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Abstract: Perception and manipulation tasks for robotic manipulators involving highly-cluttered objects have become increasingly in-
demand for achieving a more efficient problem solving method in modern industrial environments. But, most of the available methods
for performing such cluttered tasks failed in terms of performance, mainly due to inability to adapt to the change of the environment and
the handled objects. Here, we propose a new, near real-time approach to suction-based grasp point estimation in a highly cluttered envir-
onment by employing an affordance-based approach. Compared to the state-of-the-art, our proposed method offers two distinctive con-
tributions. First, we use a modified deep neural network backbone for the input of the semantic segmentation, to classify pixel elements
of the input red, green, blue and depth (RGBD) channel image which is then used to produce an affordance map, a pixel-wise probabil-
ity map representing the probability of a successful grasping action in those particular pixel regions. Later, we incorporate a high speed
semantic segmentation to the system, which makes our solution have a lower computational time. This approach does not need to have
any prior knowledge or models of the objects since it removes the step of pose estimation and object recognition entirely compared to
most of the current approaches and uses an assumption to grasp first then recognize later, which makes it possible to have an object-ag-
nostic property. The system was designed to be used for household objects, but it can be easily extended to any kind of objects provided
that the right dataset is used for training the models. Experimental results show the benefit of our approach which achieves a precision
of 88.83%, compared to the 83.4% precision of the current state-of-the-art.
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1 Introduction ous sizes, shapes, weights, and degrees of fragility. The
main task of those problem was to safely plan and ex-
The implementation of autonomous warehouse logist- ecute a grasping action which is sometimes needed to
work in cooperation with other robots or people.

Most of the current solutions of the robotic pick-and-

ics has faced many challenges. Amazon and other market-

place companies, such as Alibaba, have been the main

promoter of the usage of artificial intelligence on robots in place task is done by understanding the object model,

which normally follows these three steps: object recogni-
tion, pose estimation by matching the model of object,

the logistics industry. In 2017, Amazon started a competi-

tion called the Amazon robotics/picking challenge. Such
and planning the grasp action. These methods usually

need to be fed with handcrafted object features to be able
to compute the grasping point proposal. Since such meth-

robotics pick-and-place are often called a grasping prob-
lem in the robotics research field, and performed by sev-

1t f actuators, h botic fi g, [1 . . .
era:i [;/]I))es (:1 (?C ::la ors hsucd [;S '}Oh ote .mgirsn (cg 1_[ ) ods rely on prior knowledge to the object model, it tends
an and dexterous handst. © mau ciialenge ues to fail when dealing with a highly cluttered environment.

in the wide variety of products to be packed, with vari-
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These failures are caused by the inability of the object re-
cognition task to properly recognize and detect each ob-
ject, and will be made worse by the novel object’s appear-
ance. By increasing the number of objects to be recog-
nized, it will also decrease the performance of the al-
gorithm to match the object with prior known object
models. A lot of work is then needed to be performed be-
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fore the algorithm is even used, i.e., to prepare the ob-
ject model and represent them in a way that the al-
gorithm could understand. Moreover, it will need a large
amount of data to perform well.

In this work, we propose a new approach by integrat-
ing the object recognition, pose estimation, and model
matching stages and using a deep neural network meth-
od which directly infers the pixel-wise probability of pick-
ing up the object, called an affordance map, from a red,
green, blue and depth (RGBD) input image. This ap-
proach is highly inspired by the work of Zeng et al.l4
from the MIT-Princeton team in the Amazon Robotics
Challenge 2017 which won the 1st place in the competi-
tion.

Compared to the work of Zeng et al.l4), our contribu-
tions are two-folds. First, we use a modified deep neural
network backbone for the semantic segmentation inputs.
It normally produces an image which contains a per-pixel
logits value of the predicted classification class, and each
class is placed into separate channels. The inferred grasp-
ing affordances are subsequently taken from the positive
grasping class. Secondly, we incorporate a high speed se-
mantic segmentation to the system, which means our
solution has a lower computational time, and the infer-
ence can be done in near real-time. The grasp point pro-
posal is finally obtained by fetching the highest afford-
ance value of the prediction output.

2 Related works

There have been several works to solve the problem of
grasp point estimation. In this section, we will review sev-
eral works related to robotic grasping and picking sys-
tems, which will be grouped based on the approach taken
on their work. For more in depth reviews regarding re-
lated works done in this field, refer to [5].

2.1 Model-based grasping

This approach is usually referred to as the traditional
approach for autonomous robotic picking and grasping.
Generally, this approach follows a three-step solution: ob-
ject recognition, pose estimation, then followed by model
matching to get the proper information to execute the
motion planning algorithm. The early work on this ap-
proach was done by Zhao et al.lll which utilized a huge
laser scanning camera, and it is limited by a static work-
ing environment and a single specific object. Later work
by Collet et al.[l only used a normal color camera and
built the object’s 3D model from several images, but it
still suffered a huge computational cost needed to infer
the 6D grasp pose. The more recent solutions with simil-
ar approaches have shown the ability to work in unstruc-
tured and cluttered environments(® 12, These approaches
generally suffer from similar problems of high computa-
tional cost and are still not robust enough to deal with
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uncertainty that might occur in the real world imple-
mentation.

2.2 Data-driven grasping

Most common approaches in grasp point estimation
research employ a learning method in their pipeline. As
reviewed in [5], most of them use deep learning to do seg-
mentation or recognition of the objects in the scene which
takes training data to be learned, but the later steps are
still similar to the model-based grasping approach. Ten
Pas et al.l3l extended the works by Herzog et al.llll to
generate some grasping hypotheses on any visible surface.
Such similar method are also used in [14, 15]. A detailed
review of this category of works can be found in [5, 16].

Recent works on this method(!719 employed point
clouds from RGBD camera to estimate a 6D pose of ob-
jects in the scene which can achieve a slightly better rate
of success compared to the traditional model-based ap-
proach. There was also an attempt to only use a single
color image in [20]. These works were then extended in [21, 22]
by using synthetic datasets, and yielding better overall
performance. These works could achieve a more reliable
performance in a more challenging environment, but they
still suffered a huge computational cost and complexity
and failed to work when new novel objects are appeared.

2.3 Direct grasp proposal inference

Early work on this approach by Saxena et al.23] tried
to infer the grasp point directly from input images using
a supervised learning model which was trained using syn-
thetic images to predict 3D grasp position using a multi-
view red, green and blue (RGB) channel image camera.
Despite being trained using synthetic dataset, the model
performed well enough when tested with real-world novel
objects, but the variety of the objects was still limited
and the environment used in the experiment was highly
controlled to conform with the designed algorithm.

Another work by Johns et al.24 used a deep learning
model to predict grasp score probability from several
grasp pose proposals which were trained by using syn-
thetic 3D models generated from physics simulations. It
was then extended by Lu et al.?’l who used real world
objects and datasets. Even though those works per-
formed well in their experiments, they still did not ad-
dress the implementation in highly cluttered environ-
ment which differed significantly in terms of the chal-
lenges that need to be solved in the algorithm design. In
the work by Zeng et al.l4], this problem of real world im-
plementation was addressed. Their approach was imple-
mented in a highly cluttered environment as it did not
need to take into account any object of interest in the
scene. Compared to [26], they performed the grasp point
generalization on several types of objects using shape af-
fordance, which was based on a histogram of orientation
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shape descriptors.

3 Semantic segmentation

In general, a neural network model solving the task of
semantic segmentation consists of two parts: 1) backbone
model which normally uses a pre-trained image classifica-
tion model without the fully connected layer which acts
as a feature extractor for the input image, then followed
by 2) segmentation layer which takes the output of the
backbone to generate the pixel-wise dense prediction
value. The main drawbacks of using deep learning meth-
ods is the need for a large amount of data to even prop-
erly do a specific task. This not only takes a large por-
tion of preparation time, but sometimes also requires a
really high cost to get the proper datasets. Fortunately,
the weight of a deep learning model from a specific task
can be reused for a different task with the proper modific-
ation and could achieve a good performance even when
being trained with lower amounts of data. This process is
called transfer learning, and the base model being used is
normally an image classification task model. Such a base
model which is reused for a different task with transfer
learning is usually called the backbone layer.

3.1 Backbone

3.1.1 ResNet

The deep residual learning network, or ResNet[27, is
the first successful implementation of very deep neural
network models which actually gained higher perform-
ance. The ResNet model tried to resolve the problem of
the accuracy saturation where the accuracy stays the
same even when we make the network deeper, which be-
came the major limiting factor of deep neural network
performance. It introduces a module layer that act as the
building block of the very deep network and is used re-
peatedly. The main feature of this building block layer is
the usage of a shortcut connection, a connection of layers
which skips one or more layers. He et al.l27 use a convolu-
tional layer with 3x3 kernel size as the base weight layer.
Based on the original work, ResNet models are expanded
to have a higher size and better performance into several
model sizes, i.e., ResNetl8, ResNet34, ResNet50,
ResNet101, and ResNet152. The difference of these mod-
el sizes is that the higher size models have more building
block layers which generally translate to better overall
performance.

3.1.2 EfficientNet

The EfficientNet modell8 tried to tackle a common
problem of model scaling in an image classification deep
learning model which had not yet been understood well
before and also had a high efficiency computation for the
model. They proposed to carefully balance a combination
of depth, width, and resolution scaling using a method
they called compound coefficient. The EfficientNet model

was built using a neural architecture search2% 301 to
design a new baseline network, then scale it using the
method proposed. This architecture search was done by
optimizing the accuracy and number of FLOPS (floating
operation per second) which correlates to the efficiency of
the model from a baseline model of building blocks called
the mobile inverted bottleneck (MBConv)B0 31 with ad-
ditional squeeze-and-excitation optimization32l. This mod-
el has achieved state-of-the-art performance at the time
of publishing with a significantly lower number of para-
meters used. From the original works of this model in [28],
Tan and Le expanded the original EfficientNet model to
have a higher size which translated to better performing
models. These expanded EfficientNet models are Effi-
cientNet-b0 through EfficientNet-b8, which was expan-
ded using the compound coefficient strategy.

3.2 Segmentation layer

Segmentation layer acts as a mapping function from
the output of the backbone to the output of the entire se-
mantic segmentation model which produces the pre-
dicted image data with pixel-wise class mapping, where
each prediction class is represented as each channel of the
output.

3.2.1 Fully convolutional network (FCN)

The FCN segmentation layer33], as the name suggests,
simply does several layers of convolution operation on the
output of backbone and sets the last output layer’s num-
ber of channel to the corresponding number of classes to
be predicted. Long et al.33 use several backbone models
to experiment with: AlexNet, VGG, and GoogLeNet. This
segmentation layer is the simplest form of a semantic seg-
mentation model which could easily be implemented with
various kinds of backbone models. This model is used in
this work since it is the simplest one to implement so
that it can be a test model to do debugging on the main
training script used for the other models as well.

3.2.2 Pyramid scene parsing network (PSPNet)

The major issue with the previous model is the lack of
proper usage of global scene category clues achieved by
the backbone model which suffers in terms of perform-
ance for the complex scene. This will be especially true in
the case of this project as the scene in the environment of
grasping is a complex set of objects which is highly
cluttered. This problem of proper usage of global scene
category clues was then addressed in the work of Zhao et
al.B4 with the proposed method (PSPNet). PSPNet ex-
tends the traditional dilated FCNB5 with their specially
designed global pyramid pooling module. The main idea
of the pyramid pooling module is to fuse the features
achieved by four different pyramid scales from the back-
bone. With this strategy, it is possible to separate the
feature map of the data into four different sub-regions
which form a different representation of the features for
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each different location, which could possibly collect differ-
ent levels of information for each location.
3.2.3 Bilateral segmentation network (BiSeNet)

Yu et al.B6 addressed several problems that might
correspond to the performance loss in other models due to
scaling, to get a better speed performance. Their prelim-
inary studies conclude that by restricting the input size
to reduce computation complexity, it could lead to loss of
spatial details which subsequently corrupts the predic-
tion output, especially around the boundaries. They pro-
posed a segmentation layer network called bilateral seg-
mentation network (BiSeNet) which consists of two parts:
spatial path (SP) and context path (CP). Spatial path
portion of the module is used to preserve the spatial in-
formation generated by the backbone which yields a high-
resolution feature, and the context path module uses a
fast downsampling strategy to obtain a sufficient size of
receptive field in the output. The output of both paths is
then fed into another module called the fusion feature
module (FFM) to combine the output of the two paths
efficiently. With this strategy, BiSeNet could achieve
state-of-the-art methods for real-time semantic segmenta-
tion with the ResNet101 backbone and even surpass the
accuracy of the PSPNet model with 105 FPS inference
time.

4 Suction grasp estimation

4.1 Dataset

The main dataset used in this work is the original
dataset used by Zeng et al.l4l in their project and is pub-
licly available for usel. It consists of suction grasping,
parallel jaw grasping, and image matching datasets. Nev-
ertheless, we only use the suction grasping dataset.

In the available suction grasping dataset, there are
four different image sets for a single scene: color input,
depth input, color background, and depth background, as
illustrated in Fig.1, and the extra data of camera pose
and camera intrinsics are saved as a text file. The ob-
jects used in this dataset are based on the widely avail-
able and commonly used household objects, such as scis-
sors, boxed objects, water bottle, books, cloth, plastic
wrapped object, etc. The dataset images are captured us-
ing an Intel® RealSense™ SR300 RGB-D camera. The
depth images are stored as a 16-bit single channel image,
which represents a calibrated distance in deci-millimeters
(107*m) and invalid depth is set to 0. The color images
are stored as a normal portable network graphic (PNG)
image with 3-channel 8-bit data. The dataset also
provided the train and test split with a proportion of 4 : 1.

The labels of this dataset are stored as a single chan-
nel 8-bit image which represents 3 different class predic-
tions: unsuctionable, suctionable, and unlabeled. The un-

thttps://vision.princeton.edu/projects/2017/arc/#datasets
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(a) Color background (b) Color input

(c) Depth background (d) Depth input

(e) Data label

Fig. 1 Dataset sample image of a single scene

suctionable area is the area in the image where it would
cause unstable suction and lead to a failed grasp. This
area is normally located at the part of object that is too
far from the center gravity of the object. The suctionable
is the area which needs to be predicted where it is nor-
mally near the center of gravity of the object and is more
likely to give a successful grasping action. These classes
are represented as different values in the label image,
that is the unsuctionable area is set to 0, suctionable area
is set to 128, and unlabeled area is set to 255, as illus-
trated in Fig.1(e).

4.2 Baseline algorithm

The baseline algorithm for this work is based on the
work done by Zeng et al.ll with several modifications to
fit our usage. The general approach of this baseline al-
gorithm is to get the local standard deviation to the sur-
face normals of the pixel to represent the affordance value
for the corresponding pixel on an image. It is done by
performing a background subtraction to the input image
to get an image data that contains objects only in it.
Hence, this baseline algorithm also needs the background
image of the scene where no objects are in the scene.

The first step to this baseline algorithm is to perform
a background subtraction to the input RGBD data, that
value has been scaled to have a value range of [0,1]. Sub-
sequently, a threshold value for the background subtrac-
tion is set to determine if the particular pixel is a back-
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ground or not (no change of value on the input com-
pared to background). After performing this operation,
we will get a foreground mask for each color and depth
image which contains the information of pixel values with
only objects in it. We then combine both information in
color and depth foreground masks as a single datum us-
ing the logical OR operation.

The depth image input is then projected to the cam-
era space using the provided camera intrinsics in the
dataset to get the 3D point cloud data of the image in-
put which later could be used to compute the surface nor-
mal for each point of the input point cloud. Finally, we
are able to compute the local standard deviation from the
surface normal by first projecting it back to image plane.
The output values of local standard deviation is then nor-
malized to the value range of [0,1], yielding the afford-
ance map value.

4.3 Proposed solution

The general idea of our approach is to generate an af-
fordance map from the input RGBD image of the scene
which represents the probability of success of the corres-
ponding pixel, from which we can infer the best grasping
proposal from the pixel with the highest probability value
(see Fig.2). We employ a deep neural network method as
it is the easiest way to implement because there is no
need to manually construct and design any image fea-
tures specific to the data. It has also performed really

well in other tasks. A modified deep neural networks
model for semantic segmentation tasks is then used to
perform a pixel-wise classification mapping on the output
from the input, see Fig.3(a). The output of this model is
represented as a multi-channel image data in which each
channel of the output represents the logits value map-
ping of class prediction for the corresponding pixel in the
input image. It means the number of output channels is
the same as the number of classes to be predicted.

There are several strategies to achieve the desired be-
havior, i.e., by exploiting the semantic segmentation task
with the neural networks method. The image classifica-
tion task model which is used as the backbone model for
the semantic segmentation task receives an input of a col-
or image, which means it receives 3-channel of 2D matrix
data. To get the best performance, we use an RGBD
camera which produces a color image and a depth map or
RGBD image. Using a color only image could not convey

Algorithm

Depth

Fig. 2 Illustration of general concept of the proposed solution
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(b) Modified semantic segmentation model proposed

Fig. 3 Comparison of the proposed model with the original model
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enough information (features) of the actual surface of the
object in the scene. It is especially useful in the case of an
object manipulation since the robot will directly interact
with the object in the real-world.

To tackle this problem of incompatible input for the
model, the backbone of a normal semantic segmentation
model, which normally has only a single backbone, is
modified to have two different backbone models to com-
pute the features of each input (color and depth) inde-
pendently of each other. In addition, since a depth image
is only a single channel, the depth map data is concaten-
ated to make a 3-channel image. This strategy will then
produce two separate output features from backbones,
which cannot be processed directly by the segmentation
layer. To merge the resulting output features from the
backbones, we implement a concatenation operation on
the channel dimension which yields an output of twice
the size of those normal semantic segmentation layer
model. Thus, we also need to increase the input size of
the very first operation on every segmentation layer by
twice of the channel size part. For the detailed illustra-
tion, see Fig.3(b). The affordance map could then be ob-
tained from the second channel of the segmentation out-
put which represents the suctionable class.

4.4 Training models

In this work, we use a PyTorch framework to build,
train, and evaluate the models. To train the models, we
use a cross entropy loss function to compute the loss
value on each training prediction. For the BiSeNet model,
we use three different loss values on three different up-
sample stages to better guide the total output loss, so we
can get a more precise weight value, as explained in the
original paper[36l. These three different losses will then
combined using a weighted sum. For the weight optim-
izer, we use stochastic gradient descent (SGD) with a
fixed momentum value of 0.99 and learning rate of 1075.
This parameter value of the optimizer is chosen as it em-
pirically performs well to optimize the weight, does not
take too long to achieve convergence value, and also
stable in completing the entire training without having
the problem of gradient explosion. The image pixels
which are labeled as unlabeled, which are neither suction-
able nor unsuctionable, are ignored in the training so they
are trained with 0 weight loss in backpropagation. We
use the batch size of 2 for the entire training process as
the amount of dataset is not large enough. All of the
models are trained on a single NVIDIA GTX1 060 6GB
on an Intel Xeon E3.

To prevent overfitting the model, we also perform an
image augmentation operations on the input dataset im-
ages in real-time as the models are trained and applied in
a specified probability value. This image augmentation
operations are done using the Imgaug Library72. There

2https://imgaug.readthedocs.io/en/latest/
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are three different sequences of augmentation operations
which are chosen randomly. The first sequence performs a
left-right flip, piecewise affine operation, and a perspect-
ive transformation. The second sequence is almost the
same as the first, with the difference of using up-down
flip rather than left-right flip. The last sequence perform
a left-right flip operation, followed by dropout operation,
then piecewise affine operation, and finally a perspective
transformation operation.

4.5 Evaluating performance

To compare the performance of each model, there are
three metrics which are considered in this paper: the pre-
cision, speed, and size of the model. In normal conditions,
to compute the performance of a semantic segmentation
task is done by comparing the binary mask of the pre-
dicted data to the label and classifying them into four
types: 1) True positive (TP) when the prediction is the
same as label and is predicted for a given class. 2) True
negative (TN) when the prediction is the same as label
and is predicted to be not for a given class. 3) False pos-
itive (FP) when the prediction is different from label and
is predicted for a given class. 4) False negative (FN)
when the prediction is different from label and is pre-
dicted to be not for a given class. There are several met-
rics which can be used to measure the performance of a
semantic segmentation models, that are not limited to:
accuracy, precision, recall (sensitivity).

The problem with measuring performance for the out-
put of this method is that the output affordance map is
represented as a probability value. There is a need to
choose a threshold value to determine if a prediction is
considered to be true or false. We determine the
threshold value is 0.99 percentile (top 1%) of the predic-
tion, which will be used to classify the correct prediction.
We then compute the precision and recall with the cor-
responding equations:

TP
recall = TP L FN (1)
.. TP
precision = mp——p TFP (2)

5 Experiment result

5.1 Baseline performance

The main concern of the baseline algorithm is to have
a general sense of reference about the performance of a
“traditional” algorithm which does not have any learning
method, so we should expect a better performance with
the method that employs a learning method in the solu-
tion as is the case with this problem. There are three
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variables which could possibly affect the performance of
the baseline algorithm: a background subtraction thre-
shold for color image and depth image, and the radius of
the local surface normal computation. We can infer that
the effect of color image threshold value on precision is
that a higher value will generally result in a decrease in
precision, with the optimum value as 0.25. It is also true
for any different value in the opposing variables which is
significantly clearer compared to the effect of depth
threshold.

For the effect of depth image threshold value on preci-
sion, the pattern is less clear since it fluctuates in some
random order, and the pattern of fluctuation also diffe-
rs with the change of the opposing variables, see Fig. 4 (c).
The optimum precision performance that could be achie-
ved using this baseline algorithm for the threshold values
are 0.25 for color threshold and 0.11 for depth threshold.

The radius for the local surface normal computation
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Fig. 4 Effect of threshold value for background subtraction on
the precision of baseline algorithm

could not be generally considered to have any impact on
the precision as it only has a slight dip of precision on ra-
dius 0.6cm to 0.8cm, and generally remains the same for
other values (see Fig.5), which is possibly caused by a
random chance. The larger radius will only increase the
precision of the computation, not the quality of the pre-
diction. The algorithm could achieve 57.34% of precision
with an average computation time of 803.32ms for the
entire computation of the prediction, while the number of
points for surface normal computation is set to 100.

This baseline algorithm could generally achieve a good
grasp point performance when predicting a less cluttered
scene, but it fails for the highly cluttered scene. This
problem is mainly due to the effect of the camera, where
the raw pixel value (brightness) could change automatic-
ally, especially in scenes where the objects are brighter or
darker, which causes a higher difference in raw values
even though there are no objects in that particular area
of pixels. Such a problem also likely to occur when the
scene has a higher number of objects in it.

5.2 Model performance

This evaluations are performed using NVIDIA 1060
6GB GPU, with Intel Xeon E3 and 4GB of RAM on an
Ubuntu 16.04 operating system. For the software environ-
ment, we use PyTorch version 1.2.0 with NVIDIA driver
version 415, CUDA version 10.1, and cuDNN version
7.6.3.

Table 1 shows the model performance evaluation res-
ults, where each metrics is explained in 4.5. It should be
noted that not several backbone-model combinations are
not trained due to the lack of resources.

The results of the evaluation shown in Table 1 indic-
ate the model with the highest precision is the combina-
tion of ResNet1014+PSPNet but only by a small margin
compared to ResNet1l01+FCN and even with the faster
model of ResNet50+BiSeNet. It should be noted that the
ResNet101+BiSeNet combination and other higher-sized
models were not trained because of the lack of GPU
memory resources for the training. We could also con-
clude that the result of the EfficientNet backbone model
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Fig.5 Effect of local surface normal radius on precision of
algorithm
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compared to the similar ResNet model size as specified in
the original paper(28 is lower as all the segmentation lay-
er models used are designed specifically to have a better
suit for ResNet or similar models. Nevertheless, the res-
ult of high-sized EfficientNet models could even match
the model combination performance of higher equivalent
sized models to the ResNet backbone, e.g., EfficientNet-
b3+PSPNet which should be equivalent to ResNet50
compared to ResNet101+PSPNet.

The result of evaluation shown in the Table 1 has
come as expected where the higher version of the models
requires a bigger memory size. It should be noted that
the memory required to run a model is not a factor influ-
encing the inference speed of a model. It just corresponds
to the amounts of data that are stored in the model
which contains the weight, bias, and other parameters re-
quired by each layer of the network. For example, Effi-
cientNet backbone models are much more efficient than
ResNet models but have a slightly larger memory size.
The inference speed of a model is highly influenced by

Table 1 Evaluation result of the performance of models

Model
Precision (%) Time (ms) Size (MB)
Backbone Segmentation
ResNet18 FCN 85.33 11.06 121.47
ResNet34 87.36 18.11 248.98
ResNet50 87.91 31.44 292.09
ResNet101 88.27 52.00 727.15
EfficientNet-b0 75.53 19.11 163.01
EfficientNet-bl 76.58 26.13 223.57
EfficientNet-b2 81.57 26.34 251.30
EfficientNet-b3 83.85 29.69 339.97
EfficientNet-b4 86.12 36.02 551.07
ResNet18 PSPNet 87.27 12.64 220.08
ResNet34 88.22 19.09 347.58
ResNet50 88.47 29.78 661.66
ResNet101 88.83 53.14 1096.78
EfficientNet-b0 82.27 19.64 628.06
EfficientNet-b1 85.94 27.32 698.24
EfficientNet-b2 86.32 30.23 785.93
EfficientNet-b3 87.25 35.25 961.16
EfficientNet-b4 87.66 36.58 1332.81
ResNet18 BiSeNet 86.54 6.90 431.52
ResNet34 87.43 9.81 666.49
ResNet50 88.45 13.10 1230.13
EfficientNet-b0 80.15 20.66 243.88
EfficientNet-bl 84.11 27.95 311.01
EfficientNet-b2 85.40 28.35 369.08
EfficientNet-b3 86.81 31.15 476.42
EfficientNet-b4 87.74 37.42 736.71

@ Springer

how efficient each layer of the models to perform parallel
computation in GPU.

In this work, we have also implemented a more
streamlined strategy to the post-processing phase by
adding a faster and more effective algorithm, and adding
several strategies to prevent the model from overfitting
compared to the original work by Zeng et al.l4l which is
proven to be a better solution. We use the same experi-
mental parameters as Zeng et al.l4l i.e., 20 different ob-
jects with 24 suction trials, for fair comparison. In their
original work, this part refers to the result of the work
from Zeng et al.lMl, the top 1% prediction refers to the
threshold value to compute precision with ResNet101
backbone and FCN layer, compared to our implementa-
tion of the same network which achieves 88.27% of preci-
sion. Further, our results with ResNet184+FCN model can
achieve a better result compared to those reported in
their work as shown in Table 2. Not only that, our imple-
mentation also has a significantly lower inference time es-
pecially for lower sized models with a higher precision res-
ult. It should also be noted that Zeng et al.ll use
NVIDIA Titan X 12GB for evaluation, which costs 6
times compared to our hardware of NVIDIA GTX 1060
6 GB.

The main drawbacks of our method is that the model
does not learn the visual relationships between objects
which in some cases play an important role in deciding
which object to grasp first before the others. As illus-
trated in Fig.6(b), the model fails to decide the very top
object to grasp first but instead it provides a higher af-
fordance value to the object that is stacked by other ob-
jects which could possibly lead to a failed grasping at-
tempt if the suction is not strong enough to push away
the top object. But generally, our method provides a good
grasp proposal even in a cluttered and challenging scene
as shown in Fig.6 (a).

6 Conclusions

A new approach to grasp point estimation was presen-

Table 2 Performance comparison to other works

Method precision (%) time (s)

Lenz et al.[38] N/A" 13.5
Zeng et al.[39] N/A® 10-15

Dex-Net 2.0018] N/A® 0.8
Matsumoto et al.[40] N/A" 0.20
Zeng et al. (ResNet101+FCN)Ml 83.40 0.060
Ours (ResNet101+FCN) 88.27 0.087
Ours (ResNet18-+FCN) 85.33 0.019
Ours (ResNet50+BiSeNet) 88.45 0.03
Ours (ResNet101+PSPNet) 88.83 0.102

“not comparable, using different datasets for evaluation
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(b) Failed grasp proposal

Fig. 6 Visualization of the affordance map output of the main
model, the left one is the input color image and the right one is
the output affordance map.

ted in this work. This approach predicted a probability
map which represents the estimation of a success rate for
a grasping action in that particular point in 3D space
which in this case is represented in the pixel elements of
an image input, called affordance map. We use a modi-
fied deep neural network models for semantic segmenta-
tion tasks to directly compute the affordance map from
an RGBD image input of a scene. Two backbone models

of ResNet and EfficientNet, and three different semantic
segmentation layers that are FCN, PSPNet, and BiSeNet
were used. These components of the model are then com-
bined with each other and the performance compared in
terms of precision, inference speed, and model size. We
achieve the best performance of precision with the com-
bination of the ResNet1l01+PSPNet model which could
achieve a precision of 88.83%. But, in terms of overall
performance, the best performing model is the combina-
tion ResNet50+BiSeNet model as it could achieve 88.45%
with a significantly faster inference speed of 29.8ms.
These results achieved in this work have surpassed the re-
ported performance of the state-of-the-art work by Zeng
et al.l4l
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