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Abstract: Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models. However, it
takes up most of the overall computational cost (usually more than 90%). This paper proposes a novel Poker module to expand features
by taking advantage of cheap depthwise convolution. As a result, the Poker module can greatly reduce the computational cost, and
meanwhile generate a large number of effective features to guarantee the performance. The proposed module is standardized and can be
employed wherever the feature expansion is needed. By varying the stride and the number of channels, different kinds of bottlenecks are
designed to plug the proposed Poker module into the network. Thus, a lightweight model can be easily assembled. Experiments conduc-
ted on benchmarks reveal the effectiveness of our proposed Poker module. And our PokerNet models can reduce the computational cost
by 7.1%-15.6%. PokerNet models achieve comparable or even higher recognition accuracy than previous state-of-the-art (SOTA) mod-

els on the ImageNet ILSVRC2012 classification dataset. Code is available at https://github.com/diaomin/pokernet.

Keywords: Deep learning, depthwise convolution, lightweight deep model, model compression, model acceleration.

Citation: W. Tang, Y. Huang, L. Wang. PokerNet: Expanding features cheaply via depthwise convolutions. International Journal of
Automation and Computing, vol.18, no.3, pp.432-442, 2021. http://doi.org/10.1007/s11633-021-1288-x

1 Introduction

The past decade has witnessed the great progress of
deep convolutional neural networks (DCNNs) in com-
puter vision. DCNNs have made breakthroughs in vari-
ous vision tasks such as image classification[! ™3], object de-
tection[4 0, and image segmentation("9. Although amaz-
ing accuracy has been achieved, the high computational
cost of several to dozens of BFLOPs (billions of floating-
point operations per second) is a headache in practical
applications. Especially when dealing with visual recogni-
tion problems in mobile and embedded scenarios, such as
mobile phones, robots, unmanned vehicles, etc., high com-
putational cost often means high hardware requirements
and high power consumption. Therefore, in recent years,
how to design efficient lightweight deep models while en-
suring high performance has been a hot topic. More and
more researchers have been attracted to this area.

The research on lightweight deep models is of great
significance. In addition to the benefits of reducing hard-
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ware requirements and being energy-saving, lightweight
deep models also have the following advantages:

1) It makes edge computing possible. This results in
visual feedback being more timely. It is important for
scenarios that require real-time feedback, such as self-
driving cars.

2) Personal privacy is protected by avoiding upload-
ing the original images data to the server.

3) It saves network bandwidth for there is no need to
transfer images frequently between different hardware.

4) It reduces the cost of using visual recognition mod-
els so that it is beneficial to industry development.

A series of techniques have been proposed on light-
weight deep models in recent years including model prun-
ingll% 11 model quantification[!2 13], lightweight model
structure designl'% 15, knowledge distillation[l6-18], etc.
Among these, the lightweight model architecture design is
one of the most attractive techniques. Lightweight model
architecture design has two obvious advantages: It is not
limited by the pre-trained model and it can be easily cus-
tomized for different recognition tasks. MobileNet!4, one
of the representative works in this area proposes a kind of
convolution operation called separable convolution layer.
It decouples a traditional convolution layer into a point-
wise convolution layer and a depthwise convolution layer.
DCNNSs are constructed with separable convolution layer
and compact models with comparable performance are
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achieved. ShuffleNet[15] explores channel shuffle
tions with grouped convolution to further improve the ef-

opera-

ficiency and accuracy of lightweight models. The latest
GhostNet!!9 proposes a module called Ghost module to
concatenate the output features from a pointwise convo-
lution layer and a following cheap depthwise convolution
layer. The Ghost module can reduce the overall computa-
tional cost by reducing the usage of pointwise convolu-
tions while retaining rich features.

Abundant and even redundant features are proved to
be essential to guarantee the performancel’?). Thus, a
block design with first feature expansion and then fea-
ture reduction has become a standard procedure in the
lightweight model architecture design works. Feature ex-
pansion and reduction rely on pointwise convolutions be-
cause pointwise convolutions can vary the output chan-
nels of features. Especially with the introduction of inver-
ted residual bottleneck(?’l, the pointwise convolution is
extensively utilized to expand or squeeze features. This
leads to the pointwise convolution usually accounting for
more than 90% of the overall computational cost in light-
weight deep models.

This paper aims at solving the problem of excessive
computational cost in the feature expansion stage. We ex-
plore effective ways to reduce the computational cost
while ensuring to obtain abundant features. This results
in a novel Poker module being proposed here. The pro-
posed Poker module can generate abundant effective fea-
tures via groups of cheap depthwise convolutions. To be
specific, a small pointwise convolution layer does the
channel correlation first, then groups of depthwise convo-
lutions are employed and finally a self-attention mechan-
ism is utilized to further enhance the expanded features.
With the same input and output channels, the overall
computational cost in the proposed Poker module gets
1.5X to 3.0x fewer computational cost compared with the
module in previous works. Based on the Poker module,
we design the efficient lightweight models, PokerNets.
Experiments on the large scale image classification data-
set verify that PokerNets surpass the SOTA lightweight
models such as GhostNet[!9, MobileNet series[!4 20, 21] and

ShuffleNet series(l® 221, etc. PokerNets can reduce the
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computational cost with a large margin while obtaining
comparable or even higher recognition accuracy.

The rest of the paper is organized as follows. Section 2
concludes the related work in the area. The proposed
Poker module and PokerNets in Section 3. the experi-
ments and the analysis in Section 4. Finally conclusions

are given in Section 5.

2 Related work

Building lightweight deep convolutional neural net-
works with a good balance between computing efficiency
and recognition accuracy has been a hot topic in recent
several years. Hand-craft architecture design is the main-
stream at first. However, with the rise of deep reinforce-
ment learning, automatic neural architecture search has
attracted more and more attention. These two branches
are the most related to this paper.

As far as we know, NIN23 is the first work that ad-
opts a large number of pointwise convolutions (also called
1 x 1 convolution) to build a deep convolutional neural
network. It achieves comparable accuracy with AlexNet[!]
but obviously with far fewer parameters. Aiming directly
at the goal of reducing the parameters of DCNNS,
SqueezeNet24 employs tremendous numbers of pointwise
convolutions with expansion and squeeze operations and
obtains deep models with parameters of several or even
less than 1 MB. Recent work begins focusing on multiply-
addition operations (MAdds), a more direct and fair eval-
uation indicator of computing efficiency, instead of the
number of parameters of the neural network. MobileN-
etV1[14 creatively proposes a more efficient convolution
structure, separable convolution layer. It decouples the
traditional convolution layer into a pointwise convolu-
tion layer responsible for channel correlation and a depth-
wise convolution layer responsible for spatial correlation
as illustrated in Fig.1. Following this work,
MobileNet V220l and MobileNetV3[21 further improve the
efficiency as well as the accuracy by optimizing the resid-
ual bottleneck design and combining the hand-craft meth-
od with the automatic neural architecture search, respect-
ively. ShuffleNet[!5] proposes grouped convolution integ-
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rated with channel shuffle to further reduce the computa-
tional cost. ShuffleNetV2[22l drops the grouped convolu-
tion proposed in ShuffleNet[!5] and optimizes the network
architecture based on the principles from statistics of
practice experiments. ShiftNet25] employs the shift opera-
tion alternated with pointwise convolutions instead of ex-
pensive spatial convolution. The latest GhostNet!!9 con-
catenates the features from a small pointwise convolu-
tion layer and the features from a follow-up depthwise
convolution layer to reduce the computational cost while
obtaining abundant features.

The rising of deep reinforcement learning brings new
vitality to lightweight network architecture design.
Works26-32] are the pioneers to employ deep reinforce-
ment learning to automate the architecture design. Lim-
ited by the exponentially growing search space, early
works can only focus on cell level structure search. Mnas-
Net27] makes block-level structure search possible by in-
troducing multi-target Pareto optimal and simplifying the
search space from cell-level to block-level (i.e., grouping
convolutional layers into a number of predefined skelet-
ons). Then, differentiable architecture framework with
gradient-based optimization utilized in works(26: 33 34 fur-
ther reduces the computational cost of structure search.
Automatic neural architecture design algorithms espe-
cially focusing on lightweight deep model design have
emerged in worksB4738, It is worth emphasizing that Mo-
bileNetV3[21l integrates the hand-craft methods and auto-
matic architecture design methods together, which
presents a promising trend of the fusion of the two
branches.

Our work can be treated as a hand-crafted method.
We propose a novel module to reduce the MAdds of a
network by decreasing the use of pointwise convolutions
in the feature expansion stage, at the meanwhile to gener-
ate abundant effective features to guarantee performance.
Methods such as automatic architecture search(26-34]
quantization[!2 13 39 and network pruningll0: 11, 40-45] are
orthogonal to our method and can be combined to fur-
ther boost the performance.

3 PokerNet

In this section, we first illustrate how the Poker mod-
ule is composed and can generate a large number of ef-
fective features via depthwise convolutions. Then, we
design the bottlenecks according to different kinds of
stride and channels. Finally, an efficient PokerNet archi-
tecture is developed with high recognition accuracy.

3.1 Poker module for feature expansion
Recent works on building lightweight deep convolu-

tional neural networks such as MobileNet series(l4, 20, 21]

ShuffleNet series!® 22 and GhostNet[9 always combine

the pointwise convolution and depthwise convolution as
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the base module to develop efficient CNNs. In these
works, pointwise convolutions usually take up more than
90% of the overall computational cost. Especially at the
stage of feature expansion, previous works mainly rely on
the pointwise convolution layer because depthwise convo-
lution layer can only generate features with the output
channels equal to input channels.

Considering a convolution layer with input features
X e R™*w*h where m is input channels and h and w
are the height and width of features, respectively. As-
sume the kernel size is d X d, the stride equals to 1 and
the number of output channels is n, where n = km (k =
1, 2, 3,"+*) because we only consider the expansion stage.
3.1.1 Complexity of ghost module

Given the latest state-of-the-art (SOTA) Ghost mod-
ule as an example, as illustrated in Fig.2, the Ghost mod-
ule firstly takes the m features as input and generates the
first n/2 features by utilizing pointwise convolutions.
Then, it generates another n/2 features by using depth-
wise convolutions with the former n/2 features as input.
Finally, the two parts of n/2 features are concatenated
together to form the final n output features.

The complexity of a Ghost module is

Cg:hxwxmxg+h><w><d2xg:

km | kd®
2 2 )

(1)

hxwxmx(

As shown in (1), in practice, d is often taken as 3 and
m > d°. This leads to pointwise convolutions always oc-
cupying the most amount of the overall computational
cost in lightweight deep models.
3.1.2 Proposed poker module

Based on the above observation, we have been think-
ing about whether there is another way to generate
abundant effective features while reducing the usage of

Fig. 2 Ghost module from GhostNet[19]
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pointwise convolutions. We point out that it is solvable
and the Poker module we propose here can attain this
goal.

As illustrated in Fig.3, the proposed Poker module is
composed of three parts. The first part is a small point-
wise convolution layer with input channels and output
channels keeping the same number of M. The second part
is the crucial expansion part. It utilizes k£ groups of low-
cost depthwise convolutions to expand the features from
the number of M to kM, where k is the expansion factor
as well as the number of groups and it can be custom-
ized in practice. A Squeeze-and-Excite (SE) layerl[4] is ad-
opted in the third part, which is vital and responsible for
enhancing or suppressing the features selectively accord-
ing to the response value acquired through a self-atten-
tion mechanism.

In practice, the first and second parts are followed by
batch normalization (BN)47 and ReLU activationll. It
should be emphasized that the third part is integral in
our module, the importance of which will be further ana-
lyzed in the experimental part.

Our proposed Poker module has three major differ-
ences from the existing efficient model design. 1) Exist-
ing methods such as the MobileNet series(4: 20, 21] and
ShuffleNet series!5: 221, utilize pointwise convolution to ex-
pand features, which is computationally expensive. In
contrast, the Poker module first adopts a small pointwise
convolution to do channel correlation and then groups of
low-cost depthwise convolutions are utilized to expand
features, which can largely reduce the computational cost
as to be analyzed below. 2) Compared with the module in
GhostNet[19 which concatenates the features from a
pointwise convolution layer and a followed depthwise con-
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Fig.3 An illustration of the proposed Poker module. Features
are expanded from the number of M generated by pointwise
convolution to the number of kM by using k groups of cheap
depthwise convolutions in parallel. A SE layerl4t is followed to
enhance or suppress the expanded features.

volution layer, the groups of depthwise convolutions in
the Poker module can be customized. 3) the Squeeze-and-
Excite layer is just a choice in existing methods, but it is
an essential part in our design.

3.2 Design of poker bottlenecks

When it comes to bottleneck design, we classify them
into 3 different situations. 1) Stride is equal to 1 and in-
put channels are equal to output channels. 2) Stride is
equal to 1 and input channels are not equal to output
channels. 3) Stride is equal to 2 no matter what the in-
put channels and output channels are.

Taking advantage of the proposed Poker module, we
redesign the bottlenecks as shown in Fig.4. Following the
inverted residual bottleneck29) design concept, in the
main branch, we first expand the input features from the
previous bottleneck by utilizing the Poker module, then
the Ghost module is adopted to narrow the features be-
cause it is more efficient under this condition. Particu-
larly, when the stride is equal to 2, a depthwise convolu-
tion with stride equals to 2 is inserted between two mod-
ules to downsample the feature maps as Fig.4(c) shows.
In the shortcut branch of situations 2) and 3), a depth-
wise convolution with stride equals to 1 or 2 accordingly
followed by a pointwise convolution is added to the short-
cut path as Figs.4(b) and 4(c) illustrate. As for situation
i), the input is added to the output of the main branch
directly.

With the design of different bottlenecks, a light-
weight deep model can be assembled through choosing
and stacking these bottlenecks according to the input
channels, the output channels and the size of feature
maps.

3.3 Architecture of PokerNet

Following the basic architecture of GhostNet!!9 and
MobileNetV3[2l for their preponderance, we propose the
PokerNet by replacing the Ghost bottlenecks with the
Poker bottlenecks. Table 1 shows the overall architecture
of our proposed PokerNet. Some bottlenecks are kept un-
changed because the computational cost of Ghost bottle-
necks in these parts is lower than that of Poker bottle-
necks. The selection criteria between traditional Ghost
bottleneck and Poker bottleneck will be given in detail
later. PokerNet can be divided into three parts, i.e., the
head, the body, and the end. The head is a standard con-
volution layer with stride of 2 and 20 channels. The body
is a stack of Poker bottlenecks or Ghost bottlenecks. At
the last layer of each stage, the bottleneck will increase
the channels and downsample the features gradually ex-
cept for the last stage. The last layer in the last stage ad-
opts a pointwise convolution directly to expand features
from the number of 160 to 960. It should be noticed that,
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Poker module Poker module Poker module
DW Conv | ’ DW Conv ‘ ’
kM |BN ReLU (stride=1) kM| BN ReLU (stride=2) kM| BN ReLU
Ghost module 1x1 Conv Ghost module 1x1 Conv Ghost module
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(a) Bottleneck of stride=1 and M=N

(b) Bottleneck of stride=1 and M#N

O @)

(c) Bottleneck of stride=2

Fig. 4 Design of bottlenecks. Left: Poker bottleneck with stride equal to 1 and M equal to N; Middle: Poker bottleneck with stride
equal to 1 and M not equal to N; Right: Poker bottleneck with stride equal to 2.

Table 1 Overall architecture of PokerNet-1.0X. Size, #in, #exp and #out denote the input feature map size, input channels,
expansion channels and output channels of a bottleneck, respectively. P-bneck and G-bneck denote Poker bottleneck and Ghost
bottleneck, respectively. Act denotes the activation type.

Size Ops #in #exp #out SE Stride Act
224 Conv2d 3x3 3 - 20 - 2 ReLU6
112 G-bneck 20 20 20 - 1 ReLU6
112 G-bneck 20 40 20 - 2 ReLU6
56 G-bneck 20 60 20 - 1 ReLUG6
56 G-bneck 20 120 40 - 2 ReLUG6
28 P-bneck 40 120 40 1 1 ReLU6
28 P-bneck 40 240 80 1 2 ReLU6
14 P-bneck 80 160 80 1 1 ReLUG6
14 G-bneck 80 160 80 1 1 ReLUG6
14 G-bneck 80 160 80 1 1 ReLU6
14 P-bneck 80 240 120 1 1 ReLU6
14 P-bneck 120 480 120 1 1 ReLU6
14 P-bneck 120 720 160 1 2 ReLUG6

7 P-bneck 160 960 160 1 1 HS

7 P-bneck 160 960 160 1 1 HS

7 P-bneck 160 960 160 1 1 HS

7 P-bneck 160 960 160 1 1 HS

7 Conv2d 1x1 160 - 960 - 1 HS

7 AvgPool 7x7 960 - 960 - 1 ReLU6

1 Conv2d 1x1 960 - 1280 - 1 ReLU6

1 Conv2d 1x1 1280 - 1000 - 1 ReLUG6

in the first two stages and the second and third bottle-
necks in the fourth stage, Ghost bottlenecks are adopted
for their lower computational cost according to the fea-
ture size and channels. The end is an average pooling lay-
er followed by a pointwise convolution layer to transform
the feature vector to 1 280 dimensions before being put to

the final classifier. The expansion channels of the first
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three bottlenecks at the fourth stage are slightly differ-
ent from the number in GhostNet and MobileNetV3 for
the expansion factor k£ should be an integer. The architec-
ture illustrated in Table 1 is just a reference. Other hy-
per-parameter tuning methods can be used for further
boosting performance.

We also utilize a width multiplier o to customize the
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width of the network for considering the limitation of
computing resources of hardware in practical usage. It is
denoted as PokerNet-ax when using PokerNet with
width multiplier «. With a smaller «, the computational
cost of the model roughly decreases a2, but this will lead
to lower performance with no doubt. In the experiments,
we adopt two kinds of «, i.e., 0.5 and 1.0. Correspond-
ingly, we denote the models as PokerNet-0.5x, PokerNet-
1.0x.

The overall architecture of both PokerNet-0.5% and
PokerNet-1.0x will be illustrated in detail in the supple-
mentary materials.

4 Experiments

In this section, we first detail the training setup and
evaluation metrics utilized in our experiments. Then the
computational cost of the proposed Poker module will be
analyzed in detail. PokerNet models built with the novel
Poker module will be tested on the large scale image clas-
sification benchmark. Finally, an ablation study on the
influence of the Squeeze-and-Excite layer on the perform-
ance and an ablation study on verifying the effectiveness
of a kind of nonlinearity called hard-swish will be fur-
ther explored.

4.1 Dataset and evaluation metric

As has become standard, ImageNetl4sl is adopted for
all our classification experiments to verify the effective-
ness of our proposed Poker module and Poker models.
ImageNet is a large-scale image dataset. It contains over
1.2 M training images and 50K validation images belong-
ing to 1 000 classes.

For the pre-processing strategyl4% 30 of the ImageNet
dataset, firstly, all the images are resized with the short-
er side of 256. Then, before sending images to the net-
work, we randomly crop 224 X 224 image patches with
mean subtraction, randomly flipping and color jittering.
No other data augmentation tricks such as multi-scale are
adopted. The final model is evaluated on the validation
dataset with only a single center crop.

Our method is evaluated in terms of multiply-addi-
tion operations (MAdds) and recognition accuracy. As for
the latency, we compare our proposed PokerNet models
with current SOTA GhostNet models under different
width multipliers on an Intel CPU I7-7700K@4.2GHZ
with 32GB RAM. It is worth emphasizing that the infer-
ence speed highly relies on the code optimization ability
and the hardware platform. In our experiments, we just
make the k groups of depthwise convolutions in parallel
by using multithreading. Actually, our Poker module has
excellent parallelism and all the kM convolutions can be
processed in parallel. So the inference speed of PokerNet
models can be further improved with better code optimiz-
ation.

4.2 Training setup

To train PokerNet models, all convolutional layers are
followed by batch normalization layers. Both the batch-
normalization layer and activation layer are adopted after
the first module (Poker module or Ghost module) in the
bottlenecks. The second module only uses the batch-nor-
malization layer.

Our models are trained on 8 GPUs using standard py-
torch stochastic gradient descent (SGD) optimizer with
0.9 momentum. Most of the hyper-parameter settings in
our experiments follow the work of ShuffleNet?2l. We use
a batch size of 1024 (128 images per GPU), total epochs
of 300, multi-step learning rate policy (i.e., [160, 240, 260,
280]), dropout of 0.2 on the features before the classifier
layer, initial learning rate of 0.5 and label smoothing of
0.1. The weight decay of PokerNet-0.5X is set to 1x107°
and that of PokerNet-1.0x is set to 4x107° because we
find that they face different degrees of over-fitting.

4.3 Analysis on computational cost

From Fig.3 illustrated above, we can get that the
computational cost of our proposed Poker module is

C’p:hxwxmxm+hxw><d2xmxk:
hxwxmx (m+kxd). (2)

For simplicity, the cost of the Squeeze-and-Excite part
is omitted because it takes up very little computational
cost compared with other parts.

When we compare it with the latest SOTA Ghost
module, we can get the ratio

C, 2 mtkd
@_EX7m+d2' (3)

When d is usually taken as 3 in practice, we plot the
ratio curves under different k values and m values, which
are shown in Fig.5.

As Fig.5 illustrates, only when it comes to £ = 2 and
some cases where m and k are small, the ratio is less than
1. In most cases, the Poker module can achieve 1.5x to
3x fewer computational cost than the Ghost module.
This can explain why we utilize Poker bottlenecks in
most of the situations in our PokerNet but Ghost bottle-
necks in the first two stages and the second and third
bottlenecks in the fourth stage as shown in Table 1. Fig. 5
can be treated as the selection criteria between Poker
bottlenecks and other bottlenecks when building differ-
ent kinds of PokerNets.

4.4 PokerNets on large scale image recog-
nition task

We mainly evaluate our models on the ImageNet 2012
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Fig. 5 Computational cost comparison between the Ghost
module and the proposed Poker module under different k
(expansion factor) and m (number of feature channels) values.

classification dataset. Several modern lightweight net-
work architectures are selected as competitors, including
MobileNet seriesl!4 20, 21 ShuffleNet series!5 22, Ghost-
Netl!9 etc. The results are summarized in Table 2. Mod-
els, such as ProxylessNAS[26 FBNet34 and MnasNet[27],
are not listed in the table because their computational
cost is much higher than our models (greater than 200M).

In terms of computational cost, we follow [19] and
group these models into two levels, i.e., ~50M MAdds,
~150M MAdds. A consistent observation we can get from
the table is that larger MAdds usually mean higher ac-
curacy in lightweight models.

As can be seen from the results illustrated in Table 2,
PokerNet outperforms all the competitors at every com-
putational cost level. Compared with the previous SOTA
Ghost models, our models achieve 7.1% (PokerNet-0.5x)
and 15.6% (PokerNet-1.0x) MAdds reduction with even
higher recognition accuracy.

The advantage of computational cost of our proposed
PokerNet models can also be seen from the latency test
shown in Table 3. By simply making the k groups of
depthwise convolutions in parallel using multithreading,
our PokerNet models run much faster than current SOTA
GhostNet models. If all the kM convolutions are optim-
ized to run in parallel, this advantage will be more obvi-
ous. This is due to the efficient Poker module we design.
With the combination of groups of cheap depthwise con-
volution SE layer, the Poker module we propose can en-
sure the generation of abundant effective features, while
minimizing the computational cost.

Fig. 6 gives a more intuitive display of the comparis-
on of PokerNets and different SOTA models in terms of
computational cost and Top-1 accuracy.

4.5 Ablation study on SE layer

The core idea of the Poker module is to utilize groups
of depthwise convolutions to generate a large number of
features and adopt the SE layer to enhance or suppress
the generated features. In Section 3.1, we point out that
the SE layer is essential to guarantee the performance in
our design of Poker module.

To evaluate the importance of the SE layer in the
Poker module, we conduct the ablation study experi-
ments on PokerNet-0.5x and PokerNet-1.0x. We com-
pare the final recognition accuracy with the SE layer be-
ing added to the Poker module or omitted. All other set-
tings are kept exactly the same.

The results are shown in Table 4. From the results,
we can see that the Poker modules with the SE layer
slightly increase the MAdds (0.4M in PokerNet-0.5x and
2M in PokerNet-1.0x), but they outperform the one

Table 2 Comparison of SOTA lightweight models over parameters, MAdds and accuracy on ImageNet dataset. M stands for millions.

Models Params (M) MAdds (M) Top-1 Acc. (%) Top-5 Acc. (%)
ShuffleNetV1 0.5X (g=8)[15] 1.0 40 58.8 81.0
MobileNetV2 0.35 X [20] 1.7 59 60.3 82.9
ShuffleNetV2 0.5 X [22] 1.4 41 61.1 82.6
MobileNetV3 Small 0.75 X [21] 2.4 44 65.4 -
GhostNet 0.5X [19] 2.6 42 66.2 86.6
PokerNet 0.5 X 2.4 39 66.8 87.0
MobileNetV1 0.5 X [14] 1.3 150 63.3 84.9
MobileNetV2 0.6 X [20] 2.2 141 66.7 -
ShuffleNetV1 1.0 X (g=3)15] 1.9 138 67.8 87.7
ShuffleNetV2 1.0 X [22] 2.3 146 69.4 88.9
MobileNetV3 Large 0.75 X [21] 4.0 155 73.3 -
GhostNet 1.0 X [19] 5.2 141 73.9 91.4
PokerNet 1.0X 5.7 119 73.6 91.5
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Table 3 Comparison of inference speed between PokerNet
models and GhostNet models (current SOTA lightweight
models) under different width multipliers. The batch size is

equal to 1.

Models Latency (ms)
PokerNet 0.5 X 32.9
GhostNet 0.5X 36.7
PokerNet 1.0X 46.2
GhostNet 1.0X 51.3

without the SE layer with a large margin (3.3% in
PokerNet-0.5% and 3.0% in PokerNet-1.0x for Top-1 ac-
curacy). It strongly favors why we take the SE layer as

an important part of the proposed Poker module.

4.6 Ablation study on nonlinearity

In [23], a nonlinearity called hard-swish was intro-
duced, which proves to significantly improve the accur-
acy of lightweight deep models. The hard version of swish

is defined as follows:

439

xReLUG(m +3)

hard-swish(z) = 5

To study the influence of hard-swish on PokerNet
models, we follow the work[2!l and replace the nonlinearit-
ies of deeper layers of PokerNet models from ReLU to
hard-swish. This is because hard-swish can get the most
benefits while occupying less computational cost in deep-
er layers as claimed in [21]. In practice, hard-swish is
utilized in the layers of fifth stage as shown in Table 1.

We compare the PokerNet models under 3 kinds of
settings of nonlinearities, i.e., ReLU, ReLU6 and ReLU6 +
hard-swish. Table 5 illustrates the final results. It can be
seen from the table that the setting of ReLU6 + hard-
swish beats the other two kinds of settings in both
PokerNet-0.5x and PokerNet-1.0x. Compared with the
models with ReLU, hard-swish version achieves 0.4%
and 0.6% accuracy improvement respectively. It proves
the effectiveness of hard-swish nonlinearities in light-
weight deep models.

5 Conclusions

Pointwise convolutions usually occupy most of the

PokerNet 1.0x GhostNet 1.0x
74 +* * MobileNetV3 Large 0.75x
*
72
70 ShuffleNetV2 1.0x
*

>
8 68
3 PokerNet 0.5x MobileNetV2 0.6x
= * GhostNet 0.5x *
& 66 * MobileNetV3 Small 0.75x
= *

64

62

*ShufﬂeNetVZ 0.5x + GhostNet series
i/lobileNetVZ 0.35% % MobileNet series
60 % ShuffleNet series
* PokerNet series
40 60 80 100 120 140 160 180
MAdds

Fig.6 Computation cost and recognition accuracy comparison between PokerNets and previous SOTA models

Table4 Ablation study of Squeeze-and-excite layer in our proposed Poker module

Models SE Params (M) MAdds (M) Top-1 Acc. (%) Top-5 Acc. (%)
PokerNet 0.5X Yes 2.39 39.4 66.8 87.0
PokerNet 0.5X No 1.81 39.0 63.5 84.4
PokerNet 1.0X Yes 5.70 119 73.6 91.5
PokerNet 1.0X No 3.41 117 70.6 89.5
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Table 5 Ablation study of nonlinearities in our proposed Poker module

Models Act Params (M) MAdds (M) Top-1 Acc. (%) Top-5 Acc. (%)
PokerNet 0.5X ReLU 2.39 39.4 66.4 86.2
PokerNet 0.5 X ReLU6 2.39 39.4 66.5 86.5
PokerNet 0.5X ReLU6+HS 2.39 39.4 66.8 87.0
PokerNet 1.0X ReLU 5.70 119 73.0 90.4
PokerNet 1.0X ReLU6 5.70 119 73.2 90.8
PokerNet 1.0X ReLU6+HS 5.70 119 73.6 91.5
computational cost in lightweight deep models. For build- [4] R. Girshick. Fast R-CNN. In Proceedings of IEEE Interna-

ing more efficient deep models, this paper presents a nov-
el Poker module to reduce the usage of pointwise convo-
lutions. The proposed Poker module utilizes groups of
cheap depthwise convolutions instead of pointwise convo-
lutions to expand the features. SE layer is adopted in
Poker module to enhance or suppress the expanded fea-
tures in a self-attention manner. Experiments conducted
on benchmark models and datasets prove that the pro-
posed module is standardized and can be applied to any
place where feature expansion is needed. Moreover,
PokerNets built with the proposed Poker module beat the
SOTA lightweight models in both the computational cost
and the recognition accuracy.

In the future, we would like to apply our proposed
PokerNets to other computer vision tasks such as object
detection and image segmentation. As for the model it-
self, we would like to explore the customized expansion
factor k and the self-attention manner to construct more
efficient lightweight deep models while boosting the per-
formance.
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