
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021 1

Bidirectional Trajectory Computation
for Odometer-Aided Visual-Inertial SLAM

Jinxu Liu, Wei Gao* and Zhanyi Hu

Abstract—Odometer-aided visual-inertial SLAM systems typ-
ically have a good performance for navigation of wheeled plat-
forms, while they usually suffer from degenerate cases before the
first turning. In this paper, firstly we perform an observability
analysis w.r.t. the extrinsic parameters before the first turning,
which is a complement of the existing results of observability
analyses. Secondly, inspired by the above observability analyses,
we propose a bidirectional trajectory computation method, by
which the poses before the first turning are refined in the
backward computation thread, and the real-time trajectory
is adjusted accordingly. Experimental results prove that our
proposed method not only solves the problem of the unobserv-
ability of accelerometer bias and extrinsic parameters before the
first turning, but also results in more accurate trajectories in
comparison with the state-of-the-art approaches.

Index Terms—Visual-Inertial SLAM, SLAM, Sensor Fusion

I. INTRODUCTION

V ISUAL-INERTIAL SLAM (VI-SLAM) and visual-
inertial odometry (VIO) approaches have received great

attention from the researchers in recent years. They can be
applied on mobile devices, micro aerial vehicles (MAVs),
ground robots and passenger cars for localization and per-
ception. Filtering-based methods such as MSCKF [12] and
optimization-based methods such as OKVIS [7] make up the
two categories of state estimation methods. In general, filter-
based approaches have better efficiency while optimization-
based methods enjoy higher accuracy [4]. The optimization-
based approaches [7], [13] typically optimize a limited number
of current states to limit the amount of computation, and use
marginalization to make use of previous information to better
estimate the current states.

For wheeled platforms such as robots and passenger cars,
the accuracy of visual-inertial navigation can be dramatically
improved with the aid of wheel encoders [16], [10], [19],
[20], [6], [2], [11], [15]. In some methods such as [16], [8],
[19], [20], [6], [2], [11] and [21], the IMU measurements and
wheel encoder readings are pre-integrated individually. This
type of approaches either need at least two wheel encoders or
require the front wheel angle measurement for pre-integration,

Manuscript received: September 24, 2020; Revised December 22, 2020;
Accepted January 21, 2021.

This paper was recommended for publication by Editor Sven Behnke
upon evaluation of the Associate Editor and Reviewers’ comments. This
work was supported in part by the National Key R&D Program of China
(2016YFB0502002), and in part by the Natural Science Foundation of China
(61991423, 61872361). (*Corresponding Author: Wei Gao) .

All authors are with National Laboratory of Pattern Recognition, Insti-
tute of Automation, Chinese Academy of Sciences, and with School of
Artificial Intelligence, University of Chinese Academy of Sciences, China.
{jinxu.liu, wgao, huzy}@nlpr.ia.ac.cn

and have to deal with the problem that the angular velocity
provided by the sensors on wheels is always within the ground
plane. Other methods such as [15], [18] and [10] jointly
pre-integrates the angular velocity from IMU and the linear
velocity from wheel encoder. This type of approaches can
still work when only one wheel encoder is available, and the
uneven terrain does not have an impact on the performance
of these approaches theoretically. In this paper we use wheel
encoder and odometer to denote the same thing.

However, for applications on ground vehicles, VI-SLAM
and VIO approaches often suffer from degenerate cases,
even with the aid of wheel encoders. [16] points out two
degenerate cases under special motions. Firstly, the scale is
unobservable when the platform moves with constant local
linear acceleration. Secondly, the roll and pitch angles are
unobservable when the platform has no rotational motion. Both
the cases are related to the accelerometer bias which can not
be correctly estimated under the above special motions. [16]
also proves that the first degenerated case can be eliminated
with the use of wheel encoder. However, it can be drawn that
the second degenerate case still exists in such a case through
derivation, which is straightforward and will be presented
briefly in our technical report1. Besides, the experimental
results in [10] also indicate that the accelerometer bias can
not be correctly estimated until the first turning with the use
of wheel encoder. In addition to the accelerometer bias, some
of the extrinsic parameters can not be correctly estimated
as well, when the platform has no rotational motion. [17]
have proved that the translational component of camera-IMU
extrinsic parameters is unobservable in a VIO system when
the platform undergoes pure translation, and [22] have proved
that the translational component of IMU-odometer extrinsic
parameters is unobservable in an odometer-aided VIO system
when the platform undergoes pure translation. However, our
proposed approach adopts a sensor fusion scheme that is
different from [22], i.e. in our proposed approach IMU and
wheel encoder measurements are fused in the pre-integration
stage. One wheel encoder is sufficient to aid the VI-SLAM
in our proposed approach, while at least two wheel encoders
are required in [22]. Hence the observability analysis on
our proposed approach is necessary. Furthermore, both [17]
and [22] focus on the unobservable directions under pure
translation, but neither of them have analyzed the observability
under pure translation along a straight line, which is a common
case and renders another direction in extrinsic parameters
unobservable. In Section III of this paper, we will give an

1https://arxiv.org/abs/2002.00195v3



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

observability analysis for the seven unobservable directions
caused by the special motion pattern in extrinsic parameters
for an odometer-aided VI-SLAM system, under the circum-
stance that the platform undergoes pure translation along a
straight line. Thanks to the employment of marginalization,
the optimization-based VI-SLAM approaches can make use
of previous information collected since beginning. Therefore,
once the platform performs rotational motion such as making
a turn, the accelerometer bias and extrinsic parameters will
be correctly estimated from then on. Nevertheless, before the
first turning, the inaccuracy which results from the incorrectly
estimated accelerometer bias and extrinsic parameters remains
a problem for odometer-aided VI-SLAM approaches.

To relieve the inaccuracy before the first turning, [10]
proposes to keep the extrinsic parameters constant during
nonlinear optimization until the platform has made a turn
and the estimation of accelerometer bias has reached conver-
gence. Furthermore, we may further keep the accelerometer
bias constant as zero before the first turning to relieve the
inaccuracy caused by the incorrectly estimated accelerometer
bias. Some initialization approaches for VI-SLAM also deal
with unobservability when initial motion does not render all
parameters observable. [24] forces accelerometer bias to be
close to zero, and [25] adds a prior with the mean value
of zero w.r.t. the accelerometer bias. Extrinsic parameters are
not calibrated during VI-SLAM initialization. However, since
the accelerometer bias is actually not zero and the extrinsic
parameters may not be very accurate, the accuracy of trajectory
before the first turning may still be deteriorated, especially for
outdoor scenes where the vehicle is likely to travel a long
distance before the first turning.

By contrast, in this paper we propose a bidirectional trajec-
tory computation approach to make the estimated poses before
the first turning as accurate as those after the first turning. In
short, after the first turning, we additionally create a backward
computation thread to recalculate the poses from the first
turning back to the starting point. In this way, the accuracy of
estimated poses before the first turning do not suffer from the
lack of rotation anymore, because the backward computation
makes use of the information obtained in the first turning. Also
note that by means of bidirectional trajectory computation,
we can obtain more accurate overall trajectory in real time,
because every time one of the poses before the first turning
is updated by the backward computation thread, the real-time
trajectory is also adjusted accordingly. In the following, we
provide the observability analysis for the extrinsic parameters
in Section III and describe the proposed bidirectional trajectory
computation method in Section IV.

II. PRELIMINARIES ON ODOMETER-AIDED
VISUAL-INERTIAL SLAM

The proposed bidirectional trajectory computation method
is based on the odometer-aided VI-SLAM approach [10],
which is a tightly-coupled approach based on sliding window
optimization, where IMU and wheel encoder measurements
are fused at the pre-integration stage.

A. Frames and Notations

The coordinate frames of the sensors include the camera
frame, the IMU frame and the odometer frame. The wheel
encoder is installed on one rear wheel that always points
forward. For the details of these frames the reader may refer
to [10]. We use (·)w to denote the world frame that is fixed
since initialization, and (·)ck , (·)bk and (·)ok to denote the
camera frame, IMU frame, and odometer frame corresponding
to the kth image. Let RB

A denote the rotation matrix that takes
a vector in frame {A} to frame {B}, and qB

A is its quaternion
form. pB

A is the coordinate of the origin point of frame {A}
in frame {B}, and vB

A is the velocity of the origin point of
frame {A} measured in frame {B}. And let bak and bωk denote
the accelerometer bias and gyroscope bias corresponding to
image k respectively. Moreover, we use [·]× to denote the skew
symmetric matrix corresponding to a vector.

B. State Estimation

The parameters to be estimated can be written as

x =
[
x0,x1, . . .xK−1,λ0,λ1, . . .λm−1,Rb

c ,pb
c ,Rb

o,pb
o
]
,

xk =
[
pw

bk
,vw

bk
,qw

bk
,bak ,bωk

]
,k = 0 . . .K−1,

(1)

where λ is the inverse depth of one landmark in camera frame,
Rb

c and pb
c are the camera-IMU extrinsic parameters, while Rb

o
and pb

o are the IMU-odometer extrinsic parameters. m is the
number of landmarks and K is the size of sliding window.

The cost function c(x) mainly comprises reprojection error
terms, IMU-odometer error terms and the marginalization error
term, which writes as

c(x) = ∑
L

∑
j∈BL

ev
L, j

TWvev
L, j +

K−2

∑
k=0

es
k
T

ΣΣΣ
−1
k,k+1es

k + emTem, (2)

where ev
L, j means the reprojection residual of landmark L on

image j, and Wv is the uniform information matrix for all
reprojection error terms. BL is the set of images on which
landmark L appears. es

k and ΣΣΣk,k+1 are the residual vector and
covariance matrix of the IMU-odometer terms respectively,
which are derived utilizing the IMU-odometer pre-integration
results. emTem is the marginalization error term. In practice
we additionally add a very small term confining the roll
angle in Rb

o, which is always an unobservable angle because
the velocity of the wheel always points forward in its own
coordinate frame. This term is so small that it is neglected in
the following demonstrations. The nonlinear optimization is
performed using Dogleg method by Ceres Solver [1]. For the
details of state estimation, the reader may refer to [10].

III. OBSERVABILITY ANALYSIS
In this section, we analyze the observability of extrinsic

parameters when the platform moves along a straight line with
no rotation, which is often the case for a car on a straight road
before its first turning. For the observability analysis we need
to consider the reprojection constraints

πc(Rc
b(R

b j
w (Rw

bi
(Rb

c
1

λL
π
−1
c (

[
ûL,i
v̂L,i

]
)+pb

c)+pw
bi
−pw

b j
)−pb

c))

=

[
ûL, j
v̂L, j

]
, i = 0 . . .K−1,L ∈Fi, j ∈ Vl ,

(3)



LIU et al.: BIDIRECTIONAL TRAJECTORY COMPUTATION FOR ODOMETER-AIDED VISUAL-INERTIAL SLAM 3

as well as the IMU-odometer constraints

Rbk
w (pw

bk+1
−pw

bk
+

1
2

gw
∆t2

k −vw
bk

∆tk)−ααα
bk
bk+1

= 0, (4)

Rbk
w (vw

bk+1
+gw

∆tk−vw
bk
)−βββ

bk
bk+1

= 0, (5)

2
[
(γγγbk

bk+1
)−1⊗qw

bk

−1
⊗qw

bk+1

]
vec

= 0, (6)

Rbk
w (pw

bk+1
−pw

bk
)−pb

o +Rbk
w Rw

bk+1
pb

o−ηηη
bk
bk+1

= 0, (7)

bak+1 −bak = 0, (8)
bωk+1 −bωk = 0,k = 0 . . .K−2, (9)

where [ûL,i, v̂L,i]
T and [ûL, j, v̂L, j]

T are the observations of
landmark L on image i and image j respectively. λL is the
inverse depth of landmark L in the camera frame where its
first observation happens. πc(·) is the projection function, and
π−1

c (·) is the inverse function of πc(·). K is the size of sliding
window, Fi is the set of landmarks whose first observation
happens on image i, and VL is the set of images that can
see landmark L but are not the first image seeing L. For
more details of (3), the reader may refer to [13]. ααα

bk
bk+1

, βββ
bk
bk+1

,

γγγ
bk
bk+1

and ηηη
bk
bk+1

are the nominal states from IMU-odometer
pre-integration, after being compensated by the changes in
estimated IMU biases and IMU-odometer extrinsic parameters.
Among them γγγ

bk
bk+1

is the rotation from the IMU frame of

image k + 1 to that of image k. ηηη
bk
bk+1

is the displacement
between the origin of odometer frame of image k and that
of image k + 1, integrated using gyroscope and odometer
measurements. ααα

bk
bk+1

and βββ
bk
bk+1

do not have straightforward
geometrical meanings, but they have the same dimensions as
displacement and velocity respectively. The readers may look
at (3) and (5) in [13] for details of ααα

bk
bk+1

, βββ
bk
bk+1

and γγγ
bk
bk+1

, as

well as (1) and (12) in [10] for details of ηηη
bk
bk+1

respectively.
∆tk is the time interval between image k and image k+1. And
[·]vec denotes the vector part of a quaternion.

Among the extrinsic parameters (Rb
c ,pb

c) and (Rb
o,pb

o), pb
o

is only involved in (7), which can be rewritten as

Rbk
w (pw

bk+1
−pw

bk
)+(Rbk

w Rw
bk+1
− I)pb

o−ηηη
bk
bk+1

= 0. (10)

When the platform moves along a straight line with no
rotation, Rbk

w Rw
bk+1
− I = O, in which case pb

o is not involved
in any of the constraints, so it is unobservable.

Similarly, Rb
c and pb

c are only involved in (3), which can be
rewritten as

πc(
1

λL
Rc

bRb j
w Rw

bi
Rb

cπ
−1
c (

[
ûL,i
v̂L,i

]
)+Rc

b(R
b j
w Rw

bi
− I)pb

c

+Rc
bRb j

w (pw
bi
−pw

b j
)) =

[
ûL, j
v̂L, j

]
, i = 0 . . .K−1,L ∈Fi, j ∈ Vl .

(11)

When the platform moves along a straight line with no
rotation, pb

c is unobservable because Rb j
w Rw

bi
− I = O. More-

over, in such a case, for every image pair (i, j), we have
Rb j

w (pw
bi
−pw

b j
) = si, jd, where si, j is a scalar, and d is a unit

vector denoting the driving direction, which is independent of
(i, j). In such a case, (11) can be rewritten as

πc(
1

λL
π
−1
c (

[
ûL,i
v̂L,i

]
)+ si, jRc

bd) =
[

ûL, j
v̂L, j

]
, i = 0 . . .K−1,L ∈Fi, j ∈ Vl ,

(12)

From (12) it is clear that the component in rotation Rb
c

corresponding to the rotation around the driving direction
d, which is also called the roll angle in the following, is
unobservable as well.

In practice, among the seven unobservable directions (three
in pb

o, three in pb
c and one in Rb

c) when the platform moves
along a straight line with no rotation, the roll angle in Rb

c is
the direction whose observability is most relevant to whether
the platform has made a turn. We firstly perform eigendecom-
position of the Hessian matrix, and then compute the ratio of
the eigenvalue corresponding to the eigenvector which is most
approximate to direction of the perturbation of the roll angle
in Rb

c , to the largest eigenvalue. For the experiment illustrated
in Figure 1, the accelerometer bias is held constant and the
extrinsic parameters start to be adjusted since the beginning.
It is clear from Figure 1 that after the first turning the error in
roll angle of Rb

c dramatically decreases and that the eigenvalue
ratio dramatically increases, both of which indicate that the roll
angle in Rb

c can be estimated much better after the first turning.
Compared with [23], our observability analysis computes the
eigenvalue ratio inside sliding window that keeps sliding,
rather than fisher information matrix inside previously divided
segments, thereby illustrating the relationship between turning
and the observability of extrinsic parameters more clearly.
Moreover, our analysis reveals that the extrinsic parameter is
still observable after the turning given that marginalization is
applied, because the eigenvalue ratio does not dramatically
decrease after the turning.

Fig. 1. Estimation error in roll angle of Rb
c , the eigenvalue ratio and the

angular velocity around the Z axis (the vertical axis) at the first turning in
sequence urban34. The pinkish box indicates the first turning. The system
starts at a dozen of seconds before the first turning.

Practically, when the motion of the platform is approxi-
mately but not exactly along a straight line, the errors in the
unobservable directions of the extrinsic parameters do affect
the accuracy of the trajectory. Table I shows the comparison of
absolute trajectory error (ATE) for 4 sequences in KAIST Ur-
ban Data Set [5], either using the accurate extrinsic parameters
calibrated offline or using the extrinsic parameters with added
fixed error (5 degrees in the roll angle of Rb

c). More details of
observability analysis are in our arXiv technical report.

IV. METHOD
Taking into consideration that for the odometer-aided VI-

SLAM system described in Section II-B, the system is not
stable and the extrinsic parameters can not be correctly es-
timated in the beginning, and that the accelerometer bias is
unobservable until the platform makes a turn, we propose a
robust method to acquire accurate real-time trajectory.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

TABLE I
ATE (IN METERS) USING DIFFERENT EXTRINSIC PARAMETERS

Sequence (urban-) 22 (3.4km) 23 (3.4km) 24 (4.2km) 25 (2.5km)

EPs accurate 8.8 11.1 15.0 8.0
EPs with error 14.2 13.5 16.2 9.7

Here EPs accurate means using the accurate extrinsic parameters calibrated
offline, and EPs with error means using the extrinsic parameters with added fixed
error. ATE means absolute trajectory error, and EPs mean extrinsic parameters. In
each of the four sequences the car moves along an approximately straight road,
and the trajectories are computed using the state estimation method illustrated in
Section II-B, with accelerometer bias and extrinsic parameters both held constant.

A. Forward Computation Thread and Backward Computation
Thread

In the very beginning, we propagate the poses and try
to initialize our system. After the system is initialized as
described in [10], the state estimation in sliding window is
performed as in Section II-B in the main thread, which we call
the forward computation thread. In the forward computation
thread, before the first turning, the extrinsic parameters are
held constant, and the accelerometer bias is set to zero and held
constant, in order to make the system robust in the beginning.
At this stage, we limit the magnitude of the marginalization
term as described in Section IV-D. Once the platform has
made a turn, the accelerometer bias starts to be adjusted,
and as soon as the estimation of accelerometer bias reaches
convergence according to the criterion adopted in [10], the
extrinsic parameters starts to be adjusted. The detection criteria
for a turning will be described and explained in Sect.IV-B.
Thanks to the fact that the marginalization term contains
historical information, especially the information gathered
during the first turning, the accelerometer bias and extrinsic
parameters that are engaged in state estimation will soon reach
their desired values. After a time interval T2 (30 seconds
in our experiments) since the extrinsic parameters begin to
be adjusted, we create a new thread named backward com-
putation thread, meanwhile the forward computation thread
keeps running. Both the two threads are independent with each
other. Figure 2 is the schematic diagram illustrating forward
computation and backward computation.

starting 
point

ending 
point

forward computation

forward computation

backward computation

first 
turning

Fig. 2. Schematic diagram about forward computation and backward compu-
tation. Forward computation starts from the beginning. After the first turning
backward computation starts. Forward computation continues to operate until
the end. Backward computation proceeds to the starting point to work out
more accurate poses.

The backward computation thread also performs state esti-
mation in a sliding window where the parameters are as (1) and
the cost function writes as (2). When creating the backward
computation thread, the values of the parameters in the back-
ward computation thread except for landmark inverse depths
are copied from the forward computation thread, and the IMU-

odometer terms and the marginalization term in the backward
computation thread are identical to their counterparts in the
forward computation thread. For the backward computation
thread, the reprojection errors still take the form of (3), while
the first observation in (3) means the observation happening
on the image with the latest timestamp, instead of the one with
the earliest timestamp as in the forward computation thread.
Meanwhile, the inverse depth of each landmark L is shifted as

λL = 1/(eT3 Rc
b(R

bq
w (Rw

bp
(Rb

c
1

λ ′L
π
−1
c (

[
ûL,p
v̂L,p

]
)+pb

c)+pw
bp
−pw

bq
)−pb

c)),

(13)
where λL and λ ′L are the inverse depths of landmark L after
and before shifting respectively, eT3 =

[
0 0 1

]
, p and q

are indexes of the earliest and latest image which can see
the landmark L in the sliding window respectively, and the
meanings of the other symbols are the same as those in (3).

many landmarks
forward computation computation direction

tI 1tI 2tI 3KtI 2KtI 1KtI KtI 

existing frames frames to be inputted

reprojection error term IMU-odometer error term

marginalization error term frames possibly to be discarded

frames possibly to be marginalized

(a) sliding window in the forward computation thread

many landmarks
backward computation computation direction

tI 1tI 2tI 3KtI 2KtI 1KtI

existing frames frames to be inputted

reprojection error term IMU-odometer error term

marginalization error term frames possibly to be discarded

frames possibly to be marginalized

1tI

(b) sliding window in the backward computation thread

Fig. 3. Contrast between the sliding windows in forward and backward
computation threads. In either of the two threads, when a new frame is
inputted, the frame marked with red cross is discarded if it is not a keyframe.
Otherwise, the frame in the dashed red box is marginalized.

Parameters can be estimated correctly in the backward
computation thread since the backward computation thread
starts, because of the information contained in the marginal-
ization error term. Figure 3(a)-3(b) show the contrast between
the sliding windows in forward and backward computation
threads. In the following we illustrate how the backward
computation thread operates according to Figure 3(b). Suppose
that the first frame in data sequence is I0, and that at a certain
moment t, there are K frames in the sliding window, namely
It , It+1 . . . It+K−1. In the backward computation thread, every
time the nonlinear optimization in the sliding window finishes
at the certain moment t, the next frame to be inputted is It−1,
which is the one previous to the frame It whose timestamp is
the earliest in the sliding window. The IMU-odometer pre-
integration between the above two frames (It−1 and It ) is



LIU et al.: BIDIRECTIONAL TRAJECTORY COMPUTATION FOR ODOMETER-AIDED VISUAL-INERTIAL SLAM 5

computed, and the initial value of the pose and velocity of
the frame to be newly inputted (It−1) is propagated using IMU
measurements between the two frames. Note that although the
IMU-odometer pre-integration between the above two frames
has been performed in the past in the forward computation
thread, recomputation is needed because the estimated value
of IMU biases and the extrinsic parameter Rb

o have changed,
and they are engaged in pre-integration. Next, if the frame
with the second earliest timestamp (It+1) is not a keyframe, it
is discarded. Otherwise, the frame with the latest timestamp
(It+K−1) is marginalized. The criterion to judge whether an
image frame is a keyframe is the same as that in [13]. The
backward computation terminates when the first frame in data
sequence I0 has been inputted into the sliding window. The
IMU and wheel encoder measurements and the feature points
used in backward computation are recorded previously during
the forward computation. When the pose of a certain frame
is estimated in the backward computation thread, it is used to
substitute the corresponding pose previously estimated in the
forward computation thread, because the poses estimated in
the backward computation thread are more accurate.

B. Turning Detection

Since the local optimizations are always performed inside a
sliding window, for turning detection we consider the turning
angle inside a sliding window. We determine how large a
turning angle should reach to result in good estimation of
accelerometer bias, because the estimation of accelerometer
bias is very relevant to the turning of the platform, which
is evident from Figure 6 and [10]. We simulate 19 data
sequences, each of which contains a single turning that can be
contained inside a sliding window, and the turnings vary every
5 degrees from 0 to 90 degrees. We run the odometer-aided
visual-inertial SLAM with only forward computation on each
sequence, and the average estimation error in accelerometer
biases after turning, as well as the average magnitude of differ-
ence between every two successively estimated accelerometer
biases after turning are shown in Figure 4(a)-4(b).

(a) (b)

Fig. 4. (a) average estimation error in accelerometer biases w.r.t. ground-truth
accelerometer biases after turning and (b) average magnitude of difference
between every two successively estimated accelerometer biases after turning.
Each dot in the figures represents the average value in a data sequence
that contains a certain turning angle. The difference between every two
successively estimated accelerometer biases is also expected to be small,
because the accelerometer bias is a slow time-varying quantity.

From Figure 4(a)-4(b) we can see that when the turning
angle exceeds 20 degrees, both the average estimation error
in accelerometer biases after turning and the average magni-
tude of difference between every two successively estimated
accelerometer biases after turning do not further decrease as

the turning angle increases, indicating that the estimation of
accelerometer bias is good enough under such circumstances.
Therefore, we consider the platform has made a turn if and
only if it has turned larger than 20 degrees within a sliding
window. We do not use eigenvalue ratio to detect turning,
as eigendecomposition is time-consuming. On the data se-
quence urban25, eigendecomposition takes 10.5ms on average
after each optimization, and updating the turning angle takes
0.0007ms on average between two consecutive optimizations.

C. Computation of Real-time Trajectory

starting point
poses that have 
been updated

poses that have 
NOT been updated

first turning

poses after the first 
turning

(a) Trajectory comprising poses
(R′wck

,p′wck
)

starting point

poses that have 
been updated

poses that have 
NOT been updated

first turning

poses after the first 
turning

(b) Real-time trajectory compris-
ing poses (R′′wck

,p′′wck
)

Fig. 5. Schematic diagram of real-time trajectory computation. The black
dotted arrows represent the moving direction of the platform.

Although the backward computation directly updates the
past poses, every time the backward computation thread
updates the pose of a certain frame, the current pose is
also adjusted accordingly. As can be seen from Figure 5,
The real-time trajectory is computed by keeping the starting
point unchanged and keeping the trajectory continuous. For
a certain image frame k, its pose (R′wck

,p′wck
) is first computed

by forward computation thread, and if it is recomputed in the
backward computation thread, its pose (R′wck

,p′wck
) is updated

by the backward computation thread, and in this case the pose
previously computed by the forward computation thread is
denoted as (R̂w

ck
, p̂w

ck
). Let j denote the frame that has just

been updated by the backward computation thread. For the
frames before frame j, i.e. i< j, the real-time pose (R′′wci

,p′′wci
)

equals (R′wci
,p′wci

), that is to say they are unchanged. For the
frames after frame j, i.e. i≥ j, the real-time pose (R′′wci

,p′′wci
)

is computed as

R′′wci
= R̂w

c j
R′c j

w R′wci
,

p′′wci
= R̂w

c j
R′c j

w (p′wci
−p′wc j

)+ p̂w
c j
, for i≥ j.

(14)

D. Bounded Marginalization Term
The marginalization residual takes the form of em = rm−

Jmδx. rm and Jm are computed in the marginalization process,
and δx is the step to update the parameters x. We have
observed the phenomenon that the marginalization error keeps
growing and thus the total error keeps growing before the first
turning, when the accelerometer bias and extrinsic parameters
are held constant. In order to reduce the accumulation of the
error caused by inaccurate extrinsic parameters and accelerom-
eter bias in the marginalization error term and prevent the
above error from dominating the state estimation, before the
first turning we multiply rm and Jm by a ratio µ once the ratio
of marginalization error emTem to total error c(x) in (2) after
optimization rises beyond a threshold r. In our experiment µ

is set to 0.85 and r is set to 0.4.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

V. EXPERIMENTS

We evaluate the effect of the bidirectional trajectory com-
putation method proposed in this paper on KAIST Urban
Data Set [5], which is a publicly available dataset containing
data in complex urban scenes collected on a rear wheel
drive passenger car. The sensors in the dataset include stereo
cameras, one IMU and two wheel encoders mounted on two
rear wheels. The frequencies of the captured images, IMU
measurements and wheel encoder measurements are 10Hz,
100Hz and 100Hz respectively. The proposed approach is
compared with the stereo inertial version of the state-of-the-
art VI-SLAM system VINS-Fusion [14], the standard VIO
[9], and the odometer-aided VI-SLAM approaches [19], [20]
and [10]. The proposed approach and [10] use a monocular
camera, one IMU and one wheel encoder. The approaches
[19] and [20], as reported in their papers, use a monocular
camera, one IMU and two wheel encoders. The stereo inertial
version of VINS-Fusion uses stereo cameras and one IMU.
To our knowledge, there are no other approaches intentionally
dealing with the unobservability after initialization and before
the first turning. All the experiments presented are performed
on a PC with Intel Core i7 3.6GHz × 6 core CPU and 64GB
memory. The extrinsic parameters provided in the dataset are
adopted as initial values, which may not be very accurate.

A. Average Positioning Error by Aligning the Starting Frame

The primary concern of our bidirectional trajectory com-
putation method is to improve the accuracy at initial stage,
which matters a lot supposing we only know the position
and orientation of the vehicle at the starting point. In our
first evaluation, we align the position and orientation of
the starting image frames for the resulting trajectory from
VI-SLAM approaches and the ground truth trajectory, and
compute the average positioning error of every frame in the
data sequence. The practice of aligning the starting frames
is also adopted in the evaluation criteria on KITTI dataset
[3]. Here our proposed approach is mainly compared with
[10], which our approach is based on. The work [10] starts to
optimize accelerometer bias from the beginning, and fix the
extrinsic parameters until the platform has made a turn and
the estimation of accelerometer bias has reached convergence,
in order to reduce the instability in the very beginning. In
order to make an exhaustive comparison on different strategies
dealing with accelerometer bias and extrinsic parameters that
are two instability factors, we derive some adapted versions
from [10], that are: (i) both accelerometer bias and extrinsic
parameters are fixed until the first turning (FAFE), (ii) the
extrinsic parameters starts to be optimized from the beginning,
and accelerometer bias is fixed until the first turning (FAOE),
(iii) both accelerometer bias and extrinsic parameters starts
to be optimized from the beginning (OAOE). Our proposed
approach is firstly compared against [10] (OAFE) and its three
adapted versions in the above, as well as VINS-Fusion [14].
To make a fair comparison, we select the image frame when
the vehicle has traveled 100 meters as the starting frame, to
avoid being affected by some erroneous pose estimations from
some approaches in the very beginning. This comparison is

TABLE II
COMPARISON OF AVERAGE POSITIONING ERROR (IN METERS) BY

ALIGNING THE STARTING FRAME

Sequence
Proposed FAFE FAOE OAOE

OAFE
VINS-
Fusion

(urban-) [10] [14]

*25 (2.5km) 11.6 11.3 72.7 62.1 15.3 862.7
26 (4.0km) 20.8 41.0 42.8 29.8 41.7 52.9
27 (5.4km) 19.0 49.5 73.4 91.9 44.5 63.1
28 (11.5km) 32.6 61.5 47.7 27.7 104.8 103.4
29 (3.6km) 51.3 44.3 12.1 13.3 40.1 122.6
30 (6.0km) 24.8 34.6 36.8 45.5 43.0 ×
31 (11.4km) 389.9 1108 995.9 1072 1230 1739
32 (7.1km) 66.9 407.5 140.6 149.1 422.6 257.9
33 (7.6km) 31.8 177.3 81.9 130.9 221.3 696.7
34 (7.8km) 118.9 98.8 160.9 122.6 168.7 ×
*35 (3.2km) 61.1 49.3 290.9 253.4 57.5 ×
36 (9.0km) 218.0 333.1 221.5 281.0 283.7 ×

*37 (11.8km) 462.9 371.0 1989 2221 677.0 1126
38 (11.4km) 27.6 123.4 151.9 44.8 101.3 134.6
39 (11.0km) 13.5 953.7 22.0 36.8 42.1 ×

Here Proposed means the proposed approach in this paper and ’×’ means
failure. The Sequence column firstly contains the sequence number which is
urbanXX, followed by the trajectory length in the parentheses. The sequences
marked with ’*’ do not contain turnings, so the difference in accuracies on
those sequences between the proposed approach and FAFE is only resulted by
restricting the marginalization error as described in Section IV. FAFE refers
to fixing accelerometer bias and fixing extrinsic parameters. FAOE refers to
fixing accelerometer bias and optimizing extrinsic parameters; OAOE refers to
optimizing accelerometer bias and optimizing extrinsic parameters. OAFE refers
to optimizing accelerometer bias and fixing extrinsic parameters.

made on all the 15 sequences with stereo cameras and with
complexity level 3 (middle) or level 4 (high) in [5], namely
urban25-urban39. The comparison of average positioning error
by aligning the starting frame is shown in Table II.

Table II indicates that the proposed approach outperforms
all the other five approaches on 9 out of the 15 sequences.
Among the rest six sequences, urban25, urban35 and urban37
do not contain turnings, as a result the proposed bidirectional
trajectory computation does not come in handy on these
sequences in our proposed approach. The accuracy of the
proposed approach on the above three sequences is generally
higher than FAOE, OAOE and the stereo VI-SLAM [14], and
comparable with OAFE [10], but slighterly lower than FAFE.
That is because the manipulation described in Section IV-D
can cause information loss, given that when the trajectory does
not contain turnings, the only difference between the proposed
approach and FAFE lies in the utilization of the manipulation
in Section IV-D. However, in view of the good performance of
the proposed approach on the other sequences with turnings
where the bidirectional trajectory computation comes in handy,
the benefit of the manipulation in Section IV-D dramatically
outweighs the cost. Generally speaking, the accuracy of the
proposed approach is higher than [10], as well as its adapted
versions that deal with the accelerometer bias and extrinsic
parameters differently.

B. Absolute Trajectory Error (ATE) Comparison

We also make an extensive comparison with more ap-
proaches, including the odometer-aided VI-SLAM approaches



LIU et al.: BIDIRECTIONAL TRAJECTORY COMPUTATION FOR ODOMETER-AIDED VISUAL-INERTIAL SLAM 7

[19], [20] and [10], the stereo VI-SLAM system VINS-Fusion
[14], the standard VIO [9], and the batch and incremental
stereo VI-SLAM approach ICE-BA [26]. The comparison is
made in terms of absolute trajectory error (ATE), which is
the rooted mean square error (RMSE) of the positions after
a 6-DoF trajectory alignment with the ground truth. The
experiments are conducted on the sequences urban26, urban28,
urban38 and urban39, because only the ATEs of these four
sequences are reported in the paper [20]. The comparison
results are shown in Table III.

Table III indicates that the proposed approach is more
accurate than other approaches in terms of ATE on 3 out of
the 4 sequences, and on the rest one sequence urban26, the
accuracy of the proposed approach is second only to [10] by
a small difference.

C. Evaluation of Effects on Estimating Accelerometer Bias
and Extrinsic Parameter

We examine the effects on estimating accelerometer bias
and extrinsic parameter using the proposed bidirectional tra-
jectory computation approach, in order to reveal why this
approach improves the accuracy. The proposed approach is
compared with the approach OAOE in Section V-A, which
optimizes accelerometer bias and extrinsic parameters from
the beginning and only performs forward computation. Figure
6 shows the comparison on estimated values of accelerometer
bias and the estimation error in roll angle of Rb

c between the
above two approaches, at the first turning in each sequence
of urban27 and urban28. As same as in Section III, here the
system also starts at a dozen seconds before the first turning
in each sequence instead of starting from the very beginning.
Figure 6 indicates that the estimation error in roll angle of
Rb

c is much smaller using the proposed approach, and that
the estimated value of accelerometer bias is more stable over
time, which is more reasonable because the accelerometer
bias is a slow time-varying quantity. Besides, both approaches
can estimate the z-component of the accelerometer bias well.
That is because both of the two unobservable directions of
accelerometer bias before the first turning, which compose
the orthogonal basis spanning over the 2D column space
of Rb0

w [gw]×, have very small values in their respective z-
components, in consideration of the fact that Rb0

w is a rotation
mainly around the Z axis for a ground vehicle and the gravity
direction gw is exactly along the Z axis. The ground-truth value
of Rb

c is obtained offline, and the method to compute error in
the roll angle is the same as that in Section III.

D. Computation of Real-time Trajectory

To illustrate the effect of computing the real-time trajectory,
we take the sequence urban33 for example. Figure 7(a)-
7(d) displays the real-time trajectories after 0, 160, 320 and
480 seconds since backward computation starts respectively,
compared with the ground truth trajectory. We can see that
as backward computation proceeds, the real-time trajectory
becomes closer and closer to the ground truth trajectory
gradually.

Fig. 6. Comparison on estimated accelerometer bias and the estimation
error in roll angle of Rb

c . acc bias x uni, acc bias y uni, acc bias z uni
and roll angle error uni are respectively the three components of ac-
celerometer bias and the roll angle error estimated by the unidirectional
computation method OAOE. acc bias x bi, acc bias y bi, acc bias z bi
and roll angle error bi are the corresponding quantities estimated by our
proposed bidirectional trajectory computation method. Here acc refers to
accelerometer, and uni and bi mean unidirectional and bidirectional trajectory
computation respectively.

TABLE III
COMPARISON OF ATE (IN METERS) AMONG DIFFERENT APPROACHES

Sequence
proposed [10] [20] [19]

VINS-
[9]

ICE-
(urban-) Fusion BA

[14] [26]

26 (4.0km) 12.0 11.9 14.8 16.1 22.5 32.8 22.1
28 (11.5km) 15.4 27.8 25.0 33.1 93.3 34.7 ×
38 (11.4km) 11.8 16.0 33.5 43.0 90.0 55.5 ×
39 (11.0km) 7.5 8.0 21.3 24.0 × 33.4 ×

Here Proposed means the proposed approach in this paper and ’×’ means failure.
Sequence column firstly contains the sequence number which is urbanXX, followed
by the trajectory length in the parentheses. Results for [20], [19] and [9] are
obtained from the reported results in [20]. ATE refers to absolute trajectory error.

E. Comparison of Efficiency Against Batch and Incremental
Solver

We compare the efficiency of our proposed approach against
the batch and incremental solver ICE-BA [26] by comparing
the total consumption of time of computing the whole tra-
jectory for each sequence, for which the results are shown
in Table IV. From Table IV we can see that our proposed
approach consumes far less time than ICE-BA [26]. From the
above experiments we can draw that our proposed approach
outperforms the incremental solver ICE-BA [26] in both
accuracy and efficiency in KAIST Urban Data Set [5].

VI. CONCLUSION

In this paper, we propose a bidirectional trajectory com-
putation method for VI-SLAM aided with wheel encoder.
Firstly, we perform an observability analysis on the degenerate
case that an odometer-aided VI-SLAM system deployed on
a car possibly encounters before the first turning. Secondly,
we describe our proposed backward computation thread which
refines the poses before the first turning, as well as the method



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

(a) Trajectory after 0 seconds (b) Trajectory after 160 seconds

(c) Trajectory after 320 seconds (d) Trajectory after 480 seconds

Fig. 7. Real-time trajectories in urban33 at different moments.

TABLE IV
COMPARISON OF TIME CONSUMPTION (IN SECONDS)

Sequence urban25 urban26 urban27 urban28 urban29

Proposed 107.4 566.8 1133.5 2102.1 434.1
ICE-BA [26] 103.3 967.9 3339.8 6940.5 1612.9

Sequence urban30 urban31 urban32 urban33 urban34

Proposed 1274.2 1113.6 1090.7 1335.9 659.2
ICE-BA [26] 2093.3 3980.5 4789.7 6250.3 2352.1

Sequence urban35 urban36 urban37 urban38 urban39

Proposed 184.4 375.2 543.5 2159.8 1858.5
ICE-BA [26] 572.4 905.8 1398.4 13349.6 7220.3

Here Proposed means the proposed approach in this paper.

to adjust the real-time trajectory. Experimental results show the
higher accuracy of the whole trajectory, the correctly estimated
parameters before the first turning, and the effects of real-time
trajectory adjustment. Although in this paper wheel encoder is
used, we also believe that the proposed bidirectional trajectory
computation method can be applied on VI-SLAM systems that
are not aided with wheel encoders as well.

REFERENCES

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://
ceres-solver.org, 2017.

[2] Zhiqiang Dang, Tianmiao Wang, and Fumin Pang. Tightly-coupled data
fusion of vins and odometer based on wheel slip estimation. In 2018
IEEE International Conference on Robotics and Biomimetics (ROBIO),
pages 1613–1619. IEEE, 2018.

[3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
3354–3361. IEEE, 2012.

[4] G. Huang. Visual-inertial navigation: A concise review. In 2019
International Conference on Robotics and Automation (ICRA), pages
9572–9582. IEEE, May 2019.

[5] Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul Roh, and
Ayoung Kim. Complex urban dataset with multi-level sensors from
highly diverse urban environments. The International Journal of
Robotics Research, 38(6):642–657, 2019.

[6] Rong Kang, Lu Xiong, Mingyu Xu, Junqiao Zhao, and Peizhi Zhang.
Vins-vehicle: A tightly-coupled vehicle dynamics extension to visual-
inertial state estimator. In 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pages 3593–3600. IEEE, 2019.

[7] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart,
and Paul Furgale. Keyframe-based visual–inertial odometry using
nonlinear optimization. The International Journal of Robotics Research,
34(3):314–334, 2015.

[8] Dongxuan Li, Kevin Eckenhoff, Kanzhi Wu, Yue Wang, Rong Xiong,
and Guoquan Huang. Gyro-aided camera-odometer online calibration
and localization. In 2017 American Control Conference (ACC), pages
3579–3586. IEEE, 2017.

[9] Mingyang Li and Anastasios I Mourikis. Optimization-based estimator
design for vision-aided inertial navigation. In 2013 Robotics: Science
and Systems, pages 241–248, 2013.

[10] Jinxu Liu, Wei Gao, and Zhanyi Hu. Visual-inertial odometry tightly
coupled with wheel encoder adopting robust initialization and online
extrinsic calibration. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5391–5397. IEEE, 2019.

[11] Fangwu Ma, Jinzhu Shi, Yu Yang, Jinhang Li, and Kai Dai. Ack-
msckf: Tightly-coupled ackermann multi-state constraint kalman filter
for autonomous vehicle localization. Sensors, 19(21):4816, 2019.

[12] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state
constraint kalman filter for vision-aided inertial navigation. In 2007
IEEE International Conference on Robotics and Automation, pages
3565–3572. IEEE, 2007.

[13] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE Transactions
on Robotics, 34(4):1004–1020, 2018.

[14] Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A general
optimization-based framework for local odometry estimation with mul-
tiple sensors. arXiv preprint arXiv:1901.03638, 2019.

[15] Meixiang Quan, Songhao Piao, Minglang Tan, and Shi-Sheng Huang.
Tightly-coupled monocular visual-odometric slam using wheels and a
mems gyroscope. IEEE Access, 7:97374–97389, 2019.

[16] Kejian J Wu, Chao X Guo, Georgios Georgiou, and Stergios I Roumelio-
tis. Vins on wheels. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 5155–5162. IEEE, 2017.

[17] Yulin Yang, Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. De-
generate motion analysis for aided ins with online spatial and temporal
sensor calibration. IEEE Robotics and Automation Letters, 4(2):2070–
2077, 2019.

[18] Wenlong Ye, Renjie Zheng, Fangqiang Zhang, Ziyou Ouyang, and Yong
Liu. Robust and efficient vehicles motion estimation with low-cost
multi-camera and odometer-gyroscope. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4490–4496.
IEEE, 2019.

[19] Mingming Zhang, Yiming Chen, and Mingyang Li. Vision-aided local-
ization for ground robots. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2455–2461. IEEE,
2019.

[20] Mingming Zhang, Xingxing Zuo, Yiming Chen, and Mingyang Li. Lo-
calization for ground robots: On manifold representation, integration, re-
parameterization, and optimization. arXiv preprint arXiv:1909.03423v2,
2019.

[21] Xingxing Zuo, Mingming Zhang, Yiming Chen, Yong Liu, Guoquan
Huang, and Mingyang Li. Visual-inertial localization for skid-steering
robots with kinematic constraints. arXiv preprint arXiv:1911.05787,
2019.

[22] Woosik Lee, Kevin Eckenhoff, Yulin Yang, Patrick Geneva, and Guo-
quan Huang. Visual-inertial-wheel odometry with online calibration.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4559–4566, 2020.

[23] T. Schneider, M. Li, C. Cadena, J. Nieto, and R. Siegwart. Observability-
aware self-calibration of visual and inertial sensors for ego-motion
estimation. IEEE Sensors Journal, 19(10):3846–3860, 2019.

[24] C. Campos, J. M. M. Montiel, and J. D. Tards. Fast and robust
initialization for visual-inertial slam. In 2019 International Conference
on Robotics and Automation (ICRA), pages 1288–1294, 2019.

[25] C. Campos, J. M. M. Montiel, and J. D. Tards. Inertial-only optimization
for visual-inertial initialization. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 51–57, 2020.

[26] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao. Ice-ba: Incremental,
consistent and efficient bundle adjustment for visual-inertial slam. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 1974–1982, 2018.


