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Abstract: Attention deficit/hyperactivity disorder (ADHD) is a common disorder among children. ADHD often prevails into adult-
hood, unless proper treatments are facilitated to engage self-regulatory systems. Thus, there is a need for effective and reliable mechan-
isms for the early identification of ADHD. This paper presents a decision support system for the ADHD identification process. The pro-
posed system uses both functional magnetic resonance imaging (fMRI) data and eye movement data. The classification processes con-
tain enhanced pipelines, and consist of pre-processing, feature extraction, and feature selection mechanisms. fMRI data are processed by
extracting seed-based correlation features in default mode network (DMN) and eye movement data using aggregated features of fixa-
tions and saccades. For the classification using eye movement data, an ensemble model is obtained with 81% overall accuracy. For the
fMRI classification, a convolutional neural network (CNN) is used with 82% accuracy for the ADHD identification. Both ensemble mod-
els are proved for overfitting avoidance.
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1 Introduction

Biomedical data processing has been recognized as a
prominent method of classifying fatal diseases for early
detection and treatment to prevent severe impacts. As
medical data provide relevant information to understand
the problems of patients, medical data is also crucial to
the classification process of various diseases which is the
basis of healthcare informatics(l. This includes clinical
data, which refers to informative health care data with
many effective details for the classification process. Many
scientific types of research have been implemented to im-
prove the treatment of various medical diseases using bio-
medical data for experimental purposes. Certain clinical
data measurements such as magnetic resonance imaging
(MRI), electrocardiography (ECG), electroencephalogra-
phy (EEG), eye tracking, heart rate, x-ray, etc. can be
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processed using various novel computational techniques
to extract relationships between biomedical data, making
the classification process, and precise decision making
possiblel?l. The process of biomedical data extraction and
classification has become an emerging technological need
for the identification and classification of medical prob-
lems providing rich and valid information for analysis.
This paper focuses on using various types of biomedical
data for the development of a decision support system for
the identification of attention deficit/hyperactivity dis-
order (ADHD).

ADHD is a common neurological disorder among chil-
dren, which can be identified by persisting behavioral
symptoms of inattention, hyperactivity, and impulsivity.
At present, there is an increasing growth in psycho-
physiological disorders. World statistics have shown that
there is an increase of 8.5%—9.5% in the number of chil-
dren who were diagnosed with ADHD from 2011 to
201781,

ADHD has a high prevalence of continuing into adult-
hood. Also, being a neuro-developmental disorder, there is
a potential of having comorbid disorders by nature.
Therefore, early identification and treatments must be fa-
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cilitated to avoid long-term negative academic and occu-
pational outcomeslll. The current clinical identification
process of behavioral rating scales is based on the symp-
tomology reported by guardians, hence making this
manual process subjective and unreliablel24. This motiv-
ates the research into clinical decision support systems
that uses healthcare informatics.

Currently, there is a growth in developing computa-
tional learning models for neural image analysis to sup-
port bio-health informatics[5:6l. The objective of this study
is to address the need for systematic measures as an al-
ternative to the use of ADHD classification using subject-
ive psychophysiological measures. We propose an integ-
rated system for both the child and adult ADHD identi-
fication process, which resolves the limitation of bound-
ing the classification process into one specific age group
as in related studies. As a novel contribution, the pro-
posed system uses functional magnetic resonance imaging
(fMRI) data in the resting-state brain for the children,
and eye movement data gathered during a working
memory capacity (WMC) task for adults. The methodo-
logy uses appropriate data pre-processing and classifica-
tion learning models that are selected using an extensive
literature review. Additionally, our work presents a novel
methodology to obtain an objective rating scale to indic-
ate the severity of the disorder for the subject who has
been identified with the possibility of having ADHD.
Thus, the proposed approach will assist psychiatrists with
diagnosing ADHD and aligning suitable treatments ac-
cordingly for both children and adults.

As the use of eye gaze data is emerging in the field of
cognitive disorders, the feasibility of using psycho-
physiological measures in ADHD classification is
possiblel”l. Hence, we believe using both eye movement
and fMRI data would increase the possibility of using
these physiological measures for accurate and valid AD-
HD classification. Considering eye movements, WMC
tasks have generated identifiable abnormalities or differ-
ences in fixations and saccades in ADHD subjects that
are sufficient for the classification process.

This study contributes to the design and development
of an approach to extract features from eye movement
and fMRI data, and classify them while maintaining high
accuracy, specificity and sensitivity by avoiding overfit-
ting. As far as we know, this is the first study that has
focused on both child and adult ADHD classification us-
ing two different datasets. Thus, having an extendable
framework is one of the novelties of this study. This re-
solves the constraint of bounding the data classification
into one specific age group. The development is based on
a serialized composition of a set of derived models. Thus,
the pipeline task implementation is another notable fea-
ture. In addition, we propose a mechanism to measure a
similarity score for the prediction of the disorder.
Moreover, we present an online ADHD-Care application
as two separate models in a single framework decision
support system (DSS) that can be easily used by medical
practitioners and technicians over different platforms and
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locations. Since this research mainly targets children and
adolescents, early detection and classification will be help-
ful to improve their lives as other control groups.

This paper is structured as follows. Section 2 de-
scribes the eye movement related studies and the tech-
niques used for pre-processing, feature selection, and clas-
sification of fMRI data. Section 3 discusses the datasets,
methodology in terms of the techniques used along with
the architectural aspects of the overall system. The key
features of the overall system are discussed in Section 4,
and Section 5 states the discussion of obtained results
and comparison with the existing work.

2 Background

2.1 Overview of eye movement data

Eye movement measurements provide relevant inform-
ation for the neuropathology of various disorders which
involve neurological substratesl8l. Therefore, analysis of
eye movements has become a prominent technique in
neuroscience to understand the complex neurological un-
derpinning of psychiatric disorders. Eye movement track-
ing provides informative data on visual and attention
abilitiesl”). Eye movement measurements provide an un-
derstanding of different psychiatric disorders based on
their underlying cognitive neurosciencell?l. For instance,
eye movement-related data are mainly used for the classi-
fication process of ADHD, reading disorder (RD), and
Autism, which provide a rich dataset for metrics of oculo-
motor controllll.

The oculomotor controls for performed tasks, reveal-
ing deficits that are related to each underlying process as
a result of a composite relationship between eye move-
ments and cognitive tasks(®l. As gaze related data or the
eye movements interact with congruent cognitive pro-
cesses, the derived oculomotor metrics can be used to de-
tect deficits in the above process for a variety of subjects.
Thus, it provides indications of different complex behavi-
ors of people who are suffering from psychiatric disorders.
Different types of gaze related movements have been
studied for research purposes to gain quantitative inform-
ation on the classification process. Eye movement data
include a variety of oculomotor controls such as duration,
velocity, trajectories of saccadic movements, and fixa-
tions!2l, Saccades are rapid eye movements that redirect
gaze. It moves the gaze centre from one fixation point to
another during the scanning process, thus, suppressing
the visual observationsl?l. Fixation is known as the move-
ment of gaze which is fixed at a point typically lasts for
250 milliseconds on average. During fixation, the gaze
point is on a target stimulus and needs a series of sac-
cades. ADHD subjects are found to perform many intrus-
ive saccades during tasks where they need to maintain
fixation![].
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2.2 Eye movement data related studies

Among related studies, Fried et al.!3] have explored
oculomotor markers of ADHD that can be used to differ-
entiate ADHD subjects with normal groups. The testing
process based on eye movements were able to reveal high-
er number of average micro-saccades, and blink rates of
ADHD groups in the time interval around the onset of a
stimulus. These rates were monotonically increased for
both groups. However, in ADHD group these rates were
increased rapidly, with a decrease of the pupil diameter
over the session. In another study, Michalek et al.[”] ana-
lyzed eye movements and their patterns to detect ADHD
confirming that complex span tasks used to measure
WMC generated fixation features which could be used to
classify ADHD. They have found that adults with AD-
HD have fixations primarily below the stimulus with less
direct fixations toward components within sentences(".

Moreover, Ross et al.l'4 have evaluated deficits in
working memory for both ADHD and schizophrenia pa-
tients. Eye movements of both subjects in oculomotor re-
sponse tasks have used a large percentage of premature
saccades, while schizophrenia subjects have shown im-
paired working memory. A similar study by Ross et al.l3]
has used smooth pursuit eye movement to compare the
abnormalities in ADHD and schizophrenia. They have
shown that many ADHD subjects have no smooth pur-
suit abnormalities with worse smooth pursuit gain, which
allow the eyes to closely follow a moving object. However,
leading saccades are present in schizophrenia subjects.

Eye movement tracking in the identification of AD-
HD and reading disorders has significantly contributed to
identifying atypical gaze related parameters. Munoz et
al.l6l have shown the difficulties of ADHD subjects in
maintaining fixation for an extended time duration with
reduced saccadic eye movements. These findings were
also supported by Deans et al.l% where subjects dia-
gnosed with the reading disorder had a longer duration of
fixations, and ADHD subjects tended to have atypical eye
movements compared to healthy groups. Saccades and
fixations related gaze parametric data were also used to
develop a rule-based system for the classification of AD-
HD[, This study considered eye moment and eye posi-
tions of different gaze event type data extracted from a
working memory task. They have considered the gaze
points, saccades, fixation and pupil diameter to extract
the features. Their methodology based on decision tree
classification has shown high accuracy. Hyun et al.ll7]
have assessed the visuospatial working memory impair-
ments of ADHD adolescents compared to normal sub-
jects by conducting a rey-osterrieth complex figure test,
that is based on copying and recalling capabilities.

A summary of eye-movement classification related
studies is stated in Table 1, where N/A refers to the
studies which tested the different eye movement pursuits
in ADHD. These studies have not been specifically used

for ADHD classification. Hence, accuracy values are not
included. The statistical approaches include techniques
such as analysis of variance (ANOVA) test, two sampled,
and paired t-tests. The decision tree algorithms consist of
techniques such as linear model tree (LMT), random
forest (RF), J48, and decision stump. The classification
rule-based algorithms include Part, and JRipl!8:19,

2.3 Overview of fMRI data

Functional magnetic resonance imaging (fMRI) is a
brain imaging method that was developed to denote time-
varying, regional variations in brain metabolism.

fMRI can detect abnormalities in the brain by ex-
amining the brain’s functional anatomy. fMRI uses mag-
netic resonance imaging (MRI) to evaluate the small
changes of blood flow in the active part of the brainl20l.
The variations happen as a result of either the task pro-
ducing cognitive state variations or the effect of resting-
state brain’s unregulated processes. Fig.1. illustrates the
sample 4D fMRI data in 2D format from the ADHD-200
global competition New York University (NYU) dataset21],
portraying the first five slices of the volume.

The basic form of fMRI uses the contrast of blood
oxygen level dependent (BOLD), which indicates the in-
put, integrative processing, and the output firing of neur-
ons. fMRI is mainly used to determine the brain's func-
tional anatomy, and to evaluate the diseases or as a guide
for brain treatments. Since fMRI has the qualities of high
availability, non-invasive, relative cost-effectiveness, and
better spatial resolution, it is widely used for clinical psy-
chology, cognitive neuroscience and presurgical planni-

Table 1 Summary of related studies on eye movement data

Used technique and obtained

Related accuracy
stud Features
study Statistical Decision tree Rule-based
approach  algorithm  algorithm
[7] Fixations - 91.11% -
[15] sncenden, pup 000% -
i » pup (ANOVA)
diameter
[11] lea.xtlo.ns, saccades, _ 84.48% 82%
pupil diameter
[14] Saccades (Post-hoc) - -
(9] F1xa?:1ons., saccades, 60.00% _ _
reading time
[16] Saccades (P-test) - -

Fig. 1 Sample 4D fMRI data in 2D format/2!]
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ng[Z, 22,23]

2.4 fMRI related studies

Several fMRI related studies?4 have revealed various
brain patterns that are a result of different mental pro-
cesses, which connect brain activation with mental func-
tionalities. There are significant approaches available in
related studies(2°27 to handle fMRI for neurological dis-
orders. The study by Subbaraju et al.[2’], have used rest-
ing-state fMRI data to identify various brain activities
due to autism spectrum disorder. Another study by
Dhayne et al.27l, has further proved the propensity of
handling fMRI data to identify neurological disorders.
ADHD is highly related to the default model network

Table 2 Summary of related studies for fMRI data

Relatedness

Limitation

ADHD classification framework with func-
tional connectivity measures and different
classifiersl©l,

A classification with saccades and fixa-tio-
ns in working memory to test the feasibility
metrics for ADHD identification[7.

Clinical usefulness of eye movement data to
classify ADHD and reading disability (RD)
using the reading time and left to right
saccadesl9].

Eye movements related to oculomotor res-
ponse tasks consideration for both ADHD
and schizophrenia subjects to show dis-in-
hibition[14].

Seed-based correlation (SBC) feature extr-
action for fMRI classification for ADHD
subjects(23].

Examine a 3D CNN model to classify ADHD
by utilizing fMRI and structural magnetic
resonance imaging (sMRI). Encoded prior
knowledge on 6 types of 3D low-level feat-
ures (ReHo, fALFF, voxel-mirrored homot-
opic connectivity (VMHC))[24].

SBC approach to identify the main DMN
regions for ADHD classification[28].

Establish an automatic and efficient ADHD
classification using ELM learning algorithm
on structural MRI datal29].

Shows the utility of FCC ANN archi- tecture
for ADHD classification. Used connectivity-
based features/[30.

Limited with customi-
zable classifier imple-
mentations, thus, acc-
uracy values may not
strong.

Only the tree-based
classification algorit-
hms are applied.

Less valid data and
brief reading task. Re-
sults provide less supp-
ort to distinguish AD-
HD and RD based on
eye movements.

The task cannot differ-
entiate primary from
secondary inhibitory
working memory dysf-
unction.

Mainly based on DMN
brain region. Thus, the
classification can be
improved considering
different voxels.

FMRI and sMRI data
are typically analyzed
separately and the
joint informationisnot
fully explored.

The classification is
based on a single
fMRI measure and 4
DMN regions. Results
may besubject to over-
fitting.

Only considers struct-
ural MRI data from
the subjects in the
ADHD-200 Global
Competition.

The comparison was
only done with the
deep belief network
(DBN) classifier and
only applicable for
adult data.
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(DMN), which is a broad brain network in neuroscience.
Table 2 summarizes some related studies. On attention-
demanding tasks, ADHD subjects display complications
in suppressing default mode activities. Therefore, studies
have addressed the effect of brain regions in the DMN
when classifying ADHD datal28].,

The work by Ariyarathne et al.28], used pre-processed
fMRI data using configurable pipeline for the analysis of
connectomes (C-PAC) application for the resting-state of
the brain to classify ADHD subjects. This study used a
seed-based correlation to obtain the functional connectiv-
ity among the seeds and identified brain voxels. The ex-
tracted seed correlations from DMN have been used for
the classification process based on convolution neural net-
works (CNN). They have identified the most correlated
brain areas of ADHD subjects, assuring high accuracy,
sensitivity, and specificity values, and showed the possib-
ility of identifying the correlated brain regions of ADHD
subjects. An extension of this work is presented
in [23], that uses un-processed fMRI images for ADHD
classification using CNN including optimal feature selec-
tion methods before applying the learning model. They
have shown that seed-based correlation gives high classi-
fication accuracy values compared to other feature extrac-
tion methods such as the fractional amplitude of low-fre-
quency fluctuations (fALFF) and regional homogeneity
(ReHo) 231,

A similar study is presented with different classifiers!®
including a generic decision support system (DSS) for
neuroimaging data to facilitate a single platform for the
computational solutions of psychophysiological chronic
disorders. Their methodology is based on different pre-
processing and learning models applicable to diverse data-
sets for better decision making because many neurologic-
al disorders share commonalities. The proposed methodo-
logy is tested for ADHD with fMRI data using selected
classifiers over three types of functional connectivity. The
proposed generic platform can be extended as a support
tool for practitioners to make confident decisions.

Among the characteristics of ADHD that include exec-
utive functions, working memory, and behavioral func-
tions, many studies have addressed the modalities in the
working memory. The abnormalities of ventrolateral pre-
frontal and cerebellar regions have been reported and
verified using fMRI datal3ll.

A study obtained acceptable accuracy in identifying
ADHD on frequency domain with respect to DMN areas
on fMRI features in the cingulate cortex, visual cortex
and prefrontal cortex that ADHDUl. They analyzed the
executive functional defects in ADHD subjects and the
resulting attention lapses were a result of the reduction of
network activity(5l. The recent studies on neurological be-
havior of ADHD can be categorized as the connectivity of
the different regions of the brain such as medial frontal
cortex[32, posterior cingulate gyrus, and default model
component b (DMNb)B3:34.  Also,
studies3335] have been focused on identifying the anatom-
ical and functional differences between ADHD and con-

network many
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trol subjects.

Feature extraction and selection methods are an im-
portant aspect of the learning models to reduce the high
dimensionality of data and to discard the noise in fMRI
datal? independent component analysis (ICA), and prin-
cipal component analysis (PCA) are some of the com-
mon feature extraction methods used for modelling learn-
ingB6l. fALFF, ReHo, amplitude of low-frequency fluctu-
ations (ALFF), and resting state network (RSN) are
some of the most considered features(?4 of ADHD classi-
fication using the fMRI data. ReHo features are used to
relate voxel's functional activities and its neighbors. Here,
the extracted ReHo maps are combined with PCA to
classify ADHD.

For the ADHD classification, several studies/6:24:30,37]
have used various machine learning approaches, i.e., sup-
port vector machine (SVM), extreme learning machine
(ELM), convolutional neural networks (CNN), deep
Bayesian network (Deep-BN). There are many related
studies30,38] that followed the SVM to classify ADHD,
where the study by Tenev et al.38, achieved 85% accur-
acy using the SVM model. Peng et al.29 built a strong
comparison between ELM and SVM classifiers in terms of
accuracy and performance. In this work, ELM is identi-
fied as the most accurate classifier compared to SVM as
90.18% accuracy has been shown using the ELM learning
algorithm. Further, the Stockwell transform of the time-
series based approach has shown an accuracy of
96.68%[39.

The deep belief network (DBN) based approach was
effectively used by Kuang and Hel*) for ADHD classifica-
tion as it analyses fMRI brain regions. The deep Bayesian
network (Deep-BN) that merges Bayesian network (BN)
with DBN by combining the dimension reduced features
and global feature extraction has obtained 64.70% accur-
acy by applying the SVM classifier37. Zou et al.24, have
presented a 3D CNN based model with multi-modality
CNN architecture by combining structural and function-
al fMRI. The study of the fully connected cascade neural
network architecture (FCC-ANN) has shown its ad-
equacy for classifying ADHD subjects by relating its high
discriminatory powerl34. Further, Deshpande et al.[4l],
have shown that FCC-ANN outperforms ADHD classific-
ation accuracy with fMRI data compared to other classifi-
ers, irrespective of the considered features.

2.5 Clinical decision support system

A clinical decision support system (CDSS) is a know-
ledge-based health information system which supports de-
cision making by compiling information from the specific
data to facilitate valid and reliable decision making by
medical practitioners. CDSS combines patient specific de-
tails with clinical knowledge thereby providing early dis-
ease detection and resulting improvements in patient
care. Accordingly, CDSS provides patient data analytics
capable of improving the quality of outcomes. Excessive

testing can be reduced, and patient safety can be en-
hanced while providing psychiatrists with reliable and
consistent information. However, existing clinical prac-
tices lack CDSS due to technical constraints in research
and development of such DSS242. Using an ensemble
model in building a CDSS is efficacious in identifying
ADHD accurately, since the ADHD has significant vari-
ability across the patients/43.

Generally, CDSS helps to diagnosis disorder condi-
tions during clinical practices. Delavarian et al.[*4l have
presented a CDSS that acts as a preliminary assistant to
distinguish ADHD subjects among the children. This
study has shown promising classification accuracies. Fur-
ther, Chu et al.l45] have used the basis of test of variables
of attention (TOVA) detection and screening tool to
build a DSS for ADHD which has proved a reliable sys-
tem to screen ADHD.

3 System design

3.1 Overview of the decision support sys-
tem

In this study, ADHD DSS architecture is based on eye
movement and fMRI features of ADHD and non-ADHD
subjects. Before the extraction of relevant features, the
raw fMRI, and eye movement data are pre-processed us-
ing the pipeline specified in [2,11]. After the feature ex-
traction, fMRI data are fed into the deep learning model
of CNN, and various machine learning models are evalu-
ated for classification based on eye movement data. Two
ensemble models were built for each of the data types
based on their classifiers. Finally, the decision support
system is built using the classifier models to infer an ob-
jective score for a patient based on the severity of the
ADHD. The pre-processing, feature extraction, classifica-
tion, and evaluation technique pipeline of our system is
summarized in Fig.2 and described in detail in Section 4.
Based on the proposed methodology and the instructions

Z Eye movement

| | fMRIdata
| data |

Normalization Smoothing
| Slice time correction

: Data “Missing data removal | ‘Realignment  Coregistration |

| Fixation/Saccades duration,
Mean, Standard deviation
. Rolling mean

[ Bagging Decision tree |
Classification | Naive Bayes AdaBoost

1 ; " F-score True positive
1 Evaluation Precision False positive
i . Recall

| | Accuracy F-score
| | Precision Recall

['_ Classifier model Classifier model
T =

B ' —

&= _ Decision support system ____:.-

Fig.2 System overview of the ADHD-Care DSS
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Fig. 3 System architecture

from the professional psychiatrists, ADHD-Care web ap-
plication was designed!46],

As shown in Fig.3, the application was developed ac-
cording to the layered architecture including the present-
ation layer, business logic layer and data link layer. The
internal models are described in Section 4 with the imple-
mentation details. The layered architecture of the ADHD-
Care web application is designed to facilitate the main-
tainability, flexibility, and extendibility of the system. As
the main users of the system, psychiatrists and operation-
al managers are interactively involved. The main com-
ponents in the presentation layer are classification man-
ager and graph generator. They consist of submodules to
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manage the classification process and the graphical rep-
resentation of the system, respectively.

The business logic layer comprises a data pre-pro-
cessor, machine learning model generator, evaluator,
threshold derivator and the ensemble model to comply
with the system overview as shown in Fig.2. The mod-
ules of fMRI and eye movement managers and the con-
nection manager belong to the data link layer along with
the system database. The backend database stores pa-
tient details, user details, patient’s history and updated
details on ADHD. The layered architecture of the ADHD-

Care web application is designed to facilitate the main-
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tainability, flexibility and extendibility of the system.

4 Methodology

4.1 Experimental setup for eye movement
data

The processed eye movement dataset is provided by
Old Dominion University, Virginia. A Tobii Pro X2-60
eye tracker was used with Tobii studio analysis software
to detect eye movements of participants(”). The accuracy
of the eye tracker is 0.40 and precision is 0.340 (degree of
visual angle). A total of 14 participants between the ages
of 18—35 were engaged in the experimental process. Sev-
en adults from the total participants were diagnosed to
have ADHD and their classification was confirmed by the
physicians’ relevant documentation. All the participants
were asked to avoid medication for 12 hours before the
experiment.

As shown in Fig.4, during the experimental process,
the participants were asked to read the sentences that
were displayed on the computer screen along with the let-
ter at the end of each sentence. While participants are
performing the given tasks, their detailed fixations, sac-
cadic eye movements were recorded by the eye tracker.
Apart from that, fixation duration in milliseconds, pupil
diameters of left and right eyes and class label, gender
were acquired.

4.2 Eye movement data processing

The obtained eye movement data were pre-processed
by applying the data cleaning techniques such as noise re-
moval and removing duplicate values and inconsistent
datallll. Then, the missing data were handled by repla-
cing them by the mean value of the feature if the record

User is asked to
read sentences on
the computer screen
which contains a letter
followed by a question
mark at the end
of each sentence

Tobii eye tracker

Gather gaze position details, fixations and saccades
R |
Gender

Number of fixations and saccades

Fixation and saccade duration (ms)

Average fixation and saccade duration (ms)
Fixation and saccade standard deviations (ms)
Pupil diameters of both left and right eyes

Fig. 4 Experimental setup for eye movement

does not contain more than 10% missing values. When
deriving the correlation with the class label, it was vis-
ible that gender has a strong influence on it. This situ-
ation is known as a presence of bias because common
phenotypic data such as gender, the race would intro-
duce bias to the data. Also, it becomes an inherent bias
to the developed machine learning model, which was re-
moved under bias correction in data pre-processing by
adding a fairness regularizer and calibrating the predic-
tion probability threshold to maintain fair outcomes. The
correlation of the entire feature set and the correlation
with the class variable are shown in Fig.5. The variation
of the data was handled by normalizing the feature val-
ues to a common range.

Aggregated data were generated by applying statistic-
al functions for an interval of adjacent fixations or sac-
cades that gives the mean, standard deviations for both
fixations and saccade durations, and performed correla-
tion analysis among all other features. We also removed
the irrelevant features with empty values and the fea-
tures that have the same values for all the subjects. The
selected set of features are shown in Fig.5. Moreover, we
have measured the accuracies for different classifier mod-
els with the selected features of the pre-processed data.
Initially, classifier models were obtained by using the
classification ruling and decision tree algorithms. Rule-
based algorithms were wused in the classification
processt1,

Rule-based algorithms which have given higher accur-
acy values were used for the final ensemble model along
with other machine learning algorithms. These models
were evaluated using the 10-fold cross-validation and the
66% split as discussed in Section 6. During the process,
the models with high classification accuracy values are se-
lected. The selected classifiers of bagging, SVM, random
forest, decision tree, AdaBoost, and Naive Bayes were
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figures are available in the online version.
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again applied to ADHD classification and obtained the
accuracy values. According to the given accuracy values,
weights were applied to all the six classifiers and de-
signed an ensemble model as the final classifier model of
the ADHD identification using the eye movement data.

4.3 Experimental setup for fMRI dataset

The fMRI dataset was obtained from the New York
University (NYU) Child Study Center of ADHD-200
global competition data repository?ll. The dataset con-
sists of 266 participants of children aged between 7 to 18
years. The demographic details are presented in Fig.6, as
box plots of verbal IQ and age in the form of min,
quantile 1, quantile 2, quantile 3 and max values. Among
the 266 subjects, 133 were labelled as ADHD positive and
133 were labelled as negative. Few original records were
discarded because they contained more than 10% missing
values. The subjects selected were fairly representing the
population considered and the IQ measures indicate that
the children have enough cognitive ability for the experi-
mentation. The verbal IQQ was measured by the Wechsler
abbreviated scale of intelligence (WASI) scale and the
fMRI dataset includes brain scan images of subjects with
the verbal IQ from 82 to134.

4.4 fMRI data processing

The fMRI data processing is based on 266 fMRI 4D
images and the process view is shown in Fig.7. Pre-pro-
cessing of fMRI data was categorized into the main stages
of realignment, slice-time correction, normalization, co-re-
gistration, and smoothingl24. The pre-processing was
done using statistical parametric mapping (SPM12),

140 o
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100

80 1

Number

60 -
40 -

20

Verbal 1Q Age

Fig.6 fMRI data verbal IQ in WASI scale and age groups
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which is a free-open source software for pre-processing
fMRI data.

First, the neuroimages of 4D fMRI data were re-
aligned using SPM12 to remove movement artefacts by
realigning the time series values. This process has ob-
tained the optimal values by calculating the sum of
squared differences between images. Then the realigned
fMRI data was used for correction of slice time. Slice time
correction was performed to adjust the image values by
making all the image voxels appear as they were taken at
the same time. The task was performed by making the
data on each slice, which corresponds to the same point
in time. Here, the data was temporally aligned by shift-
ing the signal phase. The slice acquired in the middle of
the sequence was used as the reference slice. Next, the
fMRI data were normalized to reduce the effect of brain
size, as the size of the human brain varies from 30% from
each otherl47. SPM12 is used to identify differences of im-
age volumes and used different stretching, squeezing, and
warping techniques to normalize the brain images. Under
the normalization, noise reduction and bias correction
were also performed.

Coregistration was performed to realign different im-
ages from the same participant. The feature similarities
were identified using image matching and interpolation.
The inter-subject averaging as spatial normalization does
not well-align all structures. Hence, the fMRI data was
smoothed to increase the signal to noise ratio (SNR) by
averaging the voxels with a weighted sum of its neigh-
bors. The weight is defined using the Gaussian kernel.
Smoothing was used to detect true and task-related
changes in the signal.

The feature extraction process is based on 266 4D
fMRI pre-processed images. The seed-based correlation
approach is used in this study to extract the features in
the model generation3:28], A seed-based correlation has
been used to define the functional connectivity of the
brain because the connectivity metrics in the brain dy-
namics are predominant in creating the connectivity
maps. The selection of seeds directly affects the gener-
ated network accuracy. Similar to the accuracy, the
factors such as the simplicity and unsophisticatedness in
implementation make this a better approach compared to
the other techniques like PCA, clustering, graph-based
methods, etc. To compute the correlation, resting state-
fMRI data were used by considering the DMN regions as
the seeds[28],

Generally, a default model network shows the active
brain regions when the brain is in resting-state. Various
DMN regions provide different information for ADHD
identification’l. The seeds used for the correlation calcu-
lation are posterior cingulate cortex (PCC), medial pre-
frontal cortex (MPC), left temporoparietal junction
(LTJ), right temporoparietal junction (RTJ), hippocam-
pal formation (HF), inferior parietal cortex (IPC) and
medial temporal lobe (MTL) in medial view[*sl. These re-
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gions were selected by considering the effective neural
activity of sub-regions in the DMN and to test which of
these regions are affecting ADHD the most. Fig.8 shows
an overview of different DMN regions.

We extracted the DMN regions of the raw data using
the Nilearn python library. The time series of the DMN
region of interests (ROI) was used to calculate the correl-
ation with the other voxels of a subject. The graphical
representation of the anatomical parcellation is por-
trayed in Fig.9 for the specified regions. These images are
generated in such a way that a sample neuroimage is ap-
plied to the Nilearn module with the desired seed region
coordinates via labels. Then the ROIs on the surface are
plotted by the library. In Fig.9, the left and right tem-
poroparietal junctions are defined as the supramarginal
and superior temporal gyrus in lateral view, where the in-
tersection between these regions are known as the tem-
poroparietal junction.

We then transformed the volumes of 4D fMRI images,
which contain the extracted seed correlation features of
different DMN regions to 2D images of 64 X 64 pixels,
where each 4D image is represented by 60 sliced 2D im-
ages. The implementation was done using med2image, an
open-source Python library. The 266 x 60, 2D fMRI im-
ages were fed to the data augmentation process. This was
used to increase the dataset using three augmentation
techniques, as shown in the process view in Fig.7. The
resultant 15960 x 3 2D fMRI images were fed for the
learning model.

The implemented CNN consists of 7 layers, where the
dataset is 47 480 2D fMRI images. The classification pro-
cess was repeated for all the DMN regions by generating
CNN models with extracted correlations from pre-pro-
cessed fMRI images. Since this study has used the seed-
based correlation of DMN regions as the main features for
CNN, the result is used to evaluate the effect of different
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Fig.9 Seeds used for correlation generation in fMRI data

DMN brain regions for ADHD identification. This pro-
cess extracts the connectivity between seed voxels and
other remaining brain voxels, instead of feeding the whole
brain images directly to the neural network.

The learning model of the proposed solution is based
on the binary classification to categorize the data into
two classes by assigning each data point to one of the
categories. In binary classification, a learning function is
learned to minimize the probability of misclassification of
data into two classesl42. The actual prediction value of
most of the binary classifiers is a score that gives the cer-
tainty of an observation fit into the positive class.

This prediction score can further be interpreted by
comparing it against a threshold value to efficiently cat-
egorize observations into one of the two classes. The ob-
servation with a score value less than the threshold is
predicted as a negative class/49.

The CNN architecture is shown in Fig.10, altering
convolutional and max-pooling layers of 64 and 32 chan-
nels, respectively. Initially, in the convolution and max-
pooling layers, a smaller channel size of 32 is chosen, to
identify the features such as edges. As the neural net goes
deeper, complex features are extracted, hence dense fil-
ters of convolutional and max-pooling are required. A
channel size of 64 is used for the latter part of the neural
net. The dataset was split in the ratio of 80% and 20%
for the training and testing sets, respectively, based on

the Pareto principlel50.51],

Next, the complexity of the model is reduced avoid-
ing overfitting of the CNN model by adjusting the num-
ber of activation functions and the number of layers.
Since there is a high prospect of the model overfitting,
the peculiarities of the training data, regularization meth-
ods were applied. The general regression equation in con-
densed form is given in (1), where b is the influence and
W is the weight.

Y =Wz +b. (1)

In CNN, the bias and weights adjust continuously to
train the network. When the bias ( b ) is low, the model
fits well on the training set and resulting in low training
error. The kernel regularization modifies the error func-
tion, such that it decreases the weights and bias. Thus,
smooths the output and minimizes over-fitting. The tech-
nique RMSpropl52l was used as the model optimizer for
the generalization, where it divides the learning rate by a
rolling mean of the recent magnitude found.

4.5 Severity score threshold derivation

We defined a threshold to obtain the correct classi-
fied value, as the learning model is based on binary classi-
fication. Since the machine learning model involves ran-
domness by its nature, a pre-defined threshold for the
classification process is beneficial to identify the severity
of the disorder. Since there are two models derived for
adult data and child data, the thresholds are defined sep-
arately.

Generally, the receiver operating characteristic (ROC)
curve shows the relationship between sensitivity and a
function of (1 — specificity), for different cut-off points.
Thus, a given point on the curve shows the pair (sensitiv-
ity/ (1 — specificity)), for a given threshold®2. For the
learning model of the eye movement data, the threshold
was defined using the model’s receiver operating charac-
teristics (ROC) graph as shown in Fig.11. It contains the
false-positive rates and the true-positive rates gained for
different thresholds considered. Since there is a trade-off
between these rates, it is vital to keep a balance and find
the optimal cut-off point defined as the threshold value.

32@64x64 32@64x64
32@A8~48 32@A848 64@)16x16 64@16x16
64@8x8 64@8x8 @i
.'ll’II
N e I Convolution Max-pool Dense ReLU
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neuroimage
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Fig. 10 Convolutional neural network architecture
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Several methods were used to derive the threshold value,
using sensitivity (Se), specificity (Sp) and area under the
curve (AUC)B354. Sensitivity is the probability of the
positive test result when the condition is present. Spe-
cificity is the probability of the negative test result, giv-
en that the condition is absent. The area under the curve
refers to the intrinsic accuracy apart from the classifica-
tion thresholds, which is plotted as sensitivity plotted
versus (1 specificity)[®3l.

Several studies have used the Youden index, concord-
ance probability, and index-of-union to derive the optim-
al cut-point value in ROC analysis and assess the effect-
iveness of bio-markers(557. The Youden index is
defined in (2), where the index as the maximum is identi-
fied as the threshold, where Se refers to the sensitivity of
the model and Sp refers to the specificity of the model.

J(e) = {Se(c) +Sp(c) — 1} ()

We also used the concordance probability method to
calculate the optimal cut-off pointl5® as defined in (3).
The cut-off point is selected as the point where the CZ
value is maximized.

CZ(z) = Se(c) x Sp(c). (3)

Index-of-Union (IU)P is a recently developed
threshold defining a method in medical research, where
the cut-off point is defined when the IU values are min-
imized, where AUC is the area under the curve.

IU(c) = {|Se(c) — AUC| + |Sp(c) — AUC]|}. (4)

The optimal cut-off point is defined as the point
which classifies most of the individuals correctly and thus
least of them incorrectly. That is, the optimal cut-off
points refer to the point where sensitivity and specificity
are maximized®8]. According to the obtained cut-off
points as given in Table 3, the index-of-union method has
shown the minimum mean squared error compared to the
other two methods.

The mean of the results of these three methods has
produced the lowest mean squared error values. The op-

Table 3 Derived classification thresholds

Technique fMRI data Eye movement data
J 0.564 4 0.558 9
CZ 0.5331 0.559 6
IU 0.568 9 0.549 8
Optimal point 0.555 4 0.556 1

timal cut-off points for the eye movement and fMRI data
are obtained at 0.556 1 and 0.555 4, respectively by calcu-
lating the mean of the values obtained for the considered
methods. Since we have considered a threshold value in-
stead of a given range of values, it does not affect the
confidence level.

4.6 Ensemble model derivation

The proposed solution has used different classifiers
and two datasets to predict the accuracy results to sup-
port ADHD classification. In this study, we have derived
a separate ensemble model for each dataset classification
process, to aggregate the result of each model avoiding
overfitting to predict the accuracy of the test data. Dif-
ferent DMN regions were used for the fMRI data-based
ADHD classification, and obtained the corresponding ac-
curacy, specificity and sensitivity values. It was found
that some of the specific regions with high accuracy val-
ues are highly active in ADHD subjects. However, we
have used all the brain-regions in fMRI to build the en-
sembled model, as all the DMN regions contribute to the
final classification model to reduce the bias and variance
in the model that are caused by the training data. The
ensembled model was generated using the active brain re-
gions by assigning weights for each DMN based on the
obtained classification accuracy value.

For eye movement data classification, the highest ac-
curacy is obtained by the random forest classifier com-
pared to the other decision tree algorithms shown in the
tables of Section 6.1. Generally, the rule-based al-
gorithms have shown overfitting issues on building the fi-
nal modelllll, Along with random forest classifier, bag-
ging, SVM, decision tree, AdaBoost, and Naive Bayes
were evaluated using 10-fold cross-validation and the 66%
split to select the best classifiers to generate the en-
semble model. Finally, the ensembled model was imple-
mented using the selected learning models by assigning
weights for each classifier proportional to the acquired ac-
curacies.

The weight assignment of the ensemble model mainly
considers the classification accuracy values obtained in in-
dividual model generation. Different weights were as-
signed based on the value of the accuracies, as it is not
applicable to consider all the classifier results equally.
Thus, the weights are calculated such that the assign-
ment of weights minimizes the mean squared error of the
summation of weighted models, for each iteration. Here,
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the weight is proportional to the accuracy obtained for
the model, as shown in (5), where «a is the proportional
constant. This mathematically equals to w; = kai, where
k is a constant. In each iteration of the generation of the
ensemble model, the weight is recalculated proportionally
to the accuracy, such that the MSE is minimized for all
the considered models. In this process, the initial weights
(w;) are assigned randomly for each model.

The ensemble model is generated based on (6), where
w; refers to the calculated weight and y; denotes the ac-
curacy prediction for a given model ¢ for the testing data.

N
EM = w1.Y1 + W2.Y2 + W3.Y3 + - + Wn.Yn = szyl

)

The prediction accuracy is calculated for the model
generated by ensembling all the models as given in (6).
Then this ensemble model is tuned up by changing w;
values such that the total MSE for the ensemble model
(wiyr + way2 + + -+ + w;y;) is minimized. Consequently,
the ensembled model is selected based on the minimum
mean squared error (Min MSE), which is defined as the
summation of bias and the variance of the models.

The prediction of a base learner m(x) is represented in
m'(z). The expected prediction error (E) of model m is
represented by E[m/'(z)] and the actual class values are
denoted by m(x). The bias of the model m is given by
the difference between the model’s expected prediction er-
ror and its actual class values as given in (7). The vari-
ance of the model (Var[m'(z)]), is defined in (8). The
total expected prediction error or MSE is given in (9),
where Var(e) gives the irreducible error that cannot be
reduced from the model due to its noise variance.

Bias [m/(z)] = E [m/(z)] — m(z) (7
Var [m'(2)] = E [m'(2)°] — E[m'(2)]" (8)

E[(m(z) —m'(z))2] =
(Bias [m/(x)])* + Var [m' (z)] + Var(e).

9)

The ensemble process of the models is defined such
that, it minimizes the mean squared error of the summa-
tion of weighted models, as given in (10), where y; de-
notes the predictions of model ¢ and wj is the correspond-
ing weight to the model j. The weights are chosen to
minimize the MSE, such that the total combination of
w;Xy; gives the minimum MSE, as given in (10). Min(.)
derives the minimum MSE for different weight combina-
tions.
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Min [MSE (wiy1 + wayz + - - - + w;y;)]

s.t. Zw]-yj,w]- >0, Vj=1,--- k. (10)

4.7 Data integration module

Integration of possible data types for the identifica-
tion process helps to combine the important features
provided by each data type and highlight their interrela-
tionships with different functionalities. Therefore, the in-
tegrated system will provide higher throughput by get-
ting insights into the datal®®l. Therefore, in the ADHD-
Care decision support system, the approach of an integ-
rated module to classify ADHD when both fMRI and eye
movement are considered for a patient. The prime goal of
this module is to provide the classification results for a
subject with a probability value indicating the potential
of having the disorder given both fMRI and eye move-
ment datasets.

In the data integration process, two separately gener-
ated models for fMRI and eye movement data are used
for the classification process. The existing pre-processing
and feature extraction methods are reused for fMRI and
eye movement data separately. Since this integration
module generates a combined result, a weighted ap-
proach is used to calculate the final prediction to lessen
the bias of having two models contributing to the result.
The weights required for these two datasets are pre-com-
puted during the classification model generation for each
dataset. The weight calculation uses metadata, i.e., the
batch size, number of epochs, learning rate, model hyper-
parameters, and model accuracy.

The derivation process of the final prediction is given
in Algorithm 1. The fMRI-Eye movement data integra-
tion module was used to derive the final prediction from
the integrated fMRI and eye movement learning models.
First, the previously developed fMRI and eye movement
learning models were loaded to the system. Then both
datasets were pre-processed, and relevant features were
extracted. The extracted set of features for two datasets
were used to predict the probability values of having AD-
HD, from each of the fMRI and eye-movement models.
Then the weights for the models were loaded given the
metadata as parameters. The weight calculation was car-
ried out by a loss function named log loss or binary cross-
entropy function, where the probability values of the pre-
dictions were accumulated and divided by the number of
predictions (batch size). Hence, this function will return a
higher weight for the lower loss function values and vice
versa. Step 12) in Algorithm 1 shows the derivation of
the final predictions by calculating the weighted sum of
the two model predictions.

Steps 15) — 24) in Algorithm 1 gives the load weights
function. The weight is calculated by a logarithmic loss
function related to the cross-entropy, named local loss.
The actual label and the predicted label of the test data
are denoted by y and p(y), respectively. The loss is calcu-
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lated by adding the log probability of a given subject to
be identified with ADHD with the log probability of the
same person to be a non-ADHD subject. Then, the total
loss is calculated by taking the average loss for the given
batch size and the final weights are defined using the loss
for an epoch. Thus, the probability values of the predic-
tions are accumulated and divided by the number of pre-
dictions (batch size). Hence, this function will return a
higher weight for the lower loss function values and vice
versa.

Algorithm 1. fMRI-Eye movement data integration
module

Dataset: fMRI data, eye movement data

Result: Probability value of having ADHD

1
data

function integration (fMRI data, eye movement

{

fm = load_fmri_model();

[\

em = load_eye mov_model();

= W
=D D DO —

preproc_fmri = pre-process fMRI(fMRI data);

(%)

frori_features=extract_fMRI_ features(prepocfmri);

=2

fmri_prediction =fMRI_model.predict(fmri features);

7) preproc_eye mov = pre-process_fMRI(eye move-
ment_data);

8) eye_mov_features = extract_eye mov_features(pre-
poc_eye_mov);

9) eye mov_prediction=eye mov_model.predict(eye
mov_features);

10) fmri weight =load weights(fm.batch_size,
fm.no_of epochs, fm.model hyperparameters, fm.learn-
ing_rate, fm.model_accuracy);

11) eye mov_weight = load weights (em.batch_size,
em.no_of epochs, em.model hyperparameters, em.learn-
ing rate, em.model accuracy);

12) final prediction= ((fmri_prediction x fmri weight) +
(eye_mov_prediction X eye_mov_weight))/(fmri_weight +
eye_mov_weight);

13) return final prediction;

14) }

15) function load_weights (batch_size, no_of epochs,
model hyperparameters) {

16) for ¢ in range(no_of epochs){

17) for j in range(batch_size){

18)  y = model.hyperparameters]i][j]["label"]

19)  local loss + = y x log(log(p(y)) + (1 — y) X
log (log (1 — p(y))

20) }

21 loss = local loss/batch_size
22) |

23) return loss/no_of_epochs;
24)}

4.8 Implementation tool stack

The implementation tool stack of the ADHD-Care
web application consists of several technologies. The
presentation layer consists of two modules, a classifica-

tion manager, and a visualization manager. HTML, CSS,
Javascript and jQuery are used to implement the classi-
fication manager module as those technologies are easy to
maintain, update, and provide consistency in the design,
while jQuery has a variety of plugins for specific needs.
The health report generation which is the output of the
web application was implemented using jsPDF and the
html2canvas as these libraries provide functions to cus-
tomize the reports.

The visualization manager module contains graphical
information such as rating scale, informative and analyt-
ical graphs, which assist the user with detailed visual in-
formation. The business logic layer consists of three main
modules for pre-processing, classification and evaluation.

Each module contains a separate tool stack. SPM12,
Med2IMG, octave and functional connectivity toolbox for
correlated and anticorrelated brain networks (CONN) are
the main tools that were used for data pre-processing.
The SPM12 tool is more versatile compared to other ex-
isting fMRI data pre-processors as it has many toolboxes,
computational modelling and extensions. The classifica-
tion module was based on the standard and prominent
libraries such as pandas, NumPy and frameworks, i.e.,
Tensorflow, scikit-learn. The evaluation module was im-
plemented using the scikit-learn and Keras libraries.
Those python libraries provide an extensive set of fea-
tures which can handle large dataset in a customizable
and flexible manner.

The data access layer has a flask library to connect
the front end and the back end of the ADHD-Care ap-
plication. Flask is a micro-framework with minimal de-
pendencies with external libraries, and flexible and ex-
tensible compared to the other libraries.

5 Key features of ADHD-Care

5.1 ADHD identification web application

The presented web application supports two separate
classification functionalities for child and adult subjects,
as the two dataset types, fMRI and eye movement data
were derived from child and adult patients, respectively.
After the login process, the users can select their age cat-
egory and follow the proposed identification process to
check the probability of them having ADHD. The fMRI
data is represented in the NIfTI-1 data format (.nii), by
neuroimaging informatics technology. The DSS comes un-
der the menu item Services in the ADHD-Care web ap-
plication[6].

When the raw fMRI images are added to the decision
support system as the input for the identification process,
the brain image passes through several pre-processing
steps before the classification. The completion level of
each stage in the pre-processing is displayed to the user
as a step by step process in the web application. After
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the pre-processing stage, the relevant connectivity fea-
tures are extracted and passed to the prediction of AD-
HD possibility. The users can view the progress of the en-
tire process until the classification results are displayed.
The developed system relies on fMRI and eye movement
data of the patients to identify ADHD and provide a
severity rating.

Consequently, if a patient is identified as having a
diagnosis of ADHD, then the severity level is also be dis-
played as high, low or medium via a rating scale rated
from 0 to 1.0, indicating 0 being the lowest severity and
1.0 being the highest severity. The application provides a
description of ADHD and users can view different blogs
and relevant documents using the system to enrich their
knowledge about ADHD, including its symptomology,
current processes of identification, and possible treat-
ments.

5.2 Report generation

When the user successfully submits the patient de-
tails along with the corresponding eye movement or fMRI
data, the system automatically generates a health report.
This report contains basic patient details and specific de-
tails on the disorder. ADHD-Care web application dis-
plays the health report by mentioning whether the AD-
HD positive or negative along with a rating score indicat-
ing the severity of the disorder for the subject. The user
guide for the application is available under the menu item
learn, in the ADHD-Care web application[46].

In order to support user-friendliness, a color scale is
used to indicate the similarity score. For instance, if the
person has a high probability of having ADHD, which
gives a similarity score near to one, it indicates in red col-
or on the color scale. If the person has a low possibility to
have ADHD the scale portrays a similarity score near to
zero. It indicates in blue color in the colored rating scale.
Further, it gives a probability value for the predicted res-
ult. Thus, the generated health report improves usability
by providing a convenient representation.

6 Evaluation and results

6.1 Accuracy result analysis

6.1.1 Evaluation measures

Several evaluation metrics including accuracy, sensit-
ivity and specificity have been used to evaluate the classi-
fication process. The sensitivity metric also known as re-
call, measures the proportion of actual ADHD patients
that the model can correctly predict from the actual AD-
HD population. While the specificity measures how well
the model can predict the proportion of healthy subjects
out of the actual healthy population[2353, The equations
for sensitivity and specificity are given in (11) and (12),
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respectively. Accuracy is a measurement of how well the
model identifies the patterns given the dataset, and pre-
dictions on the calibrated data. The accuracy is defined
as stated in (13). We have used scikit-learn libraries to
obtain these values.

Sensitivity =
True positives (T P) (11)
True positives + False negatives (FN)
Specificity =
True negatives (T'N) (12)
True negatives + False positives (FP)
Accuracy = TP+ TN (13)

TP+TN+FP+FN’

6.1.2 fMRI data processing results

We evaluated the accuracy of the fMRI data pro-
cessing in the main DMN regions, generated by the CNN
approach. The process can be summarized as follows. Ini-
tially, the training and testing data were randomly split
to avoid the bias of the model by using 20% of the entire
dataset for the validation, as given in the Pareto prin-
ciple. Using 20% of the dataset as the validation portion
is widely accepted and performed well in most of the
practical scenarios. The seed-based correlations were ex-
tracted on selected DMN regions from the pre-processed
fMRI dataset and the extracted correlation matrices were
used for the classification process. Classifier models were
generated for each region of the DMN areas using the
CNN approach.

The correlations were converted into a series of 2D
images, then fed into the CNN and obtained the classifi-
er accuracies on the testing data sets. The number of lay-
ers and activation functions were adjusted to reduce the
complexity of the model along with data augmentation to
avoid the overfitting of CNN models. The obtained ac-
curacies, specificity and sensitivity values for the classific-

Table 4 Evaluation metrics of DMN regions using fMRI data

Region Accuracy (%) Sensitivity (%) Specificity (%)
MTL_L 88.12 76.89 85.51
HF R 87.38 74.22 87.44
LTJ 85.50 72.23 86.14
MPC 85.21 72.80 84.12
PCC 84.84 71.12 82.35
RTJ 84.62 70.85 84.17
HF_L 82.37 69.12 83.52
IPC L 51.12 41.11 76.74
MTL_R 50.50 40.45 75.81
IPC_R 50.13 49.53 74.96
Ensemble model 82.12 69.33 81.01
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ation process of different DMN regions are given in
Table 4.

The records of different regions are ordered based on
the accuracy values. The classification process has con-
sidered different DMN regions such as left medial tempor-
al lobe (MTL_L), right hippocampal formation (HF R),
left temporoparietal junction (LTJ), medial posterior cin-
gulate (MPC), posterior cingulate (PCC), right temporo-
parietal junction (RTJ), left hippocampal formation
(HF_L), left inferior parietal cortex (IPC_L), right medi-
al temporal lobe (MTL_R), right inferior parietal cortex
(IPC_R)81.

We identify the regions with high accuracy and sensit-
ivity values in the classification processes including
MTL_L, HF R, LTJ, MPC, PCC, RTJ and HF L.
However, some DMN regions such as IPC and MTL_R
have shown low accuracy, sensitivity and specificity val-
ues by reflecting their less influence on the identification
of ADHD.

Accordingly, by comparing the accuracies obtained
from each model, the MTL_L region has shown the best
accuracy level among other regions, in terms of ADHD
classification. HF R, MPC, LTJ regions have also shown
closer accuracy levels to MTL_L. For instance, Kuang et
al.B0] have shown accuracies of 34.39%, 37.04% and
37.42% for visual cortex (VC), cingulate cortex (CC) and
prefrontal cortex (PC), respectively.

In Table 4, an overall accuracy of 82.12% along with
69.33% sensitivity and 81.01% specificity values were ob-
tained by the ensemble model of all DMN regions. Here,
the average accuracy value of fMRI data is 75.62% and
the average value of sensitivity and specificity is 73.15%.
Thus, we can see balanced evaluation values for fMRI
data. The proposed ADHD-Care DSS is implemented us-
ing this ensemble model, as described in Section 4.6,
where all the regions of DMN are contributed for the
classification. Here, the regions with high classification
accuracies are found to be more active in ADHD subjects.
However, several studies have suggested considering the
whole DMN region for a better choice, since this activity
may vary per subject60,61],

The same classification procedure was tested for oth-
er features for the fMRI data. fALFF and ReHo features
were used with the CNN classifier to compare the seed-
based approach on selected DMN areas with other fea-

ture values. The classifications with fALFF, ReHo fea-
tures have given the accuracy of 67.17% and 67.30%, re-
spectivelyl23l. The sensitivity and specificity rates were in
the rage of 65-60%.

The evaluation of the proposed methodology in com-
parison with the related studies are described in Table 5.
Considering the overall accuracy, sensitivity and spe-
cificity levels of all the DMN regions considered for this
study, it can be concluded that the proposed method on
seed correlation with CNN shows high-quality attributes
in terms of accuracy, sensitivity, and specificity values
compared to classification based on other features and re-
lated studies.

6.1.3 Eye movement data processing results

Different decision tree algorithms that have been used
for ADHD classification with eye movement data were
evaluated in terms of the accuracy as shown in Table 6.
In the evaluation, the dataset was split into 2 : 1, where
66% of data are used for the training and remaining for
the testing purposes, as that ratio is one of the com-
monly used ratios for a fair split. The metrics sensitivity
and specificity values are considered to support a com-
plete evaluation of the results.

Accordingly, an overall accuracy of 81% of the en-
semble model is achieved. Random forest and J48 al-
gorithms have performed the best in terms of the two
categories of algorithms considered in this study, where
the random forest classifier has the highest accuracy of
84.48% compared to the other considered classifiers. The
other algorithms of REPTree, LMT, JRip, and decision
stump have also performed well since they are mostly
based on the decision tree approach. Random forest out-
performs all of them because of the usage of a collection
of trees to provide the prediction. Nevertheless, these de-
cision tree algorithms are bound to overfit their models to
the dataset. Hence, other commonly used classification al-
gorithms like SVM and Naive Bayes have been able to
perform less in terms of the classification. This may due
to the higher bias and variance in data. Thus, mediator
algorithms such as bagging and AdaBoost have been
used, to reduce the variance, bias and the over fitness
that caused by the decision tree algorithms.

In order to provide different aspects of the algorithms,
an ensemble model is used to further reduce the over-fit-
ness, bias and variance in the dataset. Moreover, accord-

Table 5 Comparison with other studies — Eye movement data

Related study Features Classifier Accuracy (%)  Sensitivity (%) Specificity (%)
[7] Fixations Bagging 78.48 78.00 -
[62] Fixation and saccade Tree-based classifiers 86% - -
[13] Blink and saccade rates Linear classifier 70.00 59.00 82.00
85.31(10-folds) - -
[11] Fixations, saccades, pupil diameter Random forest

Proposed ADHD-Care DSS Fixations & Saccades

84.48(66% split) - -

Ensemble model 81.02 79.56 76.89
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Table 6 Evaluation metrics of eye-movement data

classification
Classifier Accuracy (%) Sensitivity (%) Specificity (%)
Random forest 84.48 81.11 79.50
REPTree 82.68 80.45 78.63
LMT 82.66 81.22 78.54
JRip 82.57 80.14 77.45
PART 82.11 80.20 77.68
J48 81.74 79.89 77.02
Bagging 81.24 79.90 76.85
Random tree 78.84 77.45 73.11
AdaBoost 73.46 71.85 69.55
Hoeffding tree 73.34 71.98 69.58
Decision stump 72.68 69.23 68.75
SVM 69.13 68.44 67.12
Naive Bayes 67.18 65.77 63.96
Ensembled model 81.02 79.56 76.89

ing to the results shown in Table 6, the average accuracy
value of eye-movement data classification is 78.08% and
the average value of sensitivity and specificity is 75.06%.
Thus, we can see balanced evaluation values for eye-
movement data.

Since this study is based on multi-classifiers, ROC
curve is used to visualize the performance of the top clas-
sifiers within the given thresholds. Also, it supports the
identification of the analytical ability of binary classifica-
tion, considering the true-positive and false-positive
ratesl®. The ROC curve which shows the trade-off
between the sensitivity and the specificity shows the dis-
criminatory ability of the classification modell*1,54],

The ROC graph is shown in Fig.11, and is generated
for the ensembled model for the ADHD classification with
eye movement data. The area under the ROC curve,
which is 0.87 shows 87% of accuracy, indicates how ac-
curate the prediction will be for future data using the
generated ensembled model for the ADHD identification.

Further, the ROC graph of the decision tree and dif-
ferent classifier ruling algorithms is given in our previous
work[11],

6.2 Overfitting avoidance analysis of the
ensemble model

Overfitting of a machine learning model can be identi-
fied by the difference between error on the model’s test-
ing data set and error on its training data set. If the mod-
el prediction gives a higher error on the testing data set
compared to the error on the training data set, it is
known as a highly overfitted learning modell3. The error
value can be defined as the difference between the actual
label and the model prediction for each point of data. By
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evaluating the percentages of training and testing accur-
acy values given by the generated ensemble models in
this study, it has shown that there is less difference
between training and testing errors than the models are
considered separately.

For fMRI data, CNN models of the DMN regions such
as MTL, LTJ, MPC, IPC, PCC are considered. For eye
movement data classification, several learning models,
e.g., random forest, Naive Bayes, AdaBoost, SVM are
considered. The model training and testing accuracy were
measured accordingly during and after generating the
model and the prediction error was calculated after test-
ing. The overfitting (error) values for the set of DMN re-
gions in fMRI data and the classifiers for the eye-move-
ment data are shown in Figs.12 and 13, respectively.

The corresponding ensemble model has shown the
minimum prediction error in each case. Thus, the en-
semble model has avoided the overfitting of using one
model, which is the main contribution of this study. The
ensemble model of fMRI data has shown a training accur-
acy of 80.88% and testing accuracy of 82.12%. Similarly,
the ensemble model of eye movement data has shown a
training accuracy of 80.84% and testing accuracy of
81.02%.

Considering the training, testing accuracy values and
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the prediction errors of both ensemble models, the pro-
posed ensemble models reduce the prediction error com-
pared to the other best-performing algorithms in both
cases.

Further, the best performing model for fMRI data has
an accuracy of 88.12% in testing, where the ensemble
model has an accuracy of 80.88%, but the prediction er-
ror for the highest performing model is higher than the
ensemble model. This confirms that the ensemble model
for the fMRI classification has reduced the effect of over-
fitting in models. The same comparison can be derived
for eye movement data classification as well. The highest
performing algorithm of random forest with 84.48% test-
ing accuracy has obtained a higher prediction error than
the ensemble model constructed. This again confirms that
the ensemble model for eye-movement classification has
reduced the overfitting effects in the model generation
and generalization for unseen data.

6.3 Usability measures

The usability of the application is tested using the
system usability scale (SUS)64, which is a reliable meas-
ure to assess the usability of a software application. It
consists of 10 questions, including positive and negative
aspects of the system. Each question is provided with a
rating scale from 1 to 5, indicating strong disagreement to
strong agreement. According to the scale specification, a
SUS score of more than 68% is considered as above aver-
age.

The participant group consisted of 10 MRI laboratory
members and physicians in local hospitals and 10 medic-
al students, with knowledge and experience on fMRI, eye

Easy to use

Well integrated functions

Statement

Can be learnt quickly to use the system

Confident in using the system

movement data, and their variations. The 20 subjects
were chosen as 12 females and 8 males in the age group of
20—40, having an average of 3 years of experience in re-
lated aspects. During the SUS test, a task-list that cov-
ers the entire system features was given for each user to
maintain the consistency of the studyl4- Thus, the core
functionalities of the DSS, including ADHD identification,
severity score computation, and report generation were
tested separately for fMRI and eye movement data and
their corresponding scores recorded.

The users were given the system and guided to per-
form an ADHD test for a given fMRI or eye movement
data according to the task list. Then they were asked to
work with the overall system. The results were reported
to have above-average usability in both fMRI and eye
movement identification. The obtained results for both
the positive and negative aspects of the system are listed
in Figs. 14 and 15, respectively. An average SUS score of
78.57% was observed for the fMRI data-based identifica-
tion and 79.4% was obtained for eye movement data-
based identification. As an overall system score, 70.2%
was recorded.

Moreover, this study has used a tag cloud for further
interpretation of system usability. During the usability
test, the user was asked to select at least three character-
istics of the system. Referring to these obtained scores
and the feedback, it can be concluded that the proposed
web application has high usability in practice. However,
the system is not tested in actual clinical practice, due to
the technical difficulties associated with the underlying
infrastructure, and will be considered as a future exten-

sion.
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Fig. 14 SUS results for positive aspects of the system
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System is cumbersome
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Fig. 15 SUS results for negative aspects of the system
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7 Discussions

7.1 Main contributions of the proposed
solution

The proposed ADHD-Care DSS has developed as two
separate models in a single framework. Theoretically,
fMRI data can be used for both adults and children.
However, this study has used the fMRI dataset for chil-
dren only, considering data availability. The ADHD clas-
sification among adults is mainly based on eye move-
ment data, which was captured during a previous studyl7.
Eye movement data for children are not available, as
they cannot follow a set of defined activities to capture
relevant data. Many existing studies on ADHD classifica-
tion have focused on either child or adult identification
separately. As per our knowledge, this is the first study
that has focused on both child and adult ADHD classific-
ation using two different datasets. Thus, having an ex-
tendable system framework is one of the novelties of the
proposed method. This resolves the constraint of bound-
ing the data classification into one specific age group as
in existing studies. Additionally, presenting classification
results with a similarity rating scale is the main useful-
ness.

The classification process was applied to 10 different
DMN regions to explore the usage of fMRI data in AD-
HD identification. These regions were selected based on
the connectivity of DMN. For instance, the regions PCC,
MPC, RTJ, LTJ are widely used in ADHD identification
studies(5:36, The regions such as MTL L, MTL R, HF L,
HF R, IPC L, IPC_R were selected due to their influ-
ence in connectivityl®l. Having a low classification accur-
acy of a brain region is considered as an indicator of hav-
ing less influence on an ADHD pathology.

Additionally, the eye movement data exploration in
the ADHD identification process for adults has produced
high accuracy values. The data acquisition process has
extracted the main features of fixations and saccades with
their durations and other notable eye movement features
such as pupil diameter. The standard learning models
were used to develop the ensemble model that produce
high accuracy, sensitivity and specificity values, by avoid-
ing overfitting.

Further, the solution is developed by the serialized
composition of a set of derived models with the novel web
technology. An application programming interface (API)
has developed to obtain results from each task in the pro-
cessing pipeline that contains pre-processing, feature ex-
traction and classification. Hence, the DSS can provide
high-performance results in each of the pipeline tasks.
This pipeline implementation was identified as a notable
feature during the user survey with a maximum usability
score, by analyzing the feature-wise usability test results.
Also, the direct usage of neuroimaging files of fMRI data
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and the internal pre-processing capabilities are useful con-
tributions of the proposed DSS.

Additionally, the use of web technologies embedding
learning models in the systems has uplifted the novelty of
the ADHD identification process. Since this web-based
system is accessible over different platforms and geo-
graphical locations, the execution of ADHD-Care DSS in
real scenarios is manageable. Further, the system usabil-
ity test result verifies that the proposed system can be
easily used by the practitioners, especially the psychiat-
rists.

7.2 Comparison of eye movement data
classification with related studies

The comparison of the proposed eye movement classi-
fication results with the related studies is given in
Table 5. The proposed method for the classification of
ADHD using eye movement data has acquired better ac-
curacy compared to other related studies as a result of us-
ing both fixation and saccade related gaze parameters
with an ensemble classifier that associates several classi-
fication models according to their accuracy levels.

The proposed solution has generated an ensemble
model by giving weights to each of the learning models
that are proportional to their accuracy. Although the ac-
curacy of the final ensemble model has reduced slightly, it
has avoided overfitting. Thus, the ADHD-Care DSS has
shown sufficient accuracy, specificity and sensitivity val-
ues with overfitting avoidance, compared to the related
studies. Hence, this provides a reliable classification with
a similarity score that indicates the possible severity of
the disorder. Currently, there is a lack of related studies
that have addressed the classification of ADHD based on
different gaze related movements. Thus, the proposed
solution further reflects the novel contribution, which
uses fixation and saccade eye movement for the ADHD
identification with high classification results.

7.3 Comparison of fMRI classification
with related studies

The obtained results for the seed-based correlation for
the main DMN regions of fMRI data are compared with
the related work in Table 7. Many studies have used the
ADHD-200 dataset to perform the research which com-
pares the accuracies based on the same experimental
setup. The classification accuracies in many related stud-
ies mainly depend on the selected dataset, e.g., New York
University (NYU), Neuro, Oregon Health and Science
University (OHSU), Neurolmage (NI), Peking and Pitts-
burgh, that is based on the participant data, e.g., age and
gender. Also, the classification accuracy depends on the
considered regions of the brain.

Compared to the other related studies, the proposed
method has obtained acceptable accuracy, sensitivity and
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Table 7 Comparison with other studies — fMRI data
g Sensitivity Specificity
Related study  fMRI dataset Features Classifier Accuracy (%)
(%) (%)
[40] ADHD-200 Frequency features Deep belief network (DBN)  OHSU 80.88 - -
NYU-PC 37.42 - -
NYU-CC 37.04 - -
NYU-VC 34.39 - -
Neuro 44.4 - -
Pittsburgh 55.56 - -
Whole-brain 44.63 - -
[37] ADHD-200 Deep Bayesian Network SVM NYU 64.70 43.90 68.80
(Deep-BN) based features
Peking-1 66.3 22.9 87.7
KKI59.0 55.6 83.0
[24] ADHD-200 fLAFF, GM density Multi-modality 3D CNN 69.15 - -
[45] Clinical Test of variables of atten- ANOVA, split-half method TOVA 75.7 85.33 53.13
Neuropsycho-  tion (TOVA), diagnosis- statistical analysis
logical data supported (DS)-ADHD DS-ADHD 77.57 84.72 62.86
[65] ADHD-200 Brain region time-series CNN NYU 73.1 65.5 91.6
signals
NI67.9 63.6 71.4
Peking 62.7 48.1 79.1
[66] ADHD-200 Feature pooling 4D CNN 71.30 73.20 69.70
[39] Pre-processed  Stockwell transform, fuzzy SVM 96.68 100% -
ADHD-200 entropies of time-frequency
domain submatrices
[6] Pre-processed  Connectivity features SVM, NB, KNN 86.00 - -
ADHD-200
[28] ADHD-200 SBC with pre-processed CNN PCC 84.84 65.22 71.12
(NYU) fMRI
LTJ 85.05 66.31 72.23
RTJ 84.62 64.12 70.85
MPC 85.21 66.41 72.80
[23] ADHD-200 Connectivity features of 3D CNN 85.36 66.54 72.80
(NYU) fMRI
Proposed model ADHD-200 Seed-based correlation 7 layered CNN 82.12 75.33 71.25

(NYU)

specificity values, by avoiding overfitting. The novel ap-
proach of using a seed-based correlation for DMN brain
regions with the CNN model can be identified as the
main reason for obtaining better results compared to oth-
er related works without considering the whole brain as-
pect. This study has mainly focused on DMN brain re-
gions for the identification process. Thus, the most re-
lated and highly influenced set of features extracted from
main DMN regions and the techniques that have been
used to optimize the CNN model performance have led
the proposed method to achieve higher accuracies.

As a summary, several related studies have con-
sidered fMRI data fed into different CNN architectures
such as 3D CNN[24, and 4D CNNISS supported by a sep-
arate CNN for the feature extraction. Moreover, the us-
age of SVMI6:37.39] DBNI for the classification have been
identified as other related studies. Some of them have
considered hand-crafted features like fALFF, gray matter

(GM) density24, while others have considered feature ex-
traction using CNN or DBNI23,28,65, 66],

7.4 Future research directions

The proposed solution can be extended with the fea-
ture selection process based on different brain areas oth-
er than DMN. Also, the extracted time series from fMRI
data during the feature extraction can be used to explore
the patterns in ADHD subjects. The focus of the eye
movement data can be extended to obtain features on
ROIs, saccade speed derivations, etc.

Additionally, with an appropriate dataset, this ap-
proach can be extended to multi-class classification to
identify different ADHD sub-types such as ADHD-Inat-
tentive, ADHD-hyperactive/Impulsive, and ADHD-com-
bined. This will help to improve the severity score values.
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We have tested the current system for the classification
of the data types separately, due to the unavailability of
eye movement and fMRI data that belong to the same set
of users. The integration of eye movement and fMRI data
that belongs to the same set of user group can also be
conducted as future research. This can be used to en-
hance the overall prediction accuracy and validate the
classification accuracy of each data type.

Moreover, the learning model can be enhanced with emer-
ging techniques such as deep learning, artificial intelli-
gence, probabilistic programming, parallel processing[67-69],
Accordingly, the approach can be extended to a generic
framework that supports the processing and classification
of different related data types and learning models, which
is another possible research directionl®l. Moreover, having
new usability features such as batch processing for data-
sets will enhance the engagement of the research com-
munity in ADHD pathology. Further, the application can
be improved to use in real clinical practices with the sup-
port of technology and finance aspects.

8 Conclusions

Applying research into the development is useful for
the growth of biomedical informatics in clinical practice.
ADHD is a common neurological disorder among chil-
dren and requires early detection and treatment to mitig-
ate negative long-term and short-term outcomes. The
identification process of ADHD still relies on flawed and
subjective methods where manual clinical approaches are
applied. This motivated the development of tools sup-
porting an automated decision support system. This sys-
tem has aimed to achieve a systematic, valid, and reli-
able measure to classify ADHD. This was developed by
classifying fMRI and eye movement data that result in
high accuracy and sensitivity values.

This research addresses the identification of ADHD by
constructing an approach using fMRI data for children
and eye movement data for adults. In order to explore
the usage of fMRI data in ADHD identification, the con-
nectivity of DMN was studied. The overall classification
accuracy obtained was 82.12% from the CNN approach
for the ensemble model. Identification of the main DMN
region coordinates providing high classification  ac-
curacies is one of the contributions of this study. Addi-
tionally, the usage of eye movement data in adult ADHD
identification has been supported as successful and as an-
other novel contribution. The combination of fixations
and saccades in the classification process has yielded ro-
bust accuracy, sensitivity and specificity values verifying
the applicability of eye movements in ADHD identifica-
tion. The generated ensemble model for the eye-move-
ment data classification has shown an overall accuracy of
81%. Additionally, the ensemble models were generated
to avoid overfitting of the individual models and classifiers.

A DSS was developed using the generated models and
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further assisted by notable features such as severity meas-
urement, report generation, and an integration module.
The ADHD-Care DSS has achieved a system usability
score of 70.2%. The combination of both fMRI and eye
movement data for the classification process in the DSS
reflects the originality of this study to derive accurate
results for separate age groups with precise severity
scores. Thus, with the state-of-art results from the model
evaluations and usability testing, it can be concluded that
ADHD-Care DSS can be used to provide an accurate,
user-friendly experience for the research community and
practitioners in clinical practices.
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