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Abstract—The accuracy of traffic flow prediction significantly
impacts the operation of Intelligent Transportation Systems
(ITS). In this paper, we propose a Differential Time-variant (DT)
Traffic Flow Prediction method, which can remarkably improve
the accuracy and reduce the variance of traffic flow forecast
based on deep learning models. To extract the temporal trend
of the traffic flow at different locations, we apply data difference
to preprocess the raw traffic data. This method can better
eliminate the uncertainties of traffic flow series like volatility
and anomaly. Then, time information is introduced in the form
of One-Hot Encoding to effectively model the temporal patterns
of traffic flow. Necessary analysis is presented to demonstrate
the rationality. Three popular deep neural networks are applied
to test our method, and experimental results on PeMS data sets
indicate that it can make more accurate prediction compared
with the same model.

I. INTRODUCTION

In the past two decades, intelligent technologies have been
widely used in the research and development of transportation
systems, which used to be dominated by traditional industrial
technology [1]–[4]. As an important part of transportation
management and control, traffic flow prediction has also
achieved a leap. Since the early 1980s, short-term traffic
forecasting has been an integral part of most Intelligent
Transportation Systems (ITS) and related researches, which
is considered from a classical statistical perspective to all
kinds of machine learning approaches [5].

Traffic flow prediction aims to estimate the target volume
in the near future with some observed data [6]. With the
emergence of deep neural network, data-driven methods
based on deep learning models have achieved great progress
in prediction task and obtained more superior performance

*This work was supported in part by the National Key R&Development
Program of China under Grant 2018YFB1700202, NSFC U1811463,
U1909204, 61773381, 61533019. Basic and applied basic research fund of
Guangdong Province 2019B1515120030.

Wei Zhang is with the State Key Laboratory for Management and
Control of Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, 100190, China. He is also with the School of Artificial
Intelligence, University of Chinese Academy of Sciences, Beijing, 100049,
China.

Fenghua Zhu and Gang Xiong are with the State Key Laboratory for
Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China, and also with the
Clouding Computing Center, Chinese Academy of Sciences, Dongguan
523808, Guangdong, China.

Yuanyuan Chen, Xiao Wang and Fei-Yue Wang are with the State Key
Laboratory for Management and Control of Complex Systems, Institute of
Automation, Chinese Academy of Sciences, Beijing, 100190, China.

†Corresponding author. E-mail: yuanyuan.chen@ia.ac.cn

compared with other machine learning approaches, which are
our focus of this paper.

The traffic flow of a location at a certain time is affected
by numerous factors that can not be fully taken into account.
Thus, crucial variables that can make prediction system more
accurate and stable are what we consider most, like historical
traffic flow. Many data-driven researches about traffic flow
prediction are based on the historical traffic flow, which is
reasonable but not adequate. As traffic flow dynamics tend to
be time-variant, the fluctuation tendency gradually changes
over time. Thus, a smooth function might not be capable
to reach accurate prediction for all periods. Although the
intraday trend of traffic time series is common [7], like
bimodal and unimodal types, many researchers neglect the
influence of time information. Decided by individuals’ daily
life, similar time is more likely to correspond to similar
situations. Therefore, time information might strongly impact
the accuracy and stability of traffic flow forecast.

In this paper, we propose a One-Hot Encoding method to
introduce time factors. This approach can achieve segmental
prediction based on the time interval and improve the perfor-
mance of deep neural networks.

There exist many uncertainties like volatility and anomaly
in traffic time series. Drivers, vehicles and roads are all filled
with intricate factors, and they are completely unpredictable.
Thus, volatility is a common phenomenon and may greatly
influence the learning process of the traffic flow predic-
tion function. Another typical feature of traffic systems is
anomaly, which can be contributed by accidents, detector
failure, road construction etc. They are patterns in data that do
not conform to a well-defined notion of normal behavior [8].
Anomaly does not frequently happen but is still common in
traffic systems. It can impact greatly on traffic prediction for
deep learning models. However, many data-driven prediction
methods do not fully consider the training objective for
prediction problems because of its rarity [9]. It is likely to
be ignored by models as the proportion of prediction error
is respectively small compared with the main patterns. Thus,
anomaly can significantly weaken the stability of forecasting.

As data difference can improve the stationary property of
time series, we utilize it to predict the traffic flow trend
relative to last time. This can partly eliminate outliers of
traffic flow series, as the focus is transformed from the actual
volume to the temporary trend.

The contribution of this paper is threefold.
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• We demonstrate that introducing time information in the
way of One-hot Encoding can improve the performance
of deep learning models. This method takes time factors
into account and can achieve even consistent forecast for
some locations with strong time characteristics.

• Data difference is utilized to partly eliminate the in-
fluence of volatility and anomaly on deep learning
models. It can effectively solve the problem of models’
extremely inaccurate prediction for outliers to a consid-
erable degree, and improve the performance.

• We combine the two methods and make experiments on
PeMS data sets. Three popular deep learning models
are tested to show the superior performance of our
method, which are fully connected network (FC), long-
short term memory network (LSTM) and convolutional
neural network (CNN). Experimental results indicate
that the models can make more accurate prediction with
the proposed approach.

The rest of this paper is organized as follows. Section II
briefly reviews the exsisting methods of traffic flow predic-
tion. Section III introduces our methods comprehensively and
structures of the latter two deep learning models in brief.
Section IV presents the experimental results. Finally, Section
V concludes this paper.

II. LITERATURE REVIEW

The traffic flow volume at time t can generally be stated
as (1).

yt = F (~xt−1) + εt (1)

where yt is the traffic flow volume of time t, ~xt−1 =
[yt−N , yt−N+1, ..., yt−1]T denotes the historical traffic flow
data. εt is served as an unpredictable part of prediction, which
dynamically changes over time. It is usually regarded as white
noise. The aim of traffic flow prediction is to acquire function
F .

In the early stage, autoregressive integrated moving-
average (ARIMA) [10] was used for traffic flow prediction,
which may be the first data-driven method for practices. Soon
afterwards, its variations, such as Kohonen-ARIMA [11],
subset ARIMA [12] and so on, were applied to this area.
Methods based on Kalman filtering model [13], k-nearest
neighbor (kNN) algorithm [14], support vector regression
(SVR) [15] and many other iterative algorithms were also
proposed in the meanwhile.

Deep neural networks show great potential in traffic flow
prediction as the technique has gained marvelous achieve-
ments in many other fields, which attracted the interests of
researchers throughout the world. In the past few years, all
kinds of models based on deep learning have been proposed.
Huang et al. used a deep belief network (DBN) to learn ef-
fective features for traffic flow prediction in an unsupervised
feature learning [16]. Lv et al. utilized stacked autoencoders
(SAE) to extract the features of traffic flow and make short-
term forecast [17]. As spatial features and temporal features
are distinct for traffic flow, different structures were applied

Fig. 1: Traffic flow volume at different time of different days.
The data are collected by the sensor (No. 400132) from July
1, 2016 to July 31, 2016.

to extract the features separately then. LSTM, CNN and
their combination like Conv-LSTM were used to acquire the
dynamic characteristics of traffic flow [18]–[20]. Generative
adversarial network (GAN) was also applied to traffic flow
prediction since it was proposed in 2014 [21]. Since graph
convolutional network (GCN) is capable of learning features
of generalized topological graph structure, it was used to
grasp the spatial correlation of different sensors [22]. Mean-
while, there are some other novel methods used to traffic flow
prediction, like residual deconvolution [23] and fuzzy-based
method [24].

Although all kinds of deep learning based methods have
been developed for traffic flow prediction, it is difficult to
say that one method is the best for any situations. Thus,
methods that are capable of boosting different networks to
achieve more accurate and stable prediction are significantly
important, which is exactly the focus of this paper.

III. METHODOLOGY

In this section, we will firstly introduce our methods on
importing time factors and eliminating uncertainties. Some
necessary analysis are presented to illustrate the rationality.
Then the general structure based on deep learning models is
proposed for utilization of our methods. Finally, the structure
of LSTM and CNN used in our experiment will be briefly
depicted.

A. Methods to Improve Models’ Performance

1) Encoding Time with One-Hot: The intraday trend of
traffic time series implicitly indicates that similar time often
corresponds to similar traffic flow volume and similar traffic
situation. As shown in Fig. 1, traffic flow of the same time
presents similar characteristics, which are distinct at different
time. This indicates that the actual flow volume has strong
correlation with time.

Considering an one-to-one prediction task and a simplest
fully connected network, the forecasting function can be
depicted as (2).

ŷt = F (~xt−1) = f(~wT~xt−1 + b) (2)
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where ŷt denotes the predicted value, ~w and b are the
learnable parameters. If one day’s total amount of time is
NT , a one-hot shaped time vector ~ot ∈ RNT can be defined
as (3).

o
(i)
t =

{
1, i = t
0, else

i = 0, 1, ..., NT − 1 (3)

To take a freely changable time factor into the function, we
change ~xt−1 into [~xTt−1, o

T
t ]T , which can get (4).

ŷt = f([~wT , ~wT
o ]

[
~xt−1
~ot

]
+ b)

= f(~wT~xt−1 + ~wT
o ~ot + b)

= f(~wT~xt−1 + w(t)
o + b)

= f(~wT~xt−1 + bt)

(4)

where ~wo∈RNT is the newly added parameters correspond-
ing to ~ot. As bt can be completely different at different
time, periodic forecast is achieved in the way of subsection
mapping. It is not required to modify the structure of network
again while achieving more superior performance. And this
approach is also suitable for many-to-many prediction, as (5).

~̂yt = f [WG(Xt−1) +~bt] (5)

where Xt−1 is the historical data of multiple sensors.
G(Xt−1) is the features captured by a deep learning model.

The difference between (4) and (5) can be described
as follows. For a specific deep learning model, we just
concatenate the input data and ~ot together for one-to-one
prediction. However, the extracted features are concatenated
with ~ot for many-to-many predicition, which can achieve
similar performance.

2) Eliminating Uncertainties with Data Difference: It is
widely accepted that Moving-Average (MA) can effectively
eliminate the stochastic volatility and improve the stationary
property of traffic time series. MA assumes that the predicted
value is mainly influenced by the historical accumulation of
error terms. This is also suitable for deep learning models.
Thus, we make the first-order difference of the historical traf-
fic flow and replace the original data as the input of networks.
It is a reasonable approach to eliminate the uncertainties of
traffic time series to a certain degree, as follows.

yt+1 = F (~xt) + εt+1 (6)

F (~xt)'F (~xt−1)+∇TF (~xt−1)∆~xt+
1

2
∆~xt

T∇2F (~xt−1)∆~xt

=F (~xt−1)+Ψ(∆~xt) (7)

where ∆xt =~xt−~xt−1 is the historical data after difference.
Then we can get (8)

yt+1 = F (~xt−1) + Ψ(∆~xt) + εt+1

= yt + Ψ(∆~xt) + εt+1 − εt
(8)

Where ∆εt+1 = εt+1 − εt is closer to white noise compared
with εt+1, which can be ignored under the training of big
data. Ψ(∆~xt) can be aquired by training a deep learning

Fig. 2: Traffic flow volume before and after difference. The
data are collected by the sensor (No. 400014) collected from
July 12 to July 14.

Fig. 3: The general structure of our method.

model. This approach is effective to eliminate the uncertain-
ties of traffic flow series, as it is not based on the actual traffic
flow but the temporary trend. Take Fig. 2 as an example, the
traffic flow volume of the last day is obviously higher than
its daily situations. However, after difference, the three days’
time series become very similar.

3) The General Structure: As the above two methods are
complement with each other, we combine them together and
find it effective to make more accurate prediction compared
with the same model. The general structure of prediction
network can be described as follows. After difference, the his-
torical traffic flow data are fed into the first model to extract
the time-invariant spatial-temporal features. The features will
be combined with one-hot shaped time information then. The
second network aims to obtain the predicted trend relative to
last time with the concatenate features. Finally, add yt−1 to
get yt. See Fig. 3 for an illustration.

B. Deep Learning Based Models

1) Long short-term memory network (LSTM): LSTM is a
special recurrent neural network (RNN) architecture, which is
mainly used to solve problems with temporal dependencies.
Unlike the traditional RNNs, LSTM were developed to tackle
the exploding and vanishing gradient problems that can be
encountered when training RNNs. LSTM is composed of
many LSTM units. And each unit contains a cell, an input
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gate, a forget gate and an output gate. The computation
process of one unit can be descirbed as follows.

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

(9)

where it, ft, gt, ot are the input, forget, cell, and output
gates, respectively. xt is the input at time t, ht−1 denotes the
hidden state of the layer at time t−1 and ct is the cell state at
time t. σ is the activation function, ∗ denotes the Hadamard
product and others are learnable parameters.

To make traffic flow prediction, the historical volume of
all sensors at each time step are formulated as a vector.

2) Convolutional neural network (CNN): The architecture
of a CNN is inspired by the organization of cat’s visual
cortex, which uses different convolutional kernels to extract
the features of image data. The 2D convolution process can
be depicted as (9).

Ol
i = σ(bli +

∑
k

W l
i,k ∗Ol−1

k ) (10)

where k and i are the channel indices of input and output,
∗ denotes the convolution operation, W l

i,k and bli is the
learnable parameters, and σ is the activation function.

To make traffic flow prediction, each time step’s traffic
flow volume of multiple sensors are arranged to a square
grid. To make strong correlated sensors close, we rearrange
the order by maximizing the sum of correlation coefficient
between adjacent pixels, which can be described as (10) and
has been proved effective in [19].

order∗ = arg max
order

[
√
N ]∑

i=1

[
√
N ]∑

j=1

1

Gi,j

Gi,j∑
g=1

Corr(Pi,j , P
g
i,j) (11)

where N is the number of sensors, Gi,j is the number of
neighbor pixels at the corresponding coordinates, P g

i,j is
the gth neighbor pixel and Corr denotes the operation of
correlation coefficient.

IV. EXPERIMENTS

A. Dataset Description

The experimental traffic flow data are extracted from the
Caltrans Performance Measurements Systems (PeMS) traffic
database, which is aggregated in 5min interval. The particular
data used in our experiments are chose from 100 detector
stations located in district 4 from March 1, 2016 to August
31, 2016. Data in holidays are removed by KMeans, and then
we get 128 days’ traffic flow volume in this period. Simple
average method is used to impute the missing data. As the
volume are usually very small, data before 4:00 and after
23:00 are not considered in our experiments. Time number
of one day is equal to the amount of its samples. That is to
say, the serial number of a sample in one day is exactly its

corresponding time. For all the models, we choose the data
of the first five months as the training set and data of the last
month for test. All experiments are performed on a desktop
with an Intel Core i7-9700 CPU and an Nvidia Geforce GTX
1660 Ti (6G) Graphics Card.

B. Parameter Settings

In this paper, the size of time step is set to 5. 10% of the
training data is selected as the validation set. Early stopping
is used to decide the number of iterations. To determine the
optimal parameters of LSTM and CNN on validation set, a
grid search is conducted.

For LSTM, the hidden size is set as 300 from search space
{200, 300, 400}. And we use a fully connected network to
obtain the predicted value, whose number of each layer is
[300 +NT , 300, 100].

For CNN used in this paper, the number of hidden layers is
set as 3 from space {2, 3, 4}. Two convolutional layers with
5 × 5 kernel are constructed to extract the spatial features
of traffic flow data, and another one whose kernel size is
1 × 1 is used to grasp the temporal features. Similarly, a
fully connected work is selected for value prediction.

C. Performance of our methods

FC, LSTM and CNN are utilized to test the effectiveness
of our method. And the results of some other approaches are
also presented. We perform the 15-min traffic flow prediction
task over the whole 100 detector stations, whose experimental
results are shown in Table I. Here, With-T represents predic-
tion with time, With-D represents prediction with data after
difference and With-DT denotes traffic flow prediction with
both methods. It can be clearly seen that our methods can
significantly boost the prediction performance of the three
deep neural networks. Thus, the approach is suitable for
many deep learning methods. Take LSTM as an example, our
methods improves the model’s performance by 8.5%, 9.8%,
18.3% for RMSE, MAE and MAPE, respectively. Traffic
flow prediction with time or data difference can improve

TABLE I: Performance of Multiple Prediction

Model RMSE MAE MAPE(%)

ARIMA 112.28 74.05 9.45
SVR 86.98 60.16 7.40
FC Ori 87.64 60.48 7.95

With-T 83.45 57.12 7.51
With-D 80.48 55.72 6.74

With-DT 79.29 54.57 6.54
LSTM Ori 84.09 58.15 7.72

With-T 81.53 56.02 7.32
With-D 79.07 54.77 6.65

With-DT 76.94 52.47 6.31
CNN Ori 80.74 56.48 6.66

With-T 77.66 53.44 7.32
With-D 79.34 54.99 6.58

With-DT 76.89 52.50 6.33
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(a) MAPE at different time scales

(b) Average RMSE at different time scales

Fig. 4: Performance of models at different time scales.

the models’ accuracy of forecast, and the result will be
better with both methods, which exactly conforms to our
expectations.

Fig. 4 illustrates the performance of FC, LSTM, CNN
with and without our methods at different time scales. Here,
average RMSE denotes the value of RMSE per 5min. It
can be easily found that the three deep learning models can
achieve more superior performance at all time scales. And
it is increasingly remarkable with the increase of time scale,
which is reasonable as the time feature will be more stable
and the uncertainties will be weaker.

Fig. 5 shows LSTM’s prediction performance of the first
50 sensors. It indicates that models with our methods can
make more accurate prediction, as the performance has been
improved for most of the sensors.

To further analyze the effect of our methods, some variants
of LSTM-DT are evaluated, including: (1) DT2: which
compresses the dimension of time vector to the half, (2):
DT4: which compresses the dimension of time vector to
the quarter, (3): Residual: residual structure without data
difference, (4): Detrend: which replaces data difference with
detrending method. In this paper, we use weighted average
to update the intraday trend, as (15).

Trend(k) = αT (k) + (1− α)Trend(k − 1) (12)

(a) Performance comparison of RMSE

(b) Performance comparison of MAE

(c) Performance comparison of MAPE

Fig. 5: LSTM’s performance of the first 50 stations from
August 1 to August 31.

Where Trend(k) is the intraday trend up to the kth week,
T (k) is the traffic flow series of the kth week and α is a
trade-off parameter. The results are shown in Table II. We
observe that with the increase of the time aggregation level,
the model’s performance will deteriorate. And data difference
can further improve the prediction accuracy compared to
the residual structure, which is better than some detrending
methods.
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TABLE II: Performance of LSTM-DT’s variants over 15-min
prediction

Variants RMSE MAE MAPE(%)

DT2 77.43 52.99 6.50
DT4 77.85 53.42 6.55
Residual 77.87 53.32 6.63
Detrend 80.17 54.86 6.99
LSTM-DT 76.94 52.47 6.31

V. CONCLUSION

In this paper, we propose two methods to improve deep
learning models’ performance of traffic flow prediction. The
first method embeds time information into deep neural net-
works in the form of One-Hot Encoding, which can extract
the temporal trend of the traffic flow at different locations
and achieve segmental prediction based on the time interval.
The second method can partly eliminate the uncertainties of
traffic time series in the form of data difference. We combine
the two methods together and find it effective to improve the
performance of deep learning models. Three popular deep
neural networks are applied to test the availability of our
method. Experimental results indicate that our method can
significantly improve the accuracy of traffic flow prediction
for the same model. It is worth mentioning that we just utilize
a relatively simple approach, which can be further explored
and derive more efficacious and rigorous methods.
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