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ABSTRACT

Affine registration can fit the non-rigid deformation of slices
effectively, and it is widely used in volume reconstruction of
biological tissue. But most of the existing affine registration
methods are registered in a given sequence, which results in
the accumulation of errors. In this paper, a global optimized
affine registration method is proposed, which can be used in
volume reconstruction. To eliminate the cumulative error,
the affine transformation of all images is estimated simulta-
neously based on an energy function. A constraint on affine
transformation is added to restrict the shearing of images. Ex-
periments show that our method provides a more reliable reg-
istration result compared with sequential affine registration. It
can solve the problems caused by the accumulation of errors.
The registration result fits the deformation of slices well and
preserves the rigidity of images.

Index Terms— Volume reconstruction, registration,
affine transformation

1. INTRODUCTION

Volume reconstruction plays an important role in the research
of the microstructure and function of organisms and it can
restore the structure of biological tissue effectively. However,
the registration of microscopic images proves to be difficult.
Firstly, Due to the thickness of slices, the image resolution in
the Z direction is much lower than that in the X-Y plane. The
biological structure is also changeable along the direction of
slices owning to the slices anisotropy. So, the information of
images is different between neighboring slices, which makes
it difficult to find corresponding point pairs in the neighboring
slices. Secondly, the deformation of slices, such as distortion,
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which is brought by the slicing process changes the origi-
nal structure of tissues. Thirdly, the huge amount of images
brings challenges to image registration. Scheffer et al. [1]
show that the error accumulation in the scale change is quite
noticeable when a large number of images are registered, es-
pecially the number of layers increases. Therefore, it is hard
to do volume reconstruction of biological tissue.
Recently, affine registration has been conducted into volume
reconstruction, as it can rectify a large number of slice de-
formations. Narayanan et al. [2] use affine registration to
generate volume reconstruction of mouse neocortex. Take-
mura et al. [3] reconstruct the comprehensive connectome
of Drosophila cell using affine transformations. Chiang et
al. [4] also use affine transformation to register Drosophila
brain images. Unfortunately, less research works are focus
on optimizing the affine transformations. Most of the reg-
istration methods usually registered in a sequential way, as
they begin with the first or the last section and register the
rest of the images backward or forward in turn, one image at
a time. Evidently, the result of current image only depends
on the latter or previous one. Once an error occurs in one of
the images, it will be accumulated in the later registration.
Because of the error accumulation and propagation, these se-
quential affine registration methods may seriously destroy the
image rigidity. All the images should be considered globally.
Hence, the more robust affine registration is necessary.
To calculate the proper affine transformation, the existing
methods are usually based on solving the decompositions.
Affine transformation can be decomposed into four parts,
denoted shearing, scale adjustment, rotation and translation.
The combination of the optimized decompositions is regarded
as the optimal transformation. Such as Shihui Ying et al. [5]
solve affine registration problems by Iwasawa decomposi-
tion. Schmitt et al. [6] optimize each decomposition part of
the affine transformation separately when solving the image
registration problems of sectioned brain. Obviously, these
methods may not always get the optimal solution for regis-
tration problems. Errors might be introduced in calculating



each decomposition part. The accumulation of these errors
may drive the combination results deviating from the optimal
transformation. Therefore, with no decomposition, optimiz-
ing the parameters of the affine transformation matrix directly
may be a better choice.
In this paper, a robust global optimized affine registration
method for microscopic images is proposed for volume recon-
struction. The affine transformation matrices are optimized
globally by minimizing the energy function with a constraint.
The affine transformation of all images is estimated simulta-
neously. A nonlinear optimization method is used to directly
calculate the parameters of affine transformation matrices,
while there is no decomposition of the affine transformation.
Experiments show that the robust global optimized affine reg-
istration method can avoid the accumulation and propagation
of errors and the rigidity of images is retained.
The rest of this paper is organized as follows. Section 2 de-
scribes the robust global optimized image affine registration
method. Section 3 presents the experiments and results. The
contributions of this paper are concluded in Section 4.

2. ROBUST GLOBAL OPTIMIZED IMAGE AFFINE
REGISTRATION METHOD

Most of the existing affine registration methods are registered
in a given sequence. The sequential method registers each
slice to its neighbors and straightforwardly concatenates the
resulting transformations. If an error occurs in the former
steps, it will always exist in the later registration. The sequen-
tial affine registration method may result in the accumulation
and propagation of errors, especially at the later registration
process. But our method will overcome the accumulation of
errors as shown in Fig.1. The images in Fig.1b are the results
of the last six serial registered images under the sequential
registration method. It can be seen that with the accumula-
tion of errors, the final registration results introduced a large
shearing compared with the corresponding original image in
Fig.1a. Our results are shown in Fig.1c, along with an ac-
curate alignment, the similarity of the structure between the
results and the original image also is ensured.
The robust global optimized affine registration method for mi-
croscopic images is described as follows.

2.1. Nonlinear Optimization Problem

Firstly, given a set of microscopic images I = {I1, I2, . . . , In},
we extract the features of each image, and then perform ro-
bust matching on the feature points between the adjacent
images. Each robust match can obtain a set of optimal cor-
respondences, and these corresponding points are taken as
the landmarks of the adjacent images. The coordinate trans-
formation of landmarks is obtained by solving a nonlinear
optimization problem as follows, so as to solve the problem
of image registration.

(a)

(b)

(c)

Fig. 1. An exhibition of registered images from the two meth-
ods. (a) The last six original serial images. (b) The last six
serial registered images under the sequential affine registra-
tion method. (c) The last six serial registered images under
the robust global optimized affine registration method.

For the i-th image Ii, Xi,i+1 represents the coordinate set
of landmarks located in it, whose correspondence is Xi+1,i

located in image Ii+1. The sum of the distances for each two
corresponding coordinate sets is expected to be minimum
after an affine transformation. So we define it as a nonlinear
optimization problem.

F (A) = argmin
Ai

n∑
i

(
‖Ai−1Xi−1,i −AiXi,i−1‖22 + λp (Ai)

)
(1)

Where Ai represents the affine transformation of the i-th im-
age Ii, and p(Ai) is the constraint function of Ai that con-
straints the non-rigidity deformation of image Ii. λ is a pos-
itive constant, which modulates the strength of the constraint
on the whole optimization problem. In the experiment, We
can manually select an image Ik with less deformations as a
reference and will not transform it in the subsequent process,
which denoted Ak = I .
We use Ceres-Solver [7] to solve this nonlinear optimization
problem and we can get the parameters of transformation ma-
trices directly.

2.2. Construction of Constraint Function

The unconstrained affine transformation is likely to cause a
large shearing, even project an image to a point or a line. So,
it is important to add some constraints to the affine transfor-
mation. For all images, we hope not to destory the original
structure, so a small non-rigid deformation is expected. Due
to the fact that affine transformation doesn’t change parallel



relationship, so if the vertical relationship is as constant as
possible, we will get a small non-rigid deformation.
Let

A =

 a b e
c d f
0 0 1

 (2)

represents an affine transformation matrix, we define the con-
straint function p(A) as

p(A) =
(ab + cd)2

(ad− bc)2 + (ab+ cd)2
(3)

Where p(A) is expected to close to zero as much as possible.
To prove the reasonableness of our constraint function, the
following explanations are given.
In general, to simplify the calculation, we defined the top-left
corner of the image as the origin, O(0, 0). Let M(x, 0) and
N(0, y) represent two points selected randomly on the upper
and left boundary. And after a transformation of A in Eq.2,
we get O′(e, f), M ′(ax+ e, cx+ f), N ′(by + e, dy + f) as
the transformation points of O, M and N . Obviously,

−−→
OM

is vertical to
−−→
ON , so the intersection angle θ between them

satisfied the condition that cos θ =
−−→
OM ·

−−→
ON

‖
−−→
OM‖·‖

−−→
ON‖

= 0. If the

Cosine function of intersection angle θ′ between
−−−→
O′M ′ and

−−−→
O′N ′ also close to 0, the angle between any two lines will
change as small as possible. We know that,

cos θ′ =

−−−→
O′M ′ ·

−−−→
O′N ′

‖
−−−→
O′M ′‖ · ‖

−−−→
O′N ′‖

Where θ′ ∈ [0, π] (4)

Substitute the coordinates of the points into Eq.4, it is simpli-
fied as

cos θ =
ab+ cd√

(ad− bc)2 + (ab+ cd)2
(5)

To simplify the calculation, we defined that

p(A) = cos2 θ =
(ab+ cd)2

(ad− bc)2 + (ab+ cd)2
(6)

And we hope that p(A) is as close as possible to 0.

2.3. Summary of the Algorithm

The summary of the algorithm is shown in Algorithm 1.
In step 2, an optimal random sampling consistency algorithm
(RANSAC) [8] is used to obtain a more robust matching.

3. EXPERIMENTAL RESULT

We evaluate the accuracy and the robustness of the robust
global optimized affine registration method on 335 serial sec-
tions acquired by automated tape-collecting ultra-microtome
(ATUM) and SEM [9]. The section thickness is 50nm and
the resolution of these serial section microscopic images is

Algorithm 1: robust global optimized affine registration
Input: original serial images I = {I1, I2, . . . , In}
Output: registered images I

′
= {I ′

1, I
′

2, . . . , I
′

n}

1: Extracting SIFT feature from each image,
Pi ←feature points of Ii ,and set
P = {P1, P2, . . . , Pn}
2: {Xi−1,i, Xi,i−1} ← matches (Pi−1, Pi), (i = 2 to n)
3: Solving the nonlinear optimization problem in Eq.1,
to obtain the set of matrices A = {A1, A2, . . . , An}
4: I′i ← transform Ii by Ai

9000×9000 pixel with 3nm pixel size in the X-Y plane. Part
of the microscopic images are shown in Fig.1.

3.1. Structural Similarity

In order to evaluate the non-rigid changes of the images
caused by affine transformation, we use structural similarity
index (SSIM) [10] to measure it. For the registered serial
section microscopic images, we first restore the rigid de-
formation [11], and intercept 500×500 pixel image patches
randomly, then count the SSIM value with the corresponding
patches in the original images, and calculate the mean and
variance of these SSIM value of each image. Compared with
the sequential affine registration method, the robust global
optimized affine registration method causes less non-rigid
deformation and avoid the accumulation of errors, as shown
in Fig.2.

Fig. 2. An comparison of the sequential affine registration
method (B-F registration) and the robust global optimized
affine registration method (G-A registration). The SSIM
value of G-A registration is floating around 0.58, and the
value of B-F registration is floating around 0.14.



3.2. Degree of Shearing

Once a large shearing occurred in one of the steps of the se-
quential affine registration, the shear will always exist in the
later registration process. However, in the robust global op-
timized affine registration method, the shear will always be
stable at a small value closed to zero. As shown in Fig.3, a
large shearing is introduced in the sixth image in the registra-
tion, and this shearing exists in the rest of the registration of
the sequential affine registration method. But in our method,
this large shearing only causes a small disturbance and does
not influence the subsequent registration.

Fig. 3. Experimental results of the shearing degree between
the sequential affine registration method (B-F registration)
and the robust global optimized affine registration method (G-
A registration).

3.3. Slice Deformation

Selecting an appropriate image as reference can effectively
avoid the errors caused by the deformation of slices. For a
more intuitive experimental comparison, we randomly select
five microscopic images of a Drosophila brain acquired by
FIB-SEM as the ground truth of the registration results. The
resolution is 6684 x 6516 pixel with 9.15 nm pixel size in the
X-Y plane.
In general, we make a random deformation of the middle im-
age to simulate the slicing deformation, as shown in Fig.4a.
Without selecting the reference image, the registered images
have a slightly consistent deformation, as shown in Fig.4b.
That is to say, if there is no reference image, the errors
caused by the deformation of slices will spread over and
share equally with all the slices. But if we have selected a
reference image (such as the first image), this deformation of
the registered images will be eliminated and the rest of the
slices will not be affected. See in Fig.4c, all the registered

images are restored to the original images. Obviously, our
registration results are more approaching the ground truth.

(a)

(b)

(c)

Fig. 4. An exhibition of the registered images. (a) The orig-
inal adjacent FIB images with a deformation of the middle
image. (b) The registered images without selecting the ref-
erence image (c) The registered images that selected the first
image as reference.

4. CONCLUSION

In this paper, we have proposed a robust registration frame-
work for volume reconstruction. Using affine transformation
can fit the non-rigid deformation of slices effectively. Com-
pared with the sequential affine registration method, the pro-
posed method is more insensitive to errors.
The contributions are summarized as follows.

• The global optimized registration method can avoid the
accumulation and propagation of errors effectively, and
yield a more robust result.

• For a better registration result, we added a constraint to
combat the shearing introduced by unconstrained affine
transformation. So the rigidity of images is retained as
much as possible.

• Optimizing the parameters of transformation matrices
directly is more likely to approach the optimal solution
infinitely than decomposing the matrices and optimiz-
ing them separately.

• In our experiment, we find that if we have selected a
reference image, some of the image deformations in the
slicing process could be corrected.
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