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a b s t r a c t 

Background and Objective: In medical imaging, the scarcity of labeled lesion data has hindered the ap- 

plication of many deep learning algorithms. To overcome this problem, the simulation of diverse lesions 

in medical images is proposed. However, synthesizing labeled mass images in mammograms is still chal- 

lenging due to the lack of consistent patterns in shape, margin, and contextual information. Therefore, 

we aim to generate various labeled medical images based on contextual information in mammograms. 

Methods: In this paper, we propose a novel approach based on GANs to generate various mass images 

and then perform contextual infilling by inserting the synthetic lesions into healthy screening mammo- 

grams. Through incorporating features of both realistic mass images and corresponding masks into the 

adversarial learning scheme, the generator can not only learn the distribution of the real mass images 

but also capture the matching shape, margin and context information. 

Results: To demonstrate the effectiveness of our proposed method, we conduct experiments on publicly 

available mammogram database of DDSM and a private database provided by Nanfang Hospital in China. 

Qualitative and quantitative evaluations validate the effectiveness of our approach. Additionally, through 

the data augmentation by image generation of the proposed method, an improvement of 5.03% in detec- 

tion rate can be achieved over the same model trained on original real lesion images. 

Conclusions: The results show that the data augmentation based on our method increases the diversity 

of dataset. Our method can be viewed as one of the first steps toward generating labeled breast mass 

images for precise detection and can be extended in other medical imaging domains to solve similar 

problems. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep learning methods have been widely and successfully ap- 

lied for natural image analysis with the requirement of large-scale 

abeled datasets [1] . However, in medical imaging community, col- 

ecting a large amount of labeled data is usually challenging, due to 

he privacy policy in different medical institutions and the scarcity 

f corresponding diseases [2] . In addition, data annotation of med- 

cal images requires specific domain knowledge of experts, which 

s costly and time consuming [3] . Therefore, medical image syn- 
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hesis is proposed as a means of data augmentation to address the 

forementioned challenges [4–6] . 

Generative adversarial networks (GANs) [7] have recently made 

 significant progress in natural image generation. Many re- 

earchers have also applied GAN in medical imaging application 

uch as chest X-rays generation [8] and liver lesions synthesis [9] . 

evertheless, the researches on GAN-based medical image synthe- 

is focus on utilizing generated medical samples for augmentation 

f the original training set to alleviate the issues caused by the in- 

ufficiency of data across many classification tasks [8,10,11] rather 

han detection or segmentation tasks. Conventional GAN-based im- 

ge synthesis models could only learn the data distribution from a 

pecific class, and thus the generated samples are confined to a 

pecified category. Generating medical images with corresponding 

https://doi.org/10.1016/j.cmpb.2021.106019
http://www.ScienceDirect.com
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Fig. 1. (a) Overview of the mass image generation process, where G1 is the generator of DCGAN and G2 is proposed infilling generator. We combine the mass segmentation 

mask with its contextual margin information to synthesize mass image. The input of G2 is the concatenation of three grayscale channels, termed as Tri-label (Triple labels). 

(b) Adversarial translation scheme of the proposed infilling GAN. G2 is trained to generate mass images as realistic as possible from the three-channel input, the discriminator 

D is trained to distinguish between the generated pairs and real pairs. In the training stage of infilling GAN, only the mass patch images with precise annotation masks are 

used. The normal mammogram images are only used for testing and generation in (a). 
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recise masks is still a challenge. Actually, even for professional 

xperts, the annotations of lesion region are not guaranteed to be 

ompletely accurate. And the contextual information surrounding 

he annotated mass region needs to be considered. Especially for 

creening mammograms, synthesizing realistic mass images is par- 

icularly hard due to the variety of mass in terms of texture and 

hape as well as the presence of intricate and diverse breast tissue 

urrounding the masses. 

Inspired from the unsupervised anomaly detection with GAN 

12] and image-to-image translation technique [13] , in this paper, 

e apply the GAN framework to synthesize high quality mass im- 

ges with accurate masks by learning the distribution of the real 

ass images as well as capturing the matching shape, margin and 

ontext information. Then the synthetic mass images are inserted 

nto healthy screening mammograms for contextual infilling. The 

verall framework for mass generation is shown in Fig. 1 . Sub- 

equently, the generated labeled mammograms are used as aug- 

ented data for mass detection task. In the experiment, improve- 

ents for breast mass detection are achieved, as compared to tra- 

itional data augmentation methods or training with original data. 

ll of the experiments are carried out on a public mammogram 

atabase named DDSM [14] and a private dataset provided by Nan- 

ang Hospital of Southern Medical University. Our work success- 

ully converts a large number of healthy mammorgrams which are 

eadily available to the mammorgrams with lesion regions that are 

carce and costly to annotate. This is meaningful for the clinical di- 

gnosis based on medical imaging, since it improves the detection 

odels under small and imbalanced medical image datasets. 

The contributions of this paper are as follows: 

1) We propose a novel GAN-based approach for generating high 

uality mass images in mammograms. The binary masks are intro- 

uced as condition in the adversarial learning scheme and it allows 

or generating mass images with accurate mask annotations. Thus, 

he synthesized images can be applied in downstream detection 

asks. 

2) Compared with conventional GANs for mass generation from 

andom noise, contextual margin feature is incorporated in the 

roposed mass synthesis approach. It can generate synthetic mass 

mages with richer texture and margin information. 

3) Thorough experiments show that our proposed method can 

enerate realistic lesion images with precise masks and further en- 

ance the performance of deep detection network. 

The rest of this paper is arranged as follows: In Section 2 we 

ummarize the key theoretical underpinnings and representative 

pplications of GANs as well as related work for medical image 
t

2 
ynthesis. In Section 3 we outline the proposed overall framework 

nd methodology that builds on previously published literature, 

nd in Section 4 we discuss the results of our experiments in de- 

ail. Conclusion and discussion are drawn in Sections 5 and 6. 

. Related work 

In this section, we mainly summarize the research on medi- 

al image synthesis and introduce the knowledge about GAN-based 

ethod. 

Medical Image Synthesis: The challenge of medical image 

carcity may be partially met by data augmentation based on 

mage synthesis. Recent developments of image synthesis typi- 

ally fall under two categories including transformation-based and 

enerative model-based approaches. The first and most common 

ethod based on transformation can be divided into mathemati- 

al affine transformation [1] and feature transformation [15] . Affine 

ransformation is that new samples are created by applying sim- 

le mathematical operations such as translation, rotation, flip and 

cale to the real images [1,16,17] , while feature transformation is 

chieved by applying modifications to feature vector of the ex- 

sting samples [15,18,19] . Nevertheless, the above image synthesis 

ethods are not suitable for high-quality and sophisticated types 

f data augmentation because little additional information can be 

btained from these small modifications to original images. The 

econd method based on generative models overcomes this short- 

oming by producing samples that appear similar to real samples, 

ut whose properties may not have been represented in the ex- 

sting training set. Generative models leverage on training data to 

cquire the potential distribution of realistic samples and produce 

ew samples from the same distribution [20–22] . Therefore, the 

otential path of synthetically generating data has been explored 

ecently. In the work of [23] , the authors use Parallel Vision (PV) 

24] framework based on generative model to generate eye images, 

nd achieve the state-of-the-art pupil detection results. 

In medical imaging community, the approaches based on both 

ransformations and generative models are applied in lots of prece- 

ent researches. In transformation approach, new lesions are sim- 

lated based on affine transformations of lesion properties in an 

xisting dataset. A few examples of this approach can be found 

n [25–28] for mammography. In generative approach, new lesions 

re generated through learning the distribution and property of ex- 

sting samples based on a generative model [8,9,29,30] . Unlike the 

rst approach, the model learns to generate lesion images directly 

rom data. A typical example is GAN-based method, which has led 

o a significant breakthrough in medical image synthesis. Many re- 
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earchers have applied GAN in medical image synthesis [8,9,31] , in 

hich artificial medical images are generated directly by random 

oise, producing results with low quality. There are some meth- 

ds developed to insert lesions in medical images. For example, 

in et al. introduce a 3D-GAN model in an images-to-image trans- 

ation setting to synthesize nodules in lung CTs [32] . Baur et al. 

roduce to synthesize highly realistic dermoscopic images of skin 

esions with GANs [33] . But the contextual feature are not utilized 

n these GAN-based frameworks. A data-driven approach has been 

roposed in [29] to generate CT image from its corresponding MR 

mage. The authors further apply AutoContextModel to implement 

 context-aware GAN, It is the first work to introduce context- 

ware GANs in medical image synthesis, but pathological infor- 

ation is not considered in this method. Wu et al. [30] propose 

onditional infilling GAN to synthesize images of mass area in the 

ammogram, yet only the lesion image and mask information are 

tilized while the contextual margin information are neglected. 

In this paper, we propose a novel GAN-based approach for gen- 

rating high quality mass images in mammograms. Different from 

he aforementioned studies, we incorporate contextual margin fea- 

ure into the adversarial learning scheme to generate mass images 

ith richer texture and margin information. In addition, most of 

he above studies focus on synthesizing new samples from a par- 

icular class the same as the input data, so the synthetic medi- 

al images can be only used for downstream classification tasks. In 

ontrast, our method introduces the binary masks as conditional 

nput of the generator and it allows for generating mass images 

ith precise mask annotations. Therefore, the augmented data can 

e used in detection or segmentation task. 

Generative Adversarial Networks: The framework for training 

enerative models in an adversarial manner was first introduced in 

he work of Goodfellow et al. [7] . GANs are composed of a gener-

tor and a discriminator, which compete with each other over the 

raining data to improve their performance. The aim of GANs is to 

earn the potential distribution of real data and generate new sam- 

les from the same distribution, which guarantees the authenticity 

f the generated images. Various derivative methods of GANs have 

ained great popularity in the computer vision community such 

s high-quality natural images generation [13,22,34] , style trans- 

ormation [13,35] , image inpainting [36] and super-resolution [37] . 

While the original GANs learn a mapping from a random in- 

ut noise vector z to an output image y, conditional GANs (cGANs) 

34] are trained to learn a mapping from an input image x (condi- 

ional information) and random noise z to y . One of the famous 

ethods based on cGAN is the image-to-image translation [13] . 

he loss function of a cGAN can be expressed as: 

 cGAN (G, D ) = E x,y ∼p data (x,y ) [ log D (x, y )]+ 

E x ∼p data (x ) ,z∼p data (z) [ log (1 − D (x, G (x, z)))] (1) 

here G tries to minimize this objective against an adversarial D 

hat tries to maximize it. The adversarial score in the loss com- 

utation of the generator strengthens its capabilities to provide a 

alid generation. Besides, a traditional L1 loss is added to boost the 

earning process. As a result, the generator will play a role in not 

nly fooling the discriminator but also being close to the ground 

ruth in an L1 sense. 

In medical imaging, the adversarial theory from GAN frame- 

ork has achieved impressive results in several applications such 

s image enhancement [38,39] , medical images synthesis [8–

0,22,29,30] , detection [12,40] , and segmentation [41–43] . The 

ays in which GANs are used in the field of medical imaging can 

enerally be divided into two categories [31] . One category pays at- 

ention to the generative aspect to generate similar data by learn- 

ng the data distribution of a certain category, so as to alleviate the 

roblem of data scarcity in medical imaging. The other focuses on 
3 
he discriminative aspect, and the discriminator can be regarded as 

 classifier to identify abnormal images or regions. 

In our work, we aim to synthesize abnormal lesion regions in 

ammographic images in terms of the generative aspect. A con- 

itional generative adversarial network is used in an images-to- 

mage translation setting to learn a mapping from segmentation 

asks with contextual information to the corresponding realistic 

ass images as well as to learn the distribution of real lesion im- 

ges. The addition of conditional information and contextual in- 

ormation helps to better utilize the shape/margin feature derived 

rom the masks. 

The previous studies on GANs that integrate the contextual in- 

ormation [44,45] focus on applying the modified convolution op- 

ration inside the network to extract contextual features. It is inad- 

quate for medical image synthesis different from image inpaint- 

ng, because we focus on the generation of lesion region with 

urrounding contextual tissue in medical imaging. Thus, we pro- 

ose to incorporate contextual margin feature as input conditions 

n the adversarial learning scheme to generate synthetic mass im- 

ges with richer texture and margin information. The design of the 

ethods is completely different from above research. 

. Framework and Method 

.1. Overall framework 

We propose a united framework for the breast mass generation 

n mammograms based on GANs. As shown in Fig. 1 (a), the frame- 

ork is composed of three stages. 

Firstly, the Deep Convolutional GAN [46] (DCGAN) is trained to 

earn the underlying distribution of segmentation masks of real 

ass images and generate various masks from random input noise 

. The white region of the masks represents the location of the le- 

ion/mass and black represents the background tissue. 

Secondly in the data preprocessing stage, we extract an arbi- 

rary tissue patch from a normal mammogram, where there are no 

ass or lesion findings. At the same time a generated mask is in- 

erted into a black background with the same size as the normal 

ammogram image, and the location of mask in the background is 

he same as the location of the tissue patch in the normal mam- 

ogram image. Then the tissue patch is corrupted by noise with 

he lesion region replaced with uniformly random values between 

 and 255. The addition of random noise is important for the ro- 

ustness of infilling GAN. Because all the normal tissue patches 

ontaining healthy breast tissue are composed of similar pixel fea- 

ures, while the pathological tissue patches containing breast mass 

re composed of different pixel features. If the input tissue patch 

s always covered by the same type of pixel information, the deep 

eural network would only learn features that are robust against 

hat particular type of patch information. The addition of random 

oise can enhance the generalization of the network and avoid 

he circumstance that the network only performs well for certain 

ixel features. Also, we obtain the contextual margin information 

termed as margin patch) by applying morphological operation to 

he generated mask patch. 

In the third stage, the corrupted tissue patch, mask patch and 

argin patch are combined into a concatenated stack of three 

hannels. Then we use the trained generator of infilling GAN, 

hich is trained in an adversarial scheme as shown in Fig. 1 (b), to

enerate a corresponding mass patch. Finally, the generated mass 

atch is inserted into the original normal mammogram image at 

he original position. 

The architecture of DCGAN and infilling GAN models are 

emonstrated in Fig. 2 and Fig. 3 , respectively. The models are dis- 

ussed in details below. 
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Fig. 2. DCGAN for mask generation from random input noise z. 

Fig. 3. Two choices for the generator architecture of Infilling GAN. (a) U-Net architecture. The result of the upsampling is connected to the feature map of the corresponding 

layer in the downsampling path by skip-connection. (b) CRN architecture. M i denotes the i th single refinement module, which contains two convolutional layers with ReLU 

activation functions and an upsampled operation at a given resolution. Resolution is doubled between sequential modules. F i is obtained by applying an downsampled 

operation on the input stack (Tri-label) at a given resolution. d i represents the channel number of the output of M i . 
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.2. DCGAN for mass mask generation 

Medical datasets are often highly imbalanced with overrepre- 

entation of common medical problems and a paucity of data from 

are conditions. For mammogram data, the normal images far ex- 

eed those with lesion/mass findings, but such normal data are of- 

en not effectively used. 

Our goal is to generate mass images with precise annotation 

asks and transform normal mammograms into the mammograms 

ith mass findings. The generated data can be used to augment 

he labeled dataset of mammograms with mass findings, which is 

onducive for deep learning methods that require a lot of training 

ata. 

We apply the DCGAN model [46] to generate various segmen- 

ation masks. The architecture and learning scheme are shown in 

ig. 2 . The generator learns the underlying distribution p data (x ) 

rom the real mask data x, and then continuously generates masks 

rom random input noise z, where z is obtained from a known sim- 

le distribution p data (z) , usually a uniform distribution. The loss 
4 
unction can be expressed as: 

in 

G 
max 

D 
L DCGAN (G, D ) = E x ∼p data (x ) [ log D (x )]+ 

E z∼p data (z) [ log (1 − D (G (z)))] (2) 

here G (z) is the mapping function from the input space to output 

mage space of distribution p g . The goal of G is to achieve p g =
p data (x ) . 

.3. Infilling GAN for adversarial translation from Tri-label to mass 

mage 

Considering the mass annotation problem and the importance 

f mass contextual information, the proposed infilling GAN method 

s based on image-to-image translation technique. 

Traning Scheme: The proposed adversarial translation frame- 

ork from labels to mass image is shown in Fig. 1 (b). The input of

he generator is composed of three grayscale channels, termed as 

ri-label (Triple labels). The first channel is the tissue patch with 
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3

egmentation region filled by using uniformly random values be- 

ween 0 and 255, termed as tissue patch. The second channel is 

he generated mask from DCGAN, termed as mask patch. It rep- 

esents the mass region of mammogram. The third channel is the 

argin information obtained from the mask patch, termed as mar- 

in patch. The mask patch and margin patch restrict the generated 

rea and imply the shape/margin features. The tissue patch pro- 

ides the contextual information of the normal tissue. 

The generator is trained to output a mass patch image match- 

ng to the input three-channel labels and generate images as realis- 

ic as possible. The discriminator is trained to distinguish between 

enerated pairs, which is composed of the three-channel input of 

enerator and generated mass patch image, and real pairs, which 

s composed of the three-channel input and real mass patch image. 

t is worth noticing that in the training stage of infilling GAN, only 

he mass patch images with precise annotation masks are used. 

he normal mammogram images without lesion findings are only 

sed for testing and generation process in Fig. 1 (a). 

Therefore, the goal of G is to maximize the classification error 

f D, while D aims to minimize the classification error until the 

ash equilibrium is reached. This training process is called adver- 

arial learning. Similar as in [34] , the adversarial loss function is as 

ollows: 

in G max D L adv (G, D ) = E (x,R ) ∼p data (x,R ) [ log D (x, R )]+ 

E x ∼p data (x ) [ log (1 − D (x, G (x )))] 
(3) 

here R is the real mass images. x represents the Tri-label de- 

oting the concatenation of tissue patch, mask patch and margin 

atch obtained from corresponding R . In the training stage of infill- 

ng GAN, only the mammogram images with mass findings and an- 

otation masks are used. The method for obtaining corresponding 

ri-label is the same as the data preprocessing stage in Fig. 1 (a). 

he Tri-label information is added into both the generator and dis- 

riminator so that all the features and matching information can 

e better learned. 

In order to overcome the instability of GAN training, we intro- 

uce perceptual loss or feature matching loss [47] , termed as L f m 

. 

he basic idea is to calculate the convolutional layer activation er- 

or between real images and generated images using a visual per- 

eption network. In this work we use VGG-19 [48] pre-trained on 

he ImageNet dataset. Let { φl } represent the collection of layers in 

he VGG-19 network φ, the feature matching loss is defined by: 

 f m 

(G ) = 

∑ 5 
l=0 λl ‖ φl (R ) − φl (G (x ;ω G )) ‖ 1 (4) 

here R denotes the real image and G (x ;ω G ) denotes the gener-

ted image. φ0 represents an identity map of the input image. For 

l (l ≥ 1) , we use the l th convolutional layer in VGG-19. The hy- 

erparameters { λl } are initialized to the inverse of the number of 

lements in each layer. The addition of L f m 

can guide the gener- 

tion model to cover fine-grained details and more global context 

nformation by simultaneously matching low-level and high-level 

ctivations in a perceptual network. 

Finally, the overall loss function is 

 loss = arg min G max D [ L GAN (G, D ) + λL f m 

(G )] (5) 

here λ is used to balance the contribution of the two losses, here 

e set λ = 100 . 

Network Architectures: For the design of generator architec- 

ure, we apply two improved generator including Cascaded Refine- 

ent Network (CRN) [49] and U-net [50] . Overview of the two ar- 

hitectures is shown in Fig. 3 . 

CRN is a serial cascade of refinement modules. Each refine- 

ent module M i contains two convolutional layers with ReLU ac- 

ivation functions and an upsampled operation at a given reso- 

ution. In our implementation, the resolution of the first module 

 M ) is 2 × 2 × 3 . And the resolution of the last module ( M n ) is
0 

5 
56 × 256 × 3 . Resolution is doubled between sequential modules. 

his structure enables the network to cover the low-level fine- 

rained features (shape/margin feature) and the high-level general 

eatures such as objects and tissue categories. 

U-Net architecture is an encoder-decoder network in general, 

xcept that skip connections are added between mirrored layers in 

he downsampling and upsampling block. The result of the upsam- 

ling is connected to the feature map of the corresponding layer 

n the downsampling path by skip connection. In our implementa- 

ion, the input size of U-Net is 256 × 256 × 3 , and the output size

s 256 × 256 × 1 . 

The discriminator network has a typical CNN architecture sim- 

lar as DCGAN. By comparing the generated pairs with real pairs, 

he discriminator outputs the decision that whether this mass re- 

ion is real or not. Specifically, a PatchGAN proposed in [13] is used 

n the discriminator. That is, the discriminator is required to clas- 

ify if each patch is real or fake and output a matrix with the size

f 30 × 30 . Then it takes the average value as a final result. 

. Experimental Evalution 

.1. Data and preprocessing 

The DDSM (Digital Database for Screening Mammography) 

ataset [14] is a public mammogram dataset containing 10,480 

otal images. We select 765 mammogram images with malignant 

ass findings and accurate masks in this work. To prevent the 

verfitting problem, the original samples are augmented by rotat- 

ng, flipping, and scaling. The resulted dataset is in a total of 3825 

mages. 

The private dataset provided by Nanfang Hospital in China has a 

otal of 549 cases from Chinese patients with both breasts affected 

four images per case) containing 376 mass regions. We select 275 

ammogram images with malignant mass findings and accurate 

asks in this work. Similarly, the original samples are augmented 

nto 1375 images. 

The following preprocessing procedures are performed on the 

wo datasets: (1) the tape marks and white noises are removed 

rom the mammogram images; (2) the mass patches containing 

he malignant mass from mammograms are extracted and then 

caled to 256 × 256 , and the same procedure is conducted on the 

ask; (3) the original segmentation mask region is resized and 

caling up to 296 × 296 to obtain an enlarged segmentation mask. 

hen the original segmentation mask region is subtracted from 

he enlarged segmentation region to obtain the margin patch. In 

his step, we conduct experimental analysis on how many pix- 

ls are needed for obtaining an adequate margin. Three sizes that 

re 276 × 276 , 296 × 296 and 316 × 316 are tested and the size of

96 × 296 are observed to be the most reasonable; (4) the ob- 

ained margin patch and mask patch are concatenated with the 

issue patch into three-channel labels (Tri-label). 

.2. Details of training 

For infillingGAN model, it is trained using the Adam optimizer 

ith β1 = 0 . 9 , β2 = 0 . 5 , and the learning rate is 0.0 0 02, the mini-

atch size is 2. The number of iterations of training is about 

0 0,0 0 0. The hyperparameters { λl } are initialized to the inverse 

f the number of elements in each layer and the balance item λ
n the loss function is 100. For DCGAN model, Adam optimizer is 

sed with β1 = 0 . 9 , β2 = 0 . 999 . The learning rate is 0.0 0 02, and

he mini-batch size is 32. The number of iterations of training is 

,0 0 0. 
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Fig. 4. Generated mammogram images with mass findings (the third row) transformed from normal mammogram images (the second row) and given mask (the first row). 

The corresponding annotation including bounding-box label and segmentation mask. Zoom in for details. (a) DDSM dataset. (b) Private dataset. 
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.3. Mass synthesis in mammograms 

Firstly, we simulate the size of generated mass images. We cal- 

ulate the mean and variance of the height or width of original 

nscaled mass patches (padded 100 pixels around mass). We per- 

orm a pre-processing procedure to remove the white noise from 

he synthetic mask generated by DCGAN. Then the Gaussian dis- 

ribution is applied to simulate the size (height and width) of the 

enerated mass images. 

Subsequently, we simulate the position of generated mass patch 

n the normal full mammogram images. We perform the mass 

eneration experiment on normal mammograms using the trained 

enerator of infilling GAN. In order to simulate the position of 

he mass patch in the full mammogram, the mammogram images 

ith the breast on the right side are flipped. Let w and h denote 

he width and height of the mammogram, and we use a uniform 

istribution to select the abscissa X ∼ U(w/ 10 , w/ 2) and ordinate 

 ∼ U(h/ 4 , 3 × h/ 4) of the breast tissue patch on the normal mam-

ogram images. Then the generated mass patch is restored to the 

orresponding mammogram according to the recorded coordinate 

osition (i.e. the breast tissue patch at original position is replaced 

y the generated mass patch). At the same time, an automatic an- 

otation procedure including bounding-box location for detection 

nd segmentation mask for segmentation is finished. 

As shown in Fig. 4 , some normal mammogram images are 

ransformed into the mammogram images with mass findings. The 

orresponding annotations including bounding-box label and seg- 

entation mask are also shown. 

The binary masks are applied as indispensable precondition in 

he adversarial learning scheme for generating mass images with 

ccurate mask annotations. The mask patch only restricts the gen- 

rated area and imply the shape features. In contrast, the mar- 

in patch provides the contextual margin feature better. When the 

argin patch is added, some of the parameters of the deep neu- 

al network focus on learning the information of the global block, 

nd some parameters focus on learning about the local edge in- 

ormation. Therefore, we conduct the qualitative and quantitative 

xperiments with the margin patches removed to demonstrate the 

mportance of contextual margin feature in the mass generation 

rocess. Some qualitative comparisons of generated mass patch are 
s

6 
hown in Fig. 5 . The first row shows the generated mass patches 

ithout the contextual margin information, that is, the margin 

atch is not contained in the input Tri-label (only two-channel in- 

ut). The second row shows the generated results with the context 

argin information, and the third row shows the real mass patch 

mages. The results show that the masses generated by the pro- 

osed method have richer texture and margin information. 

.4. Quantitative quality evaluation 

Recently, a quantitative quality analysis method, Learned Per- 

eptual Image Patch Similarity (LPIPS) [51] metric, is proposed. The 

asic idea is to calculate the distance between two similar images 

hrough a network F such as AlexNet. 

In this work, we apply the LPIPS metric to evaluate the quality 

f generated images quantitatively. 100 real mass images are ran- 

omly selected and denoted as R . 100 mass images generated by 

he CRN generator are randomly selected and denoted as G crn . And 

00 mass images generated by the U-Net generator are randomly 

elected and denoted as G unet . In order to verify the effectiveness 

f the proposed contextual margin information, we also perform 

ontrast experiments between using only the first two channels 

nd all the three channels (Tri-label) for the input. G crn − denotes 

he generated images by the CRN using two channels as input. 

 unet− denotes the generated images by the U-Net generator using 

wo channels. Then we calculate the LPIPS distance mean between 

 pairs of image groups: R and G crn −, R and G crn , R and G unet−,

 and G unet . The quantitative quality evaluation results for gener- 

ted images in terms of mean LPIPS distance on DDSM and Private 

atasets are shown in Table 1 . Moreover, we apply the generated 

mages by all above different designs to supplyment the original 

eal training dataset as augmented data in the detection tasks as 

hown in section 4.5 . 

.5. Mass detection using generated data augmentation 

Our proposed method not only achieves mass generation but 

lso provides an automatic annotation procedure, which further 

lleviates the problem of data scarcity in the lesion detection or 

egmentation tasks. In this work, we use the detection model 
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Fig. 5. Qualitative comparison of generated mass patch with/without contextual margin feature in the mass generation process (using CRN generator). (a) DDSM dataset. (b) 

Private dataset. 

Table 1 

Quantitative quality evaluation for generated images in terms of mean LPIPS dis- 

tance and detection accuracy evaluation in terms of Recall(TPR) on DDSM and Pri- 

vate datasets. 

DDSM Dataset Private Dataset 

LPIPS 

Distance 

G crn − and R 0.02549 0.17134 

G crn and R 0.02436 0.16768 

G unet− and R 0.02170 0.15839 

G unet and R 0.02021 0.15342 

Recall 

(TPR) 

CRN + two-channel input 0.8165 0.8100 

CRN + Tri-label input 0.8188 0.8128 

U-Net + two-channel 

input 

0.8259 0.8177 

U-Net + Tri-label input 0.8273 0.8182 
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Fig. 6. Detection results with the increase of training set on DDSM dataset. 

Fig. 7. Detection results with the increase of training set on Private dataset. 
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ight-Head R-CNN [52] to verify the effectiveness of the pro- 

osed generated data augmentation. Light-Head R-CNN constructs 

 lightweight head R-CNN network that not only has high accu- 

acy, but also maintains high time efficiency, which is suitable for 

igh-resolution medical images such as mammograms. 

For Light-Head R-CNN model, we use a batch size of 4 with 

 learning rate of 0.0 0 02 for 10 epochs. The input images are

ropped and resized to 800 × 1333 while ensuring that the image 

oes not deform. 

We apply the traditional data augmentation method as baseline 

o compare with the proposed data augmentation method. In the 

ame way as [10] , we record the Recall (equal to True Positive Rate 

TPR)) of mass detection by continuously adding data with data 

ugmentation methods to the original training set. The metric is 

efined in the following equation: 

ecall(TPR) = 

TP 

TP + FN 

, (6) 

here TP and FN are defined to represent the number of true pos- 

tive detection boxes (i.e. mass regions that are successfully de- 

ected) and false negative detection boxes (i.e. mass regions that 

re not detected), respectively. In our experiments, a potential de- 

ection box is considered to be successfully detected when the IOU 

xceeds 0.5. 

Taking DDSM dataset as example, we use the traditional data 

ugmentation method (rotate, flip, and scale) to obtain 40 0 0 im- 

ges, and the number of images added to training set each time is 

enoted as tra 1 = 300 , tra 2 = 300 , tra 3 = 400 , tra 4 = 500 ..., tra 7 =
0 0 , tra 8 = 10 0 0 . We notice that the detection performance is not

mproved when the training set size is 20 6 6. Then we continue 

o supplement 2800 generated images on the basis of 20 6 6 real 

mages, and the number of images added each time is denoted as 

an 1 = 300 , gan 2 = 500 ..., gan 6 = 500 . To further validate and com-

are our proposed methods, we apply the generated images by dif- 
7 
erent designs, which are U-Net generator using Tri-label as input, 

-Net generator using two channels as input, CRN generator using 

ri-label as input and CRN generator using two channels as input, 

o increase the training samples. The processes on DDSM and Pri- 

ate datasets are shown in Fig. 6 and Fig. 7 , respectively. We note 

hat as the amount of generated data increases, the corresponding 

PR value increases largely, indicating that the masses generated 

y proposed method increase the diversity of the data. Also, the 

nal detection accuracy in terms of Recall(TPR) is shown in Table 1 . 
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Fig. 8. FROC curves of mass detection on DDSM dataset. Proposed method denotes 

the data augmentation method through the generated images by the U-Net gener- 

ator using Tri-label input. 

Fig. 9. FROC curves of mass detection on Private dataset. Proposed method denotes 

the data augmentation method through the generated images by the U-Net gener- 

ator using Tri-label input. 
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To better illustrate the improvement in mass detection per- 

ormance, free-response receiver operating characteristic (FROC) 

urves [53] and their AUCs (Area Under the Curve) are used 

o evaluate the detection performance using different confidence 

hresholds of the detection bounding-box. The horizontal axis is for 

alse positive per image (FFPI) and vertical axis is for true positive 

ate (TPR). Larger AUC represents better performance [54] . The FFPI 

etric is defined to represent the number of false positive detec- 

ion boxes (i.e. the normal regions that are detected as mass re- 

ions) per image. The FROC curve is shown in Fig. 8 and Fig. 9 . Al-

hough our proposed method does not perform the best at certain 

pecific thresholds, it does the best overall with an AUC of 0.172 

or DDSM dataset in Fig. 8 and 0.144 for Private dataset in Fig. 9 . 

. Conclusion 

In conclusion, we propose a novel GAN-based approach for gen- 

rating high quality mass images, which are usually scarce and 

ostly to annotate, from plenty of normal mammogram images. We 

ntroduce the binary masks combining with contextual information 

ased on pathological features, such as shape, margin, and density, 

n order to generate mass patch with richer texture imformation. 
8 
lso, our method achieves automatic annotation of generated mass 

atch with different locations and patterns. Furthermore, we use 

he generated mass images for data augmentation in the detec- 

ion task and the performance is significantly improved. The result 

hows that data augmentation using GAN-based generated medi- 

al images increases the diversity of dataset. Our method is mean- 

ngful for improving the detection models under small and imbal- 

nced medical image datasets and potentially, can be extended in 

ther medical imaging domains to solve similar problems. In the 

uture, we will further investigate the improvement of model ar- 

hitecture, such as the application of spatially adaptive normaliza- 

ion [55] in the Infilling GAN, and the utilization of different ad- 

ersarial loss. 
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