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Abstract: Gesture recognition has been widely used for human-robot interaction. At present, a problem in gesture recognition is that
the researchers did not use the learned knowledge in existing domains to discover and recognize gestures in new domains. For each new
domain, it is required to collect and annotate a large amount of data, and the training of the algorithm does not benefit from prior know-
ledge, leading to redundant calculation workload and excessive time investment. To address this problem, the paper proposes a method
that could transfer gesture data in different domains. We use a red-green-blue (RGB) Camera to collect images of the gestures, and use
Leap Motion to collect the coordinates of 21 joint points of the human hand. Then, we extract a set of novel feature descriptors from two
different distributions of data for the study of transfer learning. This paper compares the effects of three classification algorithms, i.e.,
support vector machine (SVM), broad learning system (BLS) and deep learning (DL). We also compare learning performances with and
without using the joint distribution adaptation (JDA) algorithm. The experimental results show that the proposed method could effect-
ively solve the transfer problem between RGB Camera and Leap Motion. In addition, we found that when using DL to classify the data,
excessive training on the source domain may reduce the accuracy of recognition in the target domain.
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1 Introduction

Recently, human-robot interaction has been  de-
veloped rapidly. Gesture could be an important way for
human-robot interaction since it is able to give accurate
and intuitive instruction to the robots, and it has been
widely studied for decadesll. Gesture recognition could
enable effective and efficient interactions between human
workers and robots. There are many kinds of devices for
vision-based gesture recognition. For example, the cam-
era is the main sensor used in the field of gesture recogni-
tion. Previously, most of the researchers used red-green-
blue (RGB) images for gesture recognitionl?l. With the
development of technology, some new devices have
sprung up, such as leap motion, Kinect, etc. Leap motion
is an interactive hardware device based on infrared radi-
ation (IR) sensors, and it could precisely capture and ex-
tract the positions and angles of finger joints. Specifically,
Leap Motion is designed to detect and track human hand
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gestures, so the error of tracking is about 200um about
the 3D coordinate of fingertips!3l.

However, the data from different domains may be dis-
tributed differently. Therefore, classifiers trained from one
domain are likely to have a poor performance in the oth-
er domains. And for each domain, it is too expensive to
collect a mass of examples manually and build a separate
classifier. Therefore, how to make better use of the
trained model in the source domain and reduce the learn-
ing cost in the target domain has become an urgent prob-
lem to be solved.

In recent years, transfer learning has arisen wide in-
terest in researchers. Transfer learning refers to the ap-
plication of existing knowledge to other related domains.
Researchers have studied transfer learning in different
methods, e.g., board learning system (BLS)[ 5 neural
network (NN)I Bayesian model and some other meth-
ods. Although transfer learning has received a lot of at-
tention in [8], there are very few cases in the application
of gesture recognition. The goal of this paper is to pro-
pose a method in the field of gesture recognition, which
enables a model trained in the source domain to be used
in the target domain directly. Therefore, the time for col-
lecting data is reduced and the time for annotating data
could be minimized or eliminated!9.
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At present, transfer learning has been effectively used
in text classification[l% ! sentiment classification(l2-14],
image classification!521] and other fields. It could be di-
vided into feature representation transfer learning, in-
stance transfer learning, parameter transfer learning and
relationship knowledge transfer learningl8l. Feature repres-
entation transfer learning refers to transfer through fea-
ture transformation to decrease the difference between
the source domain and the target domain22724]; or to con-
vert the data of the source and target domains into a uni-
fied feature space227 and then use the classification al-
gorithm for identification. Feature representation trans-
fer learning is one of the most popular research methods
in the field of transfer learning. The paper uses this meth-
od to convert the original data of the RGB Camera and
Leap Motion into a unified feature space, and then use
the classification algorithm for recognition.

In the process of gesture recognition, it is generally ne-
cessary to assume: 1) the same feature space, it means
that the training and test data need to use the same set
of sensors; 2) the same overall distribution, i.e., experi-
menters’ preferences or habits on training and test data
are similar; 3) the same label space, i.e., the same label
set in the training and test datal?’l. Using conventional
unsupervised data mining methods for gesture recogni-
tion, the long data collection cycle becomes a practical
problem. If a supervised method is used, it will put a
great burden on users, and they must annotate enough
data to train the algorithm. It is a time-consuming task
to label the original sensor data manually and requires
experts to spend a lot of time annotating the sensor data.
In addition, learning the model of each device independ-
ently and neglecting the learned knowledge in other do-
mains will result in redundant calculation workload, ex-
Con-
sequently, it is very profitable to develop models in a new

cessive time cost, and loss of useful knowledge.

field by using the learned information. Using transferable

RGB Camera

Leap Motion

knowledge could decrease the collection of data, reduce
the need for data annotation, and increase the learning
speedl¥. There is very little work to transfer knowledge
between two or more sensor models. Kurz et al.28! and
Roggen et al.29 used teacher/learner models to handle
Hu and
Yang(?4 introduced a transfer learning method to effect-

the transfer problem of action recognition.

ively transfer knowledge between models, but the greater
knowledge transfer between different domains remains to
be explored. Marin et al.3% proposed how to jointly ex-
ploit the Camera and Leap Motion for accurate gesture
recognition. However, it still needs to collect a large num-
ber of data from various devices and does not use the
model learned from a certain device. The focus of this pa-
per is to effectively solve the transfer problem between
the RGB Camera and Leap Motion, thereby improving
the learning efficiency of cross-device transfer.

This paper presents a method to apply the learned
model in one device to another. The RGB Camera and
Leap Motion were used to collect gesture data from sever-
al human users to verify the presented method. The main
contributions are as follows:

1) A transfer learning framework of gesture recogni-
tion across different devices is proposed. Here, these
devices have different data distributions, but all of them
have the same output labels.

2) In the transfer of gesture recognition by the RGB
Camera and Leap Motion, we extract several different
features, and from the experimental results, the average
accuracy of the new coordinate features is the highest.

3) When using the back propagation neural network
(BP NN) algorithm for classification, we found that in
some cases, the epoch of training has some unusual ef-
fects on the transfer results. Too many training times
may lead to model overfitting in the source domain, and
reduce the generalization ability in the target domain.

Fig.1 shows a general overview of our approach. The

Data
* * collection
RGB image Finger joint coordinates
Original coordinate New coordinate

Feature
extraction

l Transfer

SVM BLS BP NN JDA learning

Transfer result
Fig.1 Pipeline of the proposed approach
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structure of this paper is organized as follows. In Section 2,
the preliminaries of transfer learning are reviewed. In
Section 3, the data collection and feature extraction are
described. Then, we introduce the experiment in Section 4.
We further discuss the problems found in the experiment
in Section 5, and Section 6 concludes our work.

2 Preliminaries

2.1 Joint distribution adaptation (JDA)[31]

The difference between the source domain and the tar-
get domain is approximated by the distance between
P(zs) and P(z¢), and the distance between P(ys|zs) and
P(y¢|xt), as shown in (1). The JDA algorithm realizes
transfer by reducing the distance of marginal distribu-
tion and conditional distribution in different domains. In
this paper, we use the JDA algorithm to reduce the dis-
tance between the RGB Camera and Leap Motion. Just
to be clear, the related notations and descriptions are
shown in Table 1.

d(Ds, Dp) & ||P(ws) = P(o)| |+ P(ys|ws) = P(ye|a)| | (1)

2.1.1 Feature transformation

Dimensionality reduction could be used to transfer the
data. For clarity, principal component analysis (PCA) is
used to reconstruct the data. The goal of PCA is to find
a transformation matrix A to maximize the embedded
data variance, which is shown in (2).

Table 1 Notations and descriptions

Notation Description
Dg, Dy Source/Target domain
Ns, N¢ Source/Target dimension
X Input data matrix
A Adaptation matrix
VA Embedding matrix
H Lefting matrix
M. MMD matrices, ¢ € [0, -+, C]
[3 k largest eigenvalues
P Mapping feature node
n Number of mapping features
q Number of enhanced feature nodes
The hand joint point coordinates obtained by the RGB
(Zeis Yei) Camera, ¢; €[0, 1, -, 20]
The hand joint point coordinates obtained by the Leap
CN Motion, l; € [0, 1, -+, 20]
length The length feature
a The angel feature
C SVM penalty coefficient

@ Springer

max tr(ATXHXTA). (2)
ATA=I

Eigen decomposition XHX TA— AP can deal with
this optimization problem effectively.
2.1.2 Marginal distribution adaptation

Although PCA could extract k-dimensional features
from the data, the distribution of different domains is still
very large. It needs to reduce the difference of marginal
distributions firstly, in other words, the distance between
P(A'zs) and P(A'x;) should be as close as possible. The
maximum mean discrepancy (MMD)B2] is used to com-
pute the distance between the source domain and the tar-
get domain.

I <= ,T 1 T 2 T .

3)

where My is the MMD matrix and is computed as
follows:

) if Ti, Tj € Ds
NsNs
1 .
(Mo)i; = g if xi,z; € Dy (4)
, otherwise.
NsNt

2.1.3 Conditional distribution adaptation

Then, it needs to reduce the difference of the condi-
tional distribution, i.e., the distance between P(ys|ATz,)
and P(y:)ATz:) should be reduced. A modified MMD is
used to measure the distance between the P(ys|ATxs)
and P(yt|ATact).

Hﬁ Z ATLti— 1 Z ATLL’]'
S )

@
xiEDgc) t xjeDéc

tr(ATXM X" A) (5)

2

where M. is computed as follows:

1 c
ns”ng(©)
1
NOES if x;, T; € Dgc)
(M.) e e
e —1 ” T € Dgc)7 T; € Dt(c)
- i
ngc)n,EC) x; € D_E,C), T; € DEC)
0, otherwise.

(6)

2.1.4 Optimization problem

In JDA, the distance of the marginal distributions and
conditional distributions is minimized at the same time,
which makes the transfer learning more robust. Thus, by
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combining the above two distances, a total optimization
goal could be obtained:

C
min > tr(A" XM X" A) + )| A% (7)

c=0

Since the variance of the data is maintained before
and after the transformation, another constraint is ob-
tained as

max ATXHX"A. (8)

Therefore, by combining the above constraints, the
optimization goal is transformed into

ST (ATXM.XTA) + A|AlR
min e=0 . )

ATXHXTA

Using the Rayleigh quotient, (9) could be translated
as follows:

C
min » " tr(AT XM.X"A) + \||Al|%
c=0

st. ATXHX"A=1. (10)

According to the Lagrange method, the formula turns
out to be as follows:

C
(X > MxT+ AI) A=XHX"A®. (11)

c=0

Thus, we could use the eigs function in Matlab to
solve the transformation matrix A easily.

3 Feature extraction and selection

We use the RGB Camera and Leap Motion to collect
10 static gestures of multiple experimenters (Figs.2 and
3), and about 800 sets of data. In order to find the most
suitable features for transfer between the two devices, we
extract various features from the original data obtained
for experimental comparison. We introduce each feature
in the following sections.

Fig.2 Ten gestures captured by the RGB Camera

thttps://ai.baidu.com/tech/body/hand

Fig. 3 Ten gestures captured by the Leap Motion

3.1 Feature 1: The coordinates

Thanks to the existing hand key point detection tech-
nology, it is easy to extract the coordinates of 21 joint
points of the hand from the gesture images taken by the
RGB Camera!, as shown in Fig.4. We use (Z¢i,yei),
i=0,1,2,---,20 to represent the hand joint point co-
ordinates obtained by the RGB Camera. The upper left
corner of the image is the origin of the coordinate system,
and the positive direction of the z-axis and y-axis are
shown in Fig.4. Leap Motion could directly collect the
three-dimensional coordinate positions of the 21 joint
points of the hand. Fig.5 is a coordinate system with the
center of the Leap Motion device as the origin of the co-
ordinates. In the paper, (zi;,y1:), #=0,1,2,--- 20 repre-
sents the hand joint point coordinates obtained by Leap
Motion, and the depth information is not used in this
work.

The joint point coordinates extracted from the RGB
Camera and Leap Motion corresponding to the position of
the hand are shown in Fig.6. It could be seen that the co-
ordinates obtained by the two devices correspond to the
same joint points. However, the coordinate systems of the
two devices are different, so their distributions are differ-

ent.

0,0

Fig.4 Hand joints coordinate obtained from the picture

+Y

Fig. 5 Leap Motion coordinate system

@ Springer
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Fig. 6 Corresponding positions of 21 hand joints

3.2 Feature 2: The length

Using the coordinate of the joint points obtained by
the two devices, the length information could be easily
calculated. It could be found that the position of the fin-
gertip is the most variable point, so we use (12) to calcu-
late the following distances: 1) the distance between the
root of the fingers and the fingertips, 2) the distance
between the root of the palm (point 0 in Fig.6) and each
fingertip, 3) the distance between each fingertip.

length = \/(z; — ;)% + (yi — y;)? (12)

where 1) ¢ = 2, 5, 9, 13, 17; 5 = 4, 8, 12, 16, 20; 2) i = 0;
j=4,8, 12, 16, 20; 3) i = 4, 8, 12, 16, 20; j = 4, 8, 12,
16, 20. (Note: ¢ and j are not equal at the same time.)
The algorithm flow is as follows.
Algorithm 1. Calculation of the length
Input: The coordinates of 21 hand joint points (z,¥;:),
(ZCj,yj)-
Output: The length information.
1) for i €10,2,4,5,8,9,12,13,16,17,20] do
2)  for j €[4,8,12,16,20] do
) if i # j then
) length = \/(zi — ;)% + (yi — y;)?
) end if
)
)
)

w

N

S Ot

end for
7
8) return length;

end for

3.3 Feature 3: The angle

Using the obtained joint point coordinates, we could
easily calculate the angle information. We use (13)—(15)
to calculate the following feature: 1) take the points 2, 5,
9, 13, 17 as the vertices, and the angle formed by the
point 0 and any one of the points 4, 8, 12, 16, and 20, an
example is shown in Fig.6; 2) an angle formed by any
three points in the fingertips.

A1 = (w1 — 5,y — Yj) (13)

Az = (Ti2 — 5, Yiz — Yj) (14)

@ Springer

Al Ay )
a =arcos | ———=— 15
(paias (15)

where 1) il = 0; i2 = 4, 8, 12, 16, 20; j = 2, 5, 9, 13, 17;
2) il = 4, 8, 12, 16, 20; i2 = 4, 8, 12, 16, 20; j = 4, 8, 12,
16, 20. (Note: i1, i2, j are not equal at the same time.)
The algorithm flow is as follows.

Algorithm 2. Calculation of the angel

Input: The coordinates of 21 hand joint points (x;1,v:1),

(Tiz, yi2), (%5, 95)-
Output: The angel information.
1) for j €[2,5,9,13,17] do

15
16) return al, a2

end for

2) for i2 € [4,8,12,16,20] do
3 il=0
4) A= (zin — 25,y — Yj)
5) Ao = (zi2 — 5, Yi2 — Yj)
A - A,
) a1 = areos (i)
7) end for
8) end for
9) for i1,42, ] € [4,8,12,16,20] do
10) ifil # i2 # j then
11) A= (zi1 — x5,y — Y5)
12) Az = (wi2 — x5, Yi2 — Yj5)
A - A,

1) 2= aeos (3 )
14) end i

)

)

3.4 Feature 4: The new coordinates

In order to weaken the influence of different coordin-
ate systems on the joint point coordinates, the coordin-
ate origin could be unified as the root of the middle fin-
ger (point 9 in Fig. 6). Take the direction from point 0 to
point 9 as the positive direction of the y-axis, the direc-
tion perpendicular to the y-axis and to the right is the
positive direction of the z-axis.

The positive y-axis direction vector is expressed as

Ay = (379 — Xo,Y9 — yo). (16)

The positive z-axis direction vector is expressed as

A, = (1, ﬁ) . (17)

The point representation in the new coordinate sys-

tem is
length = \/(xz —x9)? + (yi — y9)? (18)
Tinew = length x ——— % 20
[ Al Az I (20)
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Ai-A,

Yinew = length X ————=—
(| Al Ayl

(21)
where i = 0, 1, 2, -, 20. Through the above formulas, 21
point coordinates could be converted to a new coordinate
system. We convert the original coordinates of the RGB
Camera and Leap Motion to obtain the new coordinates
of the 21 joint points. The algorithm flow is as follows.
Algorithm 3. Calculation of the new coordinates
Input: The coordinates of 21 hand joint points (x;1,v:1),
(wiz, yiz), (x5, 95)-

Output: The new coordinates information.

1) Ay < (zo — @0, y9 — o)

a5
Yo — Yo

8
9) return Tinew, Yinew

end for

) A
3) for i €[0,1,2,---,20] do
4) length = \/(wz —29)% + (yi — ¥9)?
5) A = (i — 29,9 — Yo)

Ai 'A'L‘

6 Tinew = length x :

) T4 Al
7 Yinew = length X e

) TATA,

)

)

4 Experiment

4.1 Experimental setup

This section mainly introduces the relevant paramet-
er settings of the algorithms used in the experiment. The
relevant parameter settings of support vector machine
(SVM) and BLS are shown in Table 2.

We use a BP neural network in this paper, and the
number of nodes in the input layer is determined by the
dimension N of each feature described in Section 3. The
number of nodes in the first and second layers is set as
0.5N— 2N, and the number of nodes in the output layer
is set as 10. Fig.7 shows the transfer process between dif-
ferent devices.

427

4.2 Experimental results

In Section 3, the different gesture features of the RGB
Camera and Leap Motion are obtained. This section will
use the algorithm introduced in Section 2 to transfer the
data of these two domains.

4.2.1 Experiment 1: Transfer of raw data collected
by two devices

The results of Experiment 1 are shown in Fig.8. It
could be found from the experimental results that if the
images taken by the RGB Camera and the coordinates of
joint points obtained by the Leap Motion are transferred
to each other, the experimental results are poor.

4.2.2 Experiment 2: Mutual transfer of coordinate
features

The results of Experiment 2 are shown in Fig.9. From
the experimental results of Experiment 2, the following
conclusions could be drawn:

1) By comparing with Experiment 1, we could see
that after extracting the coordinate features, the accur-
acy of the transfer result between the two devices has
been greatly improved.

2) The JDA algorithm could reduce the distance
between two domains, and improve the accuracy of the
experimental results in most cases.

4.2.3 Experiment 3: Mutual transfer of length
features

The results of Experiment 3 are shown in Fig. 10.
4.2.4 Experiment 4: Mutual transfer of angle

features

The results of Experiment 4 are shown in Fig. 11.

Table 2 SVM and BLS related parameter settings

Camera — Leap Motion

Training set/

Source domain: Training model

RGB Camera e oyt 1ayer2 o

111818 Extract ne e 0 e
1.1 e @ @ @ »

i i g features .

e v @ @ ®

i N

6 7 8 9 10

Leap Motion —Camera

Training set Training model

Source domain: Input  Hide Hide Output
layer layer 1layer2 layer

Leap Motion Extract "o e 0 @ »

iy |
AARAR oo 00 C Sl
nRRRn ki
[ EERE Ee |

Related parameter Ranges
C 1,2,-,20
v 0.0001,0.001, -, 1
p 5,10, -+, 30
n 5,10, -, 30
q 20, 40, -, 300
Testing set/ .
Target domain: Trained model
ion Tver ayer layer2 Jayer
Leap Motion o 8 8 8 Transfer
ﬂﬂﬂﬂﬂ 4’«\2@ ® ® ® » | result
L LT VR
Lo e e s 1)
Testing set/
Target domain: Trained model
RGB Camera e e ayer2 oy
"9 & 0 @ » Transfer
B ettt T S result

wig ® @ 9

Fig. 7 Process of transfer between different devices
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Fig. 8 Comparison of results in Experiment 1
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Fig. 9 Comparison of results in Experiment 2
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Fig. 10 Comparison of results in Experiment 3
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Fig. 11 Comparison of results in Experiment 4
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4.2.5 Experiment 5: Transfer between two devices
after coordinate conversion

The results of Experiment 5 are shown in Fig. 12.

From the comparison of the experimental results of
Experiments 3—5, it could be found that most of the ex-
perimental results are improved little or even not at all
by using the JDA algorithm. Through the analysis, we
could see that because of the length feature, the angle
feature and the new coordinate feature are less affected
by the original coordinate system. Different original co-
ordinate systems do not have much influence on them.
For this paper, the main function of the JDA algorithm is
to reduce the impact of different coordinate systems on
the data, thus reducing the difference between domains.
According to [31], we know that the JDA algorithm needs
complex calculations to obtain the transformation matrix,
which is a time-consuming process. In this paper, we
could directly use the extracted length, angle and co-
ordinate features to transfer learning, which not only
guarantees the accuracy, but also greatly reduces the
training time.

By comparing the 5 experiments, it could be found
that the average accuracy of experiment 5 is the highest.
In other words, the best results are obtained by the new
coordinates feature. In addition, in five experiments, the
accuracy of the Leap Motion transfer to the RGB Cam-
era is generally higher than that of the RGB Camera
transfer to the Leap Motion. After analysis, we think that
this is because the coordinates originally extracted by
Leap Motion are in three-dimensional space, while those
extracted from the RGB Camera images are two-dimen-
sional coordinates. Therefore, the features of Leap Mo-
tion have more information, the accuracy of transfer is
higher when Leap Motion data is used as the source do-
main.

5 Discussions

Some interesting phenomena are found when using the
neural network algorithm to transfer and classify data.
Figs.13(a)—13(c) show the experimental results with the
Camera as the source domain and the Leap Motion as the

100%

95% -

90% Z

85% z

80%

75% Z

70%

65%

60% Z Z

55%

50%

SVM BLS NN JDA+SVM| JDA+BLS | JDA+NN

3 Camera — Leap Motion 92.59% 93.25% 92.83% 93.08% 93.44% 93.52%
M Leap Motion »Camera | 98.56% | 99.37% | 99.66% | 99.66% | 98.93% | 99.65%

| m Camera — Leap Motion ~ mLeap Motion —Camera |

Fig. 12 Comparison of results in Experiment 5
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Fig. 13 Comparison of experimental results using neural network classification

target domain. Figs.13(d)—13(f) show the experimental
results with the Leap Motion as the source domain and
the Camera as the target domain. It could be seen from
the comparison figure that when the Camera (training
set/source domain) transfers to the Leap Motion (test
set/target domain), the accuracy of the target domain is
generally lower than the source domain. But something
special happened when the Leap Motion (training
set/source domain) transfers to the Camera (test set/ tar-
get domain), which will be discussed in more detail be-
low.

From the experimental results shown in Figs.13(d)—
13(f), we could draw the following conclusions:

1) In a small interval to the left of the intersection
(the rightmost intersection), the accuracy of the target
domain is higher than the source domain, and the highest
point of the accuracy of the target domain is in this inter-
val. This means that in this interval, the model trained
on the source domain is more suitable for the target do-
main. We speculate that this is because the Leap Motion
data is originally in three-dimensional space, while the
Camera data is in two-dimensional space. In other words,
the Leap Motion has a more abundant feature space than
the Camera, so that the Camera data could perform bet-
ter. Therefore, in this interval, the accuracy of the target
domain is higher than the source domain.

2) In the right region of the intersection (the right-
most intersection), the accuracy of the target domain de-
creases with the improvement of source domain accuracy.
This may mean that the model is more suitable for the
source domain due to the increase of training times,
which reduces the generalization ability in the target do-
main. Therefore, it could be concluded that in some

cases, the training times in the source domain affect the
accuracy of the target domain.

For transfer learning, we have not yet found the dis-
cussion of these two points. Compared with the discus-
sion in [33] about “1) Which layers in the source domain
could be transferred to the target domain? 2) How much
layers of knowledge in the source domain are transferred
to the target domain?” We propose “When is the best
time to transfer during the training of the source
domain.” A detailed introduction is given based on the
experiment.

6 Conclusions

In this paper, an effective transfer learning method for
gesture recognition between the RGB Camera and Leap
Motion has been put forward. The different distribution
of data collected by the Leap Motion and the RGB Cam-
era raises challenging problems, for which effective solu-
tions have been presented. We extracted various features
from the obtained original data, such as the coordinates,
the length and the angle features, and compared the
learning performances with and without using the JDA
algorithm. The experimental results show the perform-
ance of different features when using different algorithms.
Through the comparison of several groups of experiment-
al results, we found that the average accuracy of the new
coordinate features is the highest. In the future work, we
will focus on the following points:

1) At present, only two-dimensional features are used
in the transfer learning of gesture recognition, which has
certain limitations on the direction of the palm. If the
palm is not parallel to the device, it will have an impact
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on the classification results. We will use Kinect to ex-
tract more reliable features from 3D space.

2) We only discuss the experiment result of coordin-
ates, length, and angle features, more features could be
calculated for transfer.

3) In the future, it could also be extended to the field
of transfer learning of the action recognition among differ-
ent devices.
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