NR method incorpor-
ating free-energy based features, structural information
and gradient magnitude. Li et al.?2 design an NR IQA
metric employing no-reference quality assessment using
structural and luminance (NRSL) features inspired by hu-
man visual perception of images. Li et al.23l report an NR
IQA algorithm extracting perceptual features from first-
order and second-order structural patterns of images.
Saha and Wul?4 extract features from scale-space, Fouri-
er domain and wavelet domain to compute the quality
score of the target image. Although there are a lot of
HVS-based NR algorithms and the effectiveness of these
models has been proved, these metrics still have defects.
Traditional black-box regression models have low inter-
pretability, which can hardly guide visual experience op-
timization effectively, while the models based on physiolo-
gical simulation are difficult to integrate into practical
visual communication services due to theirs high compu-
tational complexity. How to construct a NR IQA metric
with high interpretability to bridge the gap between sig-
nal distortion and visual experience still deserves to be re-
searched.

In the literatures of neuroscience and brain theory,
visual experience can be induced by external stimuli, such
as the appearance of an imagel?®. Localization of the
neural structure is an important step in the process of
comprehending the fundamental mechanisms of the visu-
al system26l. The human brain is limited in its ability to
interpret all perceptual stimuli appearing in the visual
field at any position in time and relies on a gradual cog-
nitive process of the stimuli based on the contingencies of
the moment27. During perception, activation of visual
imagery ultimately results from bottom-up impacts from
the retinal28 291, Therefore, we attempt to propose a bot-
tom-up structured HVS-based approach to illustrate the
information transfer and feedback mechanism of visual
perception in the human brain. Combined with know-
ledge of image processing, we divide visual stimuli into
three bottom-up layers, which are a low-level visual layer,
a middle-level visual layer and a high-level visual layer.
Specifically, for an image, the global image can be re-
garded as the high-level visual excitation, and the local
primitives obtained from the decomposition of the global
image can be treated as the middle-level visual stimulus,
while the low-level visual layer is composed of all indi-
vidual pixels in the image. Conversely, the complete glob-
al image can be acquired by synthesizing its local primit-
ives, which are constituted by individual pixels of the im-
age. The diagram of our proposed structural computa-
tional modeling in the human visual system is shown in
Fig. 1.
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Fig.1 Diagram of our proposed structural computational
modeling of human visual system

In this paper, inspired by the above-mentioned frame-
work, a new NR IQA algorithm based on structural com-
putational modeling of the human visual system is pro-
posed, called NSCHM (no-reference structural computa-
tional of human visual system metric). We deeply invest-
igate and analyze the perception mechanism in HVS
based on multi-layer representations of the image. A set
of quality-aware NSS-based features are extracted as low-
level visual features. Deep features in the convolution net-
work are considered as middle-level features and free-en-
ergy based features are treated as high-level features in
our proposed method. Finally, support vector regression
(SVR) is used to aggregate these three layers’ features in-
to a perception quality index that can predict the quality
scores of target images. In order to demonstrate the ef-
fectiveness of our method, extensive experiments are per-
formed on three common image quality databases
(LIVEB CSIQBY and TID201332)) and the method is
compared with eight mainstream general-purpose NR al-
gorithms. Experimental results show that the proposed
NSCHM method is effective and superior or comparable
to the state-of-the-art NR models.

The remainder of this paper is organized as follows. In
Section 2, we describe details of the NSCHM metric. Val-
idation is given in Section 3, which demonstrates that
NSCHM is comparable to or outperforms the state-of-the-
art NR IQA models. Finally, we draw some general con-
clusions in Section 4.

2 The proposed algorithm

For characterizing the quality of images using struc-
tural computational modeling, we investigate three lay-
ers of perception mechanism in HVS. In this section,
three levels of features including low-level visual features,
middle-level visual features and high-level visual features
are analyzed and devised to characterize the quality of
distorted images effectively. After feature extraction, we
adopt SVR to regress those features into the final index
to represent the quality of target images. The overall dia-
gram of the NSCHM method is illustrated in Fig. 2.

2.1 Feature extraction in the low-level
visual layer

The features extracted from NSS have been widely ac-
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Fig. 2 Overall diagram of the NSCHM algorithm

cepted in the NR IQA field because of their stability and
efficiency. The NSS-based features in the spatial domain
can judge the degree of image degradation by the charac-
teristics at pixel level since high-quality original scene im-
ages satisfy some certain statistical characteristics, while
quality degradation may alter these characteristics. This
is consistent with the low-level visual features we expec-
ted. Therefore, in this section we will introduce the selec-
tion of low-level visual features based on NSS in the spa-
tial domain.

Specifically, inspired by some previous studies[33; 34,
the locally mean subtracted and contrast normalized
(MSCN) coefficients of the intensity image of a target im-
age can denote the luminance effectively. Given an image
I, we first transform I to the intensity image H, and
then the MSCN coefficients of H can be calculated as

H(z,y) — p(z,y)

H,({E,y): U(l’,y)+1

where H (z,y) and H'(z,
normalized values of the intensity image at position
(z,y), x €{1,2,--- ,Lw}and y € {1,2,---
ial indices, Lw and Ly mean the width and height of the

y) represent the pristine and
, Ly} are spat-

image respectively. p(z,y) and o (z,y) denote the mean
and standard deviation of the local patch with the center
(z,y), which can be computed as

U \4

Z Z wWu,oH(x + u,y + v)

u=—U v=—V

U 1%
c@y) =y 3 N wunlH+uy+v) - plzy)?
u=—U v=-—V
where w = {wup|lu=-U,- -, Uv=-=V,--- , V} stands

for the 2D circularly-symmetric Gaussian weighting
function and U =V =3 in this implementation.
RudermanB¥ observes that these normalized luminance
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values of natural images have a great correlation with the
unit normal Gaussian characteristic. These properties of
MSCN coefficients can be used to describe the distortion
level of the target image. To demonstrate this fact, the
MSCN coefficients’ distributions of a reference image
selected from TID2013 IQA databaseB? and its corres-
ponding degraded versions with different distortion types
are shown in Fig.3. It is obvious that the distributions of
the reference image and its various distorted versions are
different, which indicates that the statistical properties of
MSCN coefficients can be changed by various distortions.
In addition, as reported by [33], the distribution of the
original image presents a Gaussian like appearance and
each distortion deviates from such kind of properties in
its own way. For describing the MSCN coefficients’
distribution specifically, a generalized Gaussian distri-
bution (GGD) is employed which can effectively depict
the broader spectrum of the distorted image statistics.

The zero-mean GGD is expressed as

G(w;0,0°) = m exp <_<%)a)

1.0 — Original
0.9 . |7 GBlur
"'\ —— AWGN
0.8 \ |— JPEG
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Fig.3 MSCN distributions of a reference image and its
corresponding degraded versions with different distortion types
including additive white Gaussian noise (AWGN), Gaussian
blur (GBlur), JPEG compression (JPEG) and JPEG2000
(JP2K): (a) Original image extracted from TID2013 database;
(b) MSCN distributions.

where 8 =04/I'(1/a)/T'(3/a) and gamma function I'(-)

is defined as

I(p) = /0 T el dg, o > 0

where o and o are the parameters, which control the
magnitude and the variance of the distribution,
respectively. Then, we employ this GGD model to fit the
above-mentioned MSCN distributions from the target
images and extract o and o as the quality-aware features
for our low-level visual feature group.

In addition to the statistical distribution of each pixel,
we also consider the statistical law of adjacent pixels,
which exhibits a regular structure and is sensitive to the
presence of distortion33l. Thus, we compute the pairwise
products of adjacent MSCN coefficients in four orienta-
tions including horizontal, vertical, main-diagonal and
secondary-diagonal. The distributions of the pairwise
products of the adjacent MSCN coefficients of the refer-
ence and its various degraded versions along the horizont-
al direction are illustrated in Fig.4. The difference
between the distribution of the original image and that of
its distorted version can be clearly distinguished. Simil-
arly, we adopt a zero mode asymmetric generalized Gaus-
sian distribution (AGGD) model to fit these distribu-
tions of the adjacent coefficients:

G(z;v,07,00) =

mm (‘(_7‘7)7) Lifz <0
me"p (—(;Tf) ), ifz <0

where Bi=0y+/I'(1/7)/I'(3/7) and Br=0,/I'(1/7)/T(3/7)
control the expansion of each side respectively, while v is
the parameter controlling the magnitude of the mode.
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Fig. 4 Distributions of the products of the adjacent MSCN
coefficients along the horizontal orientation of an original image
and its corresponding degraded versions distorted by AWGN,
GBlur, JPEG and JP2K.
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Then the mean of the above distribution can be
calculated as

I'(2/7)
=(Br — B1)
r/y)
The means 7 in the informative model parameters
(v,m, Bi, Br) of this AGGD model are extracted as our
low-level visual features considering its high sensitivity to

various degradation of images proved by extensive experi-
ments. Since multi-scale processing contributes to im-
prove the correlation between predicting scores of QA
models and the human perception, we extract all fea-
tures at two scales including the original scale and a re-
duced resolution downsampled with a factor of two. Fi-
nally, a total of twelve features, six at each scale, are em-
ployed as the low-level visual features L; to measure the
quality of the target image.

2.2 Feature extraction in the middle-level
visual layer

Following the low-level visual feature extraction, in
this section, we will discuss the middle-level visual fea-
ture extraction. As mentioned above, we consider that
the middle-level visual feature is more advanced than the
low-level visual features, which is no longer the informa-
tion at the pixel level, but the characteristic of some loc-
al primitives in the images. It is known that the convolu-
tional neural network (CNN) can extract local features of
images by calculating the cross-correlation between con-
volution kernels and feature maps. With the develop-
ment of deep learning in recent years, deep CNNs show
great performance in solving various visual signal prob-
lems, such as image recognitionl35 361 detection37 38, trac-
king[3% 401, etc. Also, many studies indicate that local fea-
tures extracted by CNNs response to edge, texture, etc.,
which is consistent with the reaction of neurons in the
human visual system. The core of deep learning is passing
the kernel through continuous convolution iteration
between layers to realize the final goal, which accords
with the properties of the middle visual layer conceived
by us. How to extract suitable deep features as the
middle-level visual features is the target of this section.

As a novel concept, the pseudo-reference image using
the worst image to act as a reverse reference image is
proved to be effective in NR IQA models[!3]. Inspired by
this concept4l], we combine a deep convolutional neural
network with this framework to extract middle-level visu-
al features. The framework of the proposed middle-level
feature extraction is illustrated in Fig.5. First, we need to
confirm the distortion types for the distortion aggrava-
tion to produce the pseudo-reference images. Since differ-
ent categories of distortion bring in different artifacts, the
pseudo-reference image associated with a specific distor-
tion needs to be defined to comply with the properties of
the given distortion. Generally, in most of widely used
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Fig. 5 Framework of the proposed middle-level visual features
extraction. P; to P, are multiple pseudo reference images, Ry
and R; to R, denote the representation maps in VGG. The
VGG-based perceptual representation includes six stages, in
which the zeroth stage is the raw pixels. M to M, indicate the
distorted image’s middle-level visual features combining the
texture and structure features of target distorted image and its
corresponding multiple pseudo reference images at different
convolution layers.

subjective IQA databases, AWGN, GBlur, JPEG and
JP2K are the four most mainstream encountered distor-
tion types. Thus, these four distortion types are used to
further measure the noising, blurring, blocking and
ringing artifacts via degrading the distorted image. For
different categories of distortion aggravation, VGG-based
representation maps are generated and the middle-level
visual features are extracted based on the features in
these maps. Since the visual geometry group (VGG) net-
work has great power in representing image local features,
we calculate the VGG-based representation maps for dif-
ferent categories of distortion aggravation images and ex-
tract the middle-level visual features from these maps.
The details are introduced as follows.

Firstly, we introduce the methods of distortion ag-
gravation for each distortion type. To achieve noising ef-
fects, we add white noise to the distorted image D to ob-
tain the multiple pseudo reference images (MPRIs) Pp;

P,i=D +N(O,U~;)

where ¢ represents the i-th degree of distortion
aggravation, AN(0,v;) indicates a random normal
distribution with zero mean and v; variance. For the
blurring effect, we blur the distorted image D to MPRIs

Py; by employing Gaussian kernels:
P, ni — gz * D

where G; is a Gaussian kernel with determinate standard
deviation and * denotes a convolution operator. To
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realize the blocking effect, the JPEG encoder is used to
compress the distorted image D to the MPRIs Pj;:

P;; = JPEG(D, J;)

where JPEG indicates the JPEG encoder and J; adjusts
the compression quality. For producing the ringing effect,
we compress the distorted image D to the MPRIs P, by
adopting the JP2K encoder:

Py = JP2K(D, Q;)

where JP2K means the JP2K encoder and @; is used to
change the compression ratio. In total, the subscripts n,
b, j, ¢ denote noising, blurring, blocking and ringing
effects, respectively. In addition, the degrees of distortion
aggravation are divided into five levels for each distortion
type, which means ¢ = 1,2, --- ,5 in this work.

After distortion aggravation, we carry out the process
of extracting middle-level features based on the target
distorted image and its corresponding MPRIs. Ding et
al.l42 find that only calculating the spatial means and
variances of feature maps in the convolutional neural net-
work receive an efficient parametric model towards visu-
al quality. Thus, in this work, we employ a VGG net-
work in the target distorted images and their correspond-
ing MPRIs and calculate the mean and variance in each
feature map of the VGG network as well as the input im-
age. Specifically, the MPRI connected to the convolution
responses of five corresponding VGG layers is composed
of the representation:

z;7 ymyj =1

R(z) = {a{"i =0, iz =1, )
where m =5 in this work, which means the number of
convolution layers of R and k; denote the number of
feature maps in the i-th convolution layer. R(z) is the
representation for the z-th MPRI. Similarly, we can also
derive the representation for the target distorted image:

After that, the quality features extracted from R(z)
and R(d) are required to be specified. Inspired by the fea-
tures in SSIMM, we calculate the quality features of the
texture and structure of each pair of the feature maps of
the target image and its corresponding MPRI based on
the global means and variances:

201 + ey
NOREON 25 7dy
H&;" 4" = )2 (@)
(1) + (u) +en
o 20'(_i)~ + c2
0 ) =

where ¢t and y denote the similarities of the global means
(texture features) and global correlation (structure

features), respectively. MS)’ ,uf;), ag) U;i_) and a(i)d

indicate the global means and variances of a:( ) and dzl)
as well as the global covariance between xg.) and d;z),
respectively. ¢; and c2 are two small constants to prevent
instabilities when the denominators are close to zero.

Finally, based on the structure features of the target
distorted image and its corresponding MPRI at different
convolution layers, the middle-level visual features M are
extracted:

m ki
1= (& #(z7,dV) + diy(2,d))
:0 =1

where {&;;,0:;} represents the positive learnable weights,

which satisfy Z Z (&j +di5) = 1.

2.3 Feature extraction in the high-level
visual layer

After discussing the extraction of low-level visual fea-
tures and middle-level visual features, in this section we
will explore and analyze the high-level visual feature ex-
traction. Since the high-level visual features take the
global image as a whole, we need to seek a model aiming
at the whole image to extract the features. We thor-
oughly investigate the visual perception models of the hu-
man brain and attempt to characterize the quality of im-
age from the high-level visual perception in HVS.

Specifically, we employ the free-energy principle meth-
od, which unifies several findings in brain theory and
neuroscience, to simulate the process of human action,
perception and learning43l. A fundamental theory of the
free-energy principle is that the process of cognition or
comprehending is an active inference behavior managed
by an internal generative model (IGM) in the human
brain4. When a “surprise”, such as an image signal,
transmits to the human brain via the retina, the brain
will spontaneously produce the useful part of the informa-
tion and ignore the redundant uncertain components for
explaining sensations using this IGM[. The perceptual
quality of the input thus has high correlation with the
discrepancy between the input image and its correspond-
ing representation generated by IGM[2l. Since IGM yields
the perception of the visual signals based on the integ-
rated input image, free-energy based features are re-
garded as high-level visual features in this work.

For mathematical formulation, we adopt K to repres-
ent the internal generative model. Also, we assume that
the process of visual perception is parametric, which ad-
justs the parameter vector 6 to explain visual scenes.
Given the input image I, the joint distribution P(I,6|K)
with the model parameters vector 6 can measure the
value of free-energy:
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—logP(I|IK) = flog/ P(I,0|K)d6.

To simplify this mathematical expression, an auxili-
ary term Q(60|I) is introduced to both the numerator and
denominator of the above equation. Using Jensen's in-
equality and dropping the generative model K in order to
make the formula clear, we can alter this equation to:

P(1,0)
I

Q6

~logP(1[K) < - [ Q6o

Afterwards, we can regard the right side of the above
equation as the free energy according to the knowledge of
statistical physics and thermodynamics/43:

P(1,6)
QO

Notice that P(I,0) = P(0|I)P(I), we can further in-
fer the above equation as

F6) = —/Q(9|I) log dé.

F(0) = —log P(I) + KL(Q(6|1)||P(6]1))

where KL(-) denotes the Kullback-Leibler divergence
between the approximate posterior and the true posterior
distributions. A more detailed derivation of free energy
can be found in [20].

Since the human brain is extremely complicated and
far beyond our current knowledge, the explicit expression
model of the free-energy has not yet been developed. To
solve this problem, some research attempts to approxim-
ate the free-energy calculating model using existing mod-
els for simulating image perception of the human brain.
In some earlier works(20: 211 the linear auto-regressive (AR)
model is employed to acquire the approximation F (é) of
the free energy F'(0). However, the calculation process of
the AR model is too complex, which leads to a relatively
long time for feature extraction. Based on the neurobiolo-
gical findings, sparse representation is suitable for denot-
ing natural images that agree with some properties, such
as spatial localization, orientation and bandpass in the
mammalian primary visual cortex of the brain [6l. Thus,
Liu et al.l4” and Zhu et al.l[48] use a sparse representation
method to approximately express the free energy. The
performance of the sparse representation method is
demonstrated to be more efficient and effective than the
linear AR model for predicting the quality of images.
Therefore, in this paper, we employ the sparse representa-
tion model to approximate the IGM.

Specifically, given the input image I, we first select a
patch 2, € R® from it with an extraction operator Os(-),
where B denotes the size of the patch. Then, the sparse
representation of xs; over an over-complete dictionary
D € RP*Y is equal to compute a vector as € RY to rep-
resent x5, which can be indicated as
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o1
a; = argmin = ||zs — Das||2 + A||as||p
as 2

where D is the dictionary that can be expressed as
[di,---,du], as € RV is the representation coefficient
vector of the extracted patch and U represents the
number of atoms in the sparse representation model. \ is
a positive constant used to balance the weight of the
reconstruction fidelity constraint term and the sparse
punishment term. Moreover, || - ||, represents the [P norm.
From the above formula, the sparse vector ai for
representing zs can be obtained. After that, the sparse
representation of the whole input image [ can be
expressed as

np

I= RZPOE(Da:)./ZOE(lg)

where I is the sparse representation of the entire image I,
which is regarded as the representation of I in human
brain. “./” means the element-wise division of two
matrices and n, refers to the number of patches. OT(.)
represents the transpose operation of O,(-) and 1p
denotes the vector whose values are all 1 with the size of B.
According to the above-mentioned analysis, the free
energy indicates a discrepancy between the input image
and its best prediction image by the IGM. Thus, free en-
ergy can be considered as a natural proxy for the quality
of perceptions. Based on the expression of free energy, the
prediction residual of input image I is defined as

RE =|1- ]|
where RE refers to the prediction residual of input image

I and |-| is the magnitude operation. After that, the
uncertainty of RE can be obtained by measuring its

entropy:
255
H=- Zpilogzpi
i=0
where

6= argmeinH(HUC, I)

and H shows the entropy of RE, which is also regarded
as the value of free energy. p; refers to the probability
density of the i-th gray scale in RE.

For illustrating the effectiveness of the free energy fea-
ture on describing image quality intuitively, the distor-
ted images generated from two reference images are selec-
ted from the TID2013 databaseB2. As shown in Figs.6(a)
and 6(b), these two images have different image complex-
ity in that Fig.6(a) possesses simple image content and
Fig.6(b) has complicated texture information. Two com-
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Fig. 6 Relationship between high-level visual feature H and
distortion levels with different types. (a) and (b) are two
reference images selected from the TID2013 database. (c¢) shows
the visual feature H of (a) over different distortion levels
distorted by GBlur. (d) shows the visual feature H of (b) over
different distortion levels degraded by JPEG.

mon distortion types, GBlur and JPEG compression and
five distortion levels are employed. The relationship
between high-level visual feature H and distortion levels
with different types are illustrated in Fig.6. As exhibited,
it can be observed that the values of H reduce gradually
with the deepening of degradation. Based on the great ca-
pacity of free energy features to measure degradations of
image quality effectively and its high-level visual proper-
ties, we select the free-energy feature H to be the high-
level visual feature in this work.

2.4 Quality evaluation

After extracting the quality-aware features from low-
level, middle-level and high-level visual layers, we need to
seek an appropriate mapping to learn the subjective MOS
values from the feature space using the regression mod-
ule, and then employ it to produce objective quality
scores. A total of 33 features are extracted from the three
visual layers, as shown in Table 1. Based on the number
of features and the effectiveness of regressors, we adopt
SVRMI to aggregate the quality-aware features, which
has been widely used in the NR IQA field (2% 33,

Specifically, given the training set &, the quality-
aware features F; and the corresponding subjective qual-

Table 1 Summary of the quality-aware features extracted
from three visual layers

Layer Category Number
Low-level NSS-based features 12
Middle-level VGG-based features 20
High-level Free-energy feature 1

ity labels g; (MOS) of the images are employed to train
the model:

model = SVR_ TRAIN([F], [¢:], I; € P)

where F; is composed of the low-level visual features L;,
the middle-level visual features M;, and the high-level
visual features H; of the training image I; in the training
set ®. Then, we can utilize this regressor to predict the
quality score of any target image with its corresponding
feature F:

V = SVR_ PERDICT([F], model)

where V' stands for the predicted objective quality score
of the target image. In this work, the LIBSVM packagel5]
is utilized with a radial basis function (RBF) kernel to

teach our proposed model.

3 Experimental results and analysis

In this section, we first compare the performance of
our proposed method with the performance of the popu-
lar NR IQA models on three common large-scale image
databases: LIVEBY, CSIQBY and TID201332 for validat-
ing the proposed NSCHM quality metric. The four most
mainstream distortion types that we mentioned above:
AWGN, GBlur, JPEG and JP2K are employed in the ex-
periment and distortion type of the Rayleigh fast-fading
channel simulation (FF) in the LIVE databasel3! is also
included. The performance on single distortion types is
also discussed. In addition, we analyze the robustness of
our proposed method through cross-validation under mis-
matched conditions. Finally, the ablation experiment is
employed to demonstrate the effect of features in differ-
ent visual layers.

3.1 Parameter settings and training pro-
cedure

In the process of exacerbating the distortion in the
middle-level visual feature extraction, the distorted im-
age is degraded by AWGN, GBblur, JPEG and JP2K
distortions with five degradation levels for each type. We
employ the Matlab to apply these four distortions and
the specific parameters are as follows. The five Gaussian
kernels of AWGN with standard deviations are from 0.5
to 2.5 with a step of 0.5, the five variances of GBlur are
from 0.3 to 0.7 with a step of 0.1 and the five quality
parameters of the JPEG encoder are from 0 to 8 with a
step of 2 as well as the five compression ratios of
JPEG2000 encoder are from 150 to 250 with a step of 25.
In addition, since the perceptual weights £ and § are un-
determined, we train the VGG-based representation mod-
el on the KADID dataset5!] to learn ¢ and 6.

In the part of the sparse representation in the high-
level visual feature extraction, the predefined dictionary
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adopts an overcomplete discrete cosine transform (DCT)
dictionary with the size of 64 x 144 which includes 144
atoms for sparse representation. The size B of each patch
vector is set to 64. The orthogonal matching pursuit
(OMP) algorithm[52! is used to work out the optimization
problem of sparse representation.

Since the model we proposed requires training, we
randomly divided the distorted images in each testing
databases into two parts: a training set and a testing set,
which respectively include 80% and 20% of the images.
We train our proposed algorithm using the training set
and measure its performance with the testing set. This
80% train — 20% test process is repeated one thousand
times to guarantee the robustness of our metricl®]. The
median results over these one thousand iterations are se-
lected as the final performance to avoid the performance
bias as much as possible.

3.2 Experimental protocol

1) Databases: For examining the performance of the
proposed model, three widely used IQA databases are em-
ployed as testbeds, including LIVEBY, CSIQBY and
TID2013B2. A brief introduction of these three databases
is presented below:

The LIVE databasel3 is released by the University of
Texas at Austin, and is the most famous IQA database.
It contains 770 lossy images generated from 29 pristine
images by degrading them with five different types of dis-
tortions: AWGN, GBlur, JPEG, JP2K and FF.

The CSIQ databaseB3! is provided at Oklahoma State
University including 886 images created from 30 original
images. Six types of distortions are considered in the
CSIQ database, which are GBlur, AWGN, JPEG, JP2K,
global contrast decrements (CC) and additive pink Gaus-
sian noise (APGN) at four or five distortion levels re-
spectively.

The TID2013 databasel32 is the updated version of the
TID2008 database, which is developed with a joint inter-
national cooperation among Finland, Italy and Ukraine.
This database consists of 3 000 distorted images gener-
ated by corrupting 25 reference ones with 24 distortion
types at five distinct distortion levels.

2) Comparing algorithms: Eight popular IQA al-
gorithms are compared with our proposed NSCHM met-
ric, which are DIIVINE[3] BLINDS254 BRISQUEBS]
NIQE!M], QACBI, IL-NIQEPS, LPSIBY and BPRINS. In
these NR models, DIIVINE, BLINDS2 and BRISQUE are
opinion-aware models which need to be trained to integ-
rate the NSS features extracted from the wavelet domain,
DCT domain and spatial domain, respectively. The rest
of them are opinion-unaware models, where NIQE and
IL-NIQE are based on spatial domain NSS, QAC learns a
codebook to achieve quality-aware clustering, LPSI uses
local image structure statistics and BPRI utilizes a local
binary pattern.

@ Springer

3) Evaluation criteria: Four commonly used evalu-
ation criteria are applied to measure the performance of
the compared IQA metrics, including spearman rank-or-
der correlation coefficient (SRCC), Kendall's rank-order
correlation coefficient (KRCC), Pearson linear correla-
tion coefficient (PLCC) and root mean squared error
(RMSE)B8 59 The mathematical expressions of these four
measurements are as follows:

GZ; &

KRCC = IZC;Zd
52(Z-1)
4 _ _
S i —D)ai— )
PLCC=1- =1

Z; (pi = P)*(a: — @)°

RMSE =

where d; represents the difference between the ranks of
the i-th images in subjective and objective assessments,
and Z denotes the number of images in testing data set.
Z: and Zi mean the numbers of concordant and
discordant pairs in the testing database. p; and ¢; indicate
the converted objective score and subjective score of the
i-th image after the nonlinear regression. p and g are the
means of all p; and ¢;. Specifically, SRCC represents the
prediction monotonicity by only considering the relative
orders between the inputs, and KRCC is another
monotonicity index employed to evaluate the association
between the data. PLCC describes the prediction
linearity of an IQA metric and RMSE indicates the
prediction accuracy. A good IQA measure is expected to
acquire high values, which close to 1, in SRCC, KRCC
and PLCC, yet the low values, which near 0, in RMSE.

Furthermore, following the suggestions of the video
quality experts group (VQEG)E, PLCC and RMSE can-
not calculate performance by using the subjective scores
and the corresponding objective ratings directly. Accord-
ing to the guidance of VQEG, we adopt a regression ana-
lysis to conduct a nonlinear mapping between the sub-
jective MOSs and the corresponding objective ratings pre-
dicted by target IQA metrics. For the nonlinear regres-
sion, a monotonic logistic function of five parameters
{¢1,¢2,¢3,€4,¢s} is employed:

fl@)=¢G <0~5— m> + Gz + G5

where z and f(z) represent the raw input ratings and
mapped scores, and (;,7=1,2,3,4,5 stand for five
parameters to be ascertained during the process of the
nonlinear fitting.
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3.3 Overall performance comparison

First, we compare the overall performance of our pro-
posed algorithm with the above-mentioned eight state-of-
the-art NR IQA models on three widely used databases:
LIVE, CSIQ and TID2013. For a fair comparison, we re-
train the opinion-aware algorithms: DIIVINE, BLIINDS2
and BRISQUE, as well as our proposed method on the
same training set and measure them on the testing set of
each database. For the remaining models, we employ the
same testing set to test their performance. The overall
performance in terms of SRCC, KRCC, PLCC and
RMSE are tabulated in Table 2, where the three top-per-
forming models are highlighted.

It is observed that our proposed algorithm shows
great comprehensive performance and achieves the top
three positions on all databases in terms of various criter-
ia. By comparison, DIIVINE, NIQE and LPSI show relat-
ively moderate performance on three databases. BRIS-
QUE demonstrates good performance in LIVE and BLI-
INDS2 has high correlation with the subjective scores on
LIVE and CSIQ. Another observation is that IL-NIQE
and BPRI achieve great prediction performance in
TID2013 and CSIQ,
clearly demonstrate that our proposed method has high

respectively. These experiments

stability and superiority in assessing the perceived qual-
ity of images.

3.4 Performance on different distortion
types

In addition to testing the overall performance of al-
gorithms on individual databases, we also examine the
prediction performance of all NR IQA metrics on indi-
vidual distortions. The same training-testing process de-
scribed in Section 3.3 is implemented. The 80% degraded
images in the training set are all employed to train the
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models, while only images with the target distortion type
in the testing set selected from the rest 20% distorted im-
ages are applied to test. The mean results of our pro-
posed method and the compared blind IQA models on
single distortion types are summarized in Table 3. The
three best performances of each distortion type on differ-
ent databases is highlighted with boldface. For simplicity,
we only list SRCC values in Table 3, but we can acquire
similar evaluation results with other evaluation criteria.
From Table 3, it can be clearly observed that the
competition between each NR IQA algorithm is more in-
tense, and each metric has its own advantages. Specific-
ally, our proposed NSCHM is also comparable to these
popular metrics when performed on individual distortions,
which is consistent with the results of the overall per-
formance evaluation introduced in Section 3.3. In addi-
tion, we can find that BRISQUE obtains the best results
on the LIVE and has relatively mediocre performance on
the TID2013, while BPRI and LPSI perform much better
on CSIQ and TID2013. Furthermore, our proposed mod-
el shows more stable performance than other NR meas-
ures, and NSCHM has no SRCC value lower than 0.88
for a single distortion type. Our NSCHM metric has no
obvious weakness in these four common distortion types
on three popular databases.
3.5 Cross-validation wunder mismatched
conditions

In Sections 3.3 and 3.4, the performance of the NR al-
gorithms is based on the training-testing procedure on the
same database. Thus, in this section, we attempt to carry
out cross-validation experiments to test the robustness of
our proposed method under mismatched conditions. We
use LIVE, CSIQ and TID2013 databases as the training
set respectively, and then employ the corresponding re-
maining two databases as the testing set. The results are

Table 2 Overall performance comparison of the ten popular IQA methods and our proposed metric on LIVE, CSIQ and
TID2013 databases. We highlight the three top-performing models in each row.

Database Metric DIIVINEI3 — BLIINDS2054] BRISQUER3  NIQE[M QACK IL-NIQEG6 LPSIBF7T  BPRIN  NSCHM(pro.)
SRCC 0.869 7 0.9187 0.943 6 0.9088  0.8723 0.9021 0.8199  0.908 2 0.9483
PLCC 0.8799 0.926 8 0.947 2 0.6495  0.868 2 0.7111 0.8261 0.896 6 0.9531
Ve KRCC 0.689 6 0.7615 0.8000 0.7342  0.6802 0.724 5 0.6251 0.7435 0.806 0
RMSE 12.746 1 10.401 0 8.786 6 20.5656 13.4293 19.163 8 15.2895 12.1194 8.3033
SRCC 0.863 4 0.8977 0.866 9 0.8876  0.8410 0.888 5 0.7808  0.902 8 0.906 1
PLCC 0.8975 0.9225 0.896 1 0.9072 0.8745 0.9206 0.8729  0.9242 0.9328
osIQ KRCC 0.683 4 0.728 2 0.698 8 0.7055 0.6513 0.7109 0.5985 0.7351 0.7383
RMSE 0.1252 0.108 2 0.128 4 0.1187 0.1355 0.1073 0.1371  0.1057 0.099 2
SRCC 0.7513 0.8395 0.863 4 0.7995 0.8591 0.8757 0.7169  0.8995 0.9154
PLCC 0.793 9 0.880 6 0.8931 0.8124  0.8698 0.893 4 0.8147 0.8930 0.928 8
Tiba0is KRCC 0.588 0 0.654 7 0.6826 0.5980  0.6609 0.686 2 0.5127 07193 0.7519
RMSE 8.3791 6.6215 6.306 7 8.090 1 7.001 2 6.2758 8.15632 6.2959 5.328 5
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Table 3 SRCC values of our NSCHM and other IQA metrics in various individual distortion types on LIVE, CSIQ and
TID2013 databases. We highlight the three top-performing models with boldface.

Database Metric DIIVINE!IS]  BLIINDS2[54 BRISQUER3  NIQE!M QACK IL-NIQEPS LPSIPF7T BPRIM  NSCHM(pro.)

AWGN 0.960 8 0.944 2 0.9840 0.9724  0.9488 0.980 4 0.9575 0.9829 0.977 8
GBlur 0.857 6 0.909 7 0.953 3 0.9375 0.9235 0.9295 0.9301 0.9375 0.9459
LIVE JPEG 0.881 2 0.9490 0.966 2 0.9431 0.9475 0.9413 0.9706 0.968 5 0.951 3
JP2K 0.8151 0.933 6 0.911 2 0.9254 0.8901 0.905 7 0.9386 0.9237 0.924 8
FF 0.7911 08456 0.8772 0.8616 0.8296 0.823 4 0.7855 0.8409 0.905 5
AWGN 0.8051 0.868 9 0.902 7 0.8373 0.8225 0.867 9 0.7348 0.9436 0.8855
GBlur 0.8829 0.9172 0.894 9 0.9113 0.8405 0.8705 0.9159 0.9095 0.906 3
CSIQ
JPEG 0.883 4 0.904 1 0.903 7 0.8909 0.908 5 0.908 4 09541 0.9333 0.909 1
JP2K 0.853 8 0.901 4 08274 0.9263 0.8758 0.9225 0.9288 0.8797 0.904 8
AWGN 0.664 7 0.702 3 0.848 0 0.8594 0.7547 0.888 5 0.8331 0.9304 0.888 1
GBlur 0.8477 0.845 4 0.873 8 0.796 1 0.8835 0.841 2 0.8965 0.8785 0.895 4
TID2013
JPEG 0.669 9 0.818 8 0.8511 0.8576 0.876 5 0.8615 0.9284 0.9223 0.9017
JP2K 0.796 3 0.8759 0.862 4 0.8887 0.8912 0.907 7 0.9022 0.8900 0.8989
shown in Table 4. It can be observed that although the Table4 Cross-validation experiments under mismatched
performance declines compared with the performance un- conditions using LIVE, CSIQ and TID2013 databases
der mismatched conditions, it still maintains moderate Database Metric LIVE CsIQ TID2013
results without serious deviation, which is within the ac- SROC ~ 0.843 5 0.707 7
ceptable range. Therefore, the independence of our pro-
. . PLCC - 0.870 5 0.777 3
posed algorithm is favourable. LIVE
To demonstrate that our algorithm also has accept- KRCC - 0.676 6 0.586 7
able performance under the mismatched conditions, we RMSE - 0.1227 8.008 7
compare NSCHM with other competitive algorithms in SRCC 0.698 1 _ 0.765 6
this section. For the fairness of this experiment, we se-
o ) i PLCC 0.702 6 - 0.896 0
lect the opinion-aware algorithms, which are DIIVINE, CSIQ
BLIINDS2 and BRISQUE as well as a state-of-the-art KRCC 0.5191 - 0.586 7
training algorithm NFERM®2! to compare with our pro- RMSE 15.788 1 - 5.6519
posed method. We employ the TID2013 database as the SRCC 0.744 4 0.858 4 _
t?alnmg set and measure the performance of these met- PLOC 07730 0.9124 B
rics on LIVE and CSIQ databases. The performance res- TID2013
ults are demonstrated in Table 5. It is obvious that our KRCC 05674 0.6812 B
proposed algorithm has advantages compared with other RMSE 14.075 6 0.1020 -
oplnlon-awalje algorithms. The results of PLCC, KRCC Table 5 Performance results of our NSCHM and other NR
and RMSE in LIVE as well as the results of PLCC and metrics in cross-validation experiments under mismatched
RMSE achieve the best performance among these models. conditions. TID2013 database is employed as the training set
In addition, there are no relatively poor results for each and LIVE and CSIQ databases are applied to test the models.
sub-item indicating that the robustness of our algorithm Database Metric SRCC PLCC KRCC RMSE
is good.

DIIVINEL!!3] 0.5407 0.6178 0.4044 17.4470

3.6 Statistical significance analysis BLIINDS20%4  0.7009 0.7186 0.5375 15.4285

LIVE BRISQUEB3I 0.4681 0.5735 0.3678 18.1759
For Computing the statistical significance of our pro- NFERMI21] 0.7537 0.7374 0.5556 14.9850
posed NSCHM with these compared algorithms, we em-

oY ) NSCHM(pro.) 0.7444 0.7730 0.5674 14.0756
ploy a t-test to measure prediction residuals between the

. . . . oy (13]
converted objective ratings after the nonlinear fitting of DIIVINE 08904 0.9108 0.7181 0.1029

different NR IQA models and subjective scores. The pair- BLIINDS264  0.7022 0.7356 0.5201 0.1689
wise t-test evaluations are performed on LIVE, CSIQ and CsIQ BRISQUEB  0.8784 0.8866 0.7135 0.1153
TID2013, respectively. The statistical significance results NFERM2!] 07238 0.8478 0.5478 0.1322

are listed in Table 6, where the symbols “1”, “0” and

. . . NSCHM(pro.) 0.8594 0.9124 0.6812 0.1020
“=1” indicate that the proposed measure is statistically )
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(with 95% confidence) better, imperceptible and worse
than the corresponding NR IQA metrics in each column.
From Table 6, it is easy to find that NSCHM is superior
to all competitive NR IQA models on the LIVE database
and has great advantages compared with other competit-
ors on the TID2013 database, where only IL-NIQE and
BPRI are comparable to our method. In addition, al-
though the performance on the CSIQ database is not as
outstanding as that on the other two databases, no com-
petitor algorithm is superior to NSCHM. Thus, this ex-
periment demonstrates the advantage of NSCHM in eval-
uating the image quality statistically.

3.7 Ablation experiment

As described in Section 2, our proposed NSCHM con-
sists of three groups of features, namely low-level visual
features, middle-level visual features and high-level visu-
al features. Therefore, it is interesting to analyze the con-
tribution of each part to the overall algorithm. We con-
duct the ablation study on the LIVE, CSIQ and TID2013
databases. For quantitative analysis, we compute the me-
dian values of SRCC, PLCC, KRCC and RMSE via the
same 80% train — 20% test process described above for
each group of features. In addition, in order to make a
more detailed division, we divide the low-level visual
characteristics into the MSCN coefficient features and ad-
jacent MSCN coefficients features. The performance of
each feature group on different databases is demonstrated in
Table 7. In Table 7, LOW1 and LOW2 stand for the
MSCN coefficient features and adjacent MSCN
cients features in low-level visual features, respectively.
MIDDLE and HIGH denote the features extracted from
the middle-level and high-level visual layers. It is ob-

coeffi-

served that each set of features has favourable perform-
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ance, with LOW1 and MIDDLE performing better and
LOW2 and HIGH performing relatively worse. Another
observation is that the performance of each set of fea-
tures is inferior to the final proposed algorithm, which
means that each set of groups has its own impact on im-
proving the predicted accuracy of our proposed metric in
evaluating the perceived quality of images.

4 Conclusions

In this paper, a novel perceptual NR IQA metric
named NSCHM is proposed based on structural computa-
tional modeling of HVS. The proposed metric is inspired
by the fact that the human brain processes visual stimuli
in a hierarchical manner. We first analyze the process of
the human brain to handle the images and introduce the
framework of structured computing model. After that,
three groups of features are extracted, which are the low-
level visual features at the pixel level, the middle-level
visual features at the primitive level and the high-level
visual features at the global image level, respectively.
Then, we employ SVR to integrate these three feature
groups and predict the image quality ratings. Validation
experiments are conducted on three widely used IQA
databases, i.e., LIVE, CSIQ and TID2013, demonstrating
that NSCHM has outstanding performance with state-of-
the-art NR methods in overall performance comparison.
For individual distortion types, our metric still maintains
favourable performance. The cross validation experi-
ments testify the stable performance of NSCHM under
mismatched conditions.
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