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ABSTRACT

Existing semantic segmentation models of urban areas have shown
to perform well in a supervised setting. However, collecting lots
of annotated images from each city to train such models is time-
consuming or difficult. In addition, when transferring the segmen-
tation model from the trained city (source domain) to an unseen
city (target domain), the performance will largely degrade due to
the domain shift. For this reason, we propose a domain adaptation
method with a domain similarity discriminator to eliminate such do-
main shift in the framework of adversarial learning. Contrary to the
single-input adversarial network, our domain similarity discrimina-
tor, which consists of a Siamese network, is able to measure the sim-
ilarity of the pairwise-input data. In this way, we can use more infor-
mation about the pairwise-input to measure the similarity between
different distributions so as to address the problem of domain shift.
Experimental results demonstrate that our approach outperforms the
competing methods on three different cities.

Index Terms— domain adaptation, domain shift, semantic seg-
mentation, Siamese network, urban areas

1. INTRODUCTION

Semantic segmentation of urban areas is an very important task in
image processing, especially for the very high-resolution remote
sensing images. It has great significance in the fields of infrastruc-
ture planning, land planning, and urban area change detection. With
sufficient annotated training images, existing semantic segmentation
models, such as [1, 2, 3, 4, 5], have already demonstrated great
performance. However, employing the segmentation models trained
only with the labeled images of one city to segment the unlabeled
images from other cities has shown to be infeasible or ineffective.

The reasons for this phenomenon, which called domain shift in
literature [6], include the different architectural styles across dif-
ferent cities and different spectral bands and Ground Sample Dis-
tance (GSD) among different imaging sensors. Since it is unpracti-
cal to obtain adequate training samples for all the studied cities, re-
searchers are aiming to study domain adaptation techniques to elim-
inate domain shift without the need of labeling new image datasets.

Domain adaptation is mainly to learn the invariant representa-
tions between different domains so as to eliminate the domain shift.
There are many domain adaptation methods have been proposed,
such as Transfer Component Analysis (TCA) [7], Joint Distribu-
tion Adaptation (JDA) [8], Maximum Mean Discrepancy (MMD)
[9, 10, 11] and adversarial adaptation methods (DANN [12] and
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Fig. 1: Domain adaptation for semantic segmentation. (a) denotes
source images sampled from ISPRS Postdam, (b) denotes target im-
ages sampled from ISPRS Vaihingen. (c) denotes the results before
using domain adaptation method, (d) denotes the results after using
our method, (e) denotes the ground truth of the target images.

ADDA [13]). TCA and JDA use traditional methods to extract fea-
tures, then use margin adaptation or joint adaptation to express the
differences between different distributions, and then perform do-
main adaptation tasks. MMD maps the data distribution of differ-
ent domains to a reproducing kernel Hilbert space (RKHS) and then
measures the distance between two distributions in RKHS to reduce
the domain shift. The Generative Adversarial Nets (GANs) [14] is
adopted in DANN and ADDA where the generator produces simu-
lative features while the discriminator distinguishes them. Among
the recent methods that apply domain adaptation to semantic seg-
mentation, FCNs in the wild [15] is the first framework that extends
the idea of DANN to solve semantic segmentation problems. Cur-
riculum domain adaptation [16] proposes curriculum-style learning
approach to transfer knowledge across different domains. Saito et al.
[17] proposed to utilize task-specific classifiers as discriminators to
align distributions of source and target domains.

Most domain adaptation methods only use the images of the
source and target domains separately, and do not consider the sim-
ilarity between the same domain and the dissimilarity between dif-
ferent domains. By measuring the similarity of two domains, we can
utilize that information to regularize the network. However, measur-
ing the similarity between two domains remains an open problem.
Bromley et al. [18] used a Siamese network to obtain two different
feature maps and then applied a similarity measure function to com-
pute the similarity. SRPN [19] integrates the measurement function
into the Siamese network and adapts to minimize the training objec-
tive with end-to-end optimization. SD-GAN [20] utilizes a Siamese
network as a discriminator to measure the similarity of a pair of
images for face verification. The above methods just measure the
similarity between the generated images and real images and do not
compute the similarity of different domains.

In this paper, we propose an adversarial domain adaptation
method with a domain similarity discriminator (DSD), which con-
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Fig. 2: The architecture of the proposed approach for domain adaptation. The architecture consists of two convolution networks. The base
network is a semantic segmentation network, such as DeepLabV3, and we split it into two parts as feature extractor MF and pixel-wise
labeling classifier MC . The domain similarity discriminator is composed by four convolution layers, and takes a triplet of feature maps as
input to compute their similarities. In the test phase for target data, only MF and MC are used. Best viewed in color.

sists of a Siamese network, to eliminate the domain shift for semantic
segmentation of urban areas (the model is shown in Fig. 2). Our
proposed model utilizes the similar information between the same
domain and the dissimilar information between different domains.
By integrating DSD and any feature extractor from existing seman-
tic segmentation networks (such as DeepLabV3 [5] used in this
paper) into adversarial learning framework, our model can transfer
knowledge across different cities. The contributions of this paper
are summarized as follows:

• We propose a Siamese-based domain similarity discrimina-
tor to distinguish the domain similarity of the pairwise-input
feature maps. Therefore, we can simultaneously use the simi-
larity between the same domain and the dissimilarity between
different domains. Such information is used to add additional
constraints to regularize the network.

• We integrate the domain similarity discriminator and the fea-
ture extractor of existing semantic segmentation models into
the adversarial learning framework. As a result, the feature
extractor can produce domain-invariant features to eliminate
domain shift. Experimental results across three different
cities show that our approach can achieve better performance
than other competing methods.

2. ADVERSARIAL DOMAIN ADAPTATION METHOD

In this section, we describe our adversarial domain adaptation
method for semantic segmentation of urban areas with the proposed
domain similarity discriminator. We consider having a source do-
main S, with both image space Xs and label space Y s. Meanwhile,
we have a target domain T , with image space Xt, but no anno-
tations. We denote xs ∈ Rw×h×c and xt ∈ Rw×h×c as images
sampled from source and target domain. Where w and h are the
width and height of the image, and c is the number of channels.

Given a triplet of images (xt,xs
1,x

s
2) as input, our proposed

architecture can be decoupled into three major components. The
first part is a feature extractor MF (x) that transforms each of the
input image to a semantic feature space. To simplify the expres-
sion, we denote (f t, f s1, f

s
2) as the feature maps of (xt,xs

1,x
s
2), re-

spectively. The second component is a pixel-wise labeling classifier
MC(MF (x

s)) that classifies the feature maps of source images to

label space. The third components, a domain similarity discrimi-
nator D performs two different tasks when receiving a pair of fea-
ture maps: (1) It distinguishes the similarity of domains between the
pairwise-input feature maps. (2) It performs a pixel-wise labeling
classification task similar to that of the MC network. We integrate
D and MF into the adversarial learning framework to make MF

produce domain-invariant features. The first two parts consist of our
base network and we treat the third part as a discriminator.

2.1. The Base Network

We utilize DeepLabV3 [5] as the base network and split it into two
parts: the feature extractor MF and the pixel-wise classifier MC , as
shown in the left of Fig. 2. To ensure that our network performs
well on source images, which is known to be effective for the final
semantic segmentation task, we should optimize the standard super-
vised segmentation objective on the source domain. Therefore, we
use a pixel-wise softmax cross-entropy loss to achieve this goal:

Lseg = −E
K∑

k=1

1[k=ys] logMC(MF (x
s)), (1)

whereK is the number of classes and xs and ys denote source image
and the corresponding label. 1[k=ys] is an indicator function, which
takes 1 when [k = ys], and 0 otherwise. Note that our method may
be generally applied to any semantic segmentation framework.

2.2. The Domain Similarity Discriminator

Recently, domain adversarial learning frameworks [15, 17] have
been applied for solving domain adaptation in image semantic
segmentation problems. Those methods only used the images of
the source and target domains separately, and consider neither the
similar information between the same domain nor the dissimilar in-
formation between different domains. As a comparison, our method
effectively utilizes those information.

To achieve this goal,we propose a domain similarity network as a
discriminator D, which takes a triplet of feature maps (f t, f s1, f s2) as
input. Then this triplet is split into two different two-tuples, defining
(f t, f s1) as a two-tuple from different domains and (f s1, f

s
2) as from

the same domain. As shown in Fig. 2, D performs two different
tasks when receiving a two-tuple: (1) It distinguishes the received
two-tuple whether from the same domain or not. (2) It performs a
pixel-wise classification task similar to the MC network for source



feature maps contained in the received two-tuple, which is beneficial
to make a stable adversarial training [21].

For the first task, we introduce the Siamese network which is
similar to [20], as a pixel-wise domain similarity discriminator D.
The Siamese network is equivalent to a similarity function that mea-
sures the similarity of the distributions of the received two-tuple, as
shown in the top right of Fig. 2. We first separately encode each
feature maps in the input triplet using the same convolution neural
network De. And then, in order to let D distinguish the received
two-tuple whether from the same domain or not, we stack the fea-
ture maps of De(f

s
1) and De(f

s
2) (or De(f

t) and De(f
s
1)) along the

channel axis. After that, another convolution layer Dd is applied to
aggregate information from the two-tuple, to output a 2-dimensional
(2-D) feature map. In this way, D acts as a pixel-wise domain simi-
larity discriminator, which discriminates each pixel in the output 2-D
feature map whether zfrom the same domain (with a label of 1) or
not (with a label of 0).

To eliminate domain shift, we integrate D and MF into the ad-
versarial learning framework. Instead of using the minimax loss,
the standard loss is adopted to train the generator with inverted la-
bels [14]. In our method, the adversarial loss Ladv is split into two
independent parts, one for D and the other for MF , which can be
described as follows:

Ladv,D =− E[logDd(De(f
s
1), De(f

s
2))]

− E[log(1−Dd(De(f
s
1), De(f

t)))],
(2)

Ladv,MF = −E[logDd(De(f
s
1), De(f

t))], (3)

where Ladv,D and Ladv,MF denote pixel-wise adversarial losses for
D andMF , respectively. The output ofDd(·) indicates the probabil-
ity that the elements in the two-tuple are discriminated as belonging
to the same domain.

For the second task, we input the feature maps of De(f
s
1) and

De(f
s
2) to another convolution layer Dc and output two predicted

label maps. In this way, D acts as a pixel-wise labeling classifier
similar to the MC network. Formally, it can be described as:

Laux = −E
K∑

k=1

1[k=ys] logDc(De(f
s)), (4)

where f s denotes the source images feature maps, such as f s1 or f s2
and K is the number of classes.

2.3. Training steps

To sum up, there are three learning objectives for our method: (1)
MC and MF should segment source images accurately to ensure
that our model does not diverge too far from the source solution and
obtain discriminative features. (2) D should distinguish the received
two-tuple whether from the same domain or not and perform as a
pixel-wise labeling classifier similar to the MC network for source
feature maps. (3) MF should fool D to distinguish the two-tuple
from different domains as coming from the same domain so as to
produce domain-invariant features. To achieve these goals, the train-
ing within a mini-batch consists of the following three steps.

Update MF and MC . During this step, the parameters of MF

and MC will be updated while the parameters of D are fixed. The
network is trained to minimize Lseg as follows:

min
MF ,MC

Lseg. (5)

UpdateD. In this step, the parameters ofMF andMC are fixed
while those of D will be updated to distinguish the consistency of
domains. To make the training procedure stable, we add an auxiliary
pixel-wise loss in this step. The learning objective is as follows:

Source images

Target images
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ground truth

Fig. 3: Qualitative results on domain adaptation from POT to VAI.

min
D

Ladv,D + αLaux, (6)

where α is a trade-off parameter between Ladv,D and Laux.
Update MF . We train MF to fool D such that D discriminates

the two-tuple from different domains as coming from the same do-
main so as to make MF produces domain-invariant features. We
achieve this by minimizing Ladv,MF , at the same time fixing the pa-
rameters of D and MC . We add Laux to stable the training, as well.
The learning objective is as follows:

min
MF

βLadv,MF + αLaux, (7)

where β is weight for the adversarial loss of MF .
In the training procedure, the first step is pre-trained for an

epoch, and then all the three steps are iteratively trained.

3. EXPERIMENTAL RESULTS

In this section, we evaluate our approach across images of three dif-
ferent urban areas which were captured from different locations and
with different GSD and spectra.

3.1. Datasets

ISPRS Vaihingen (VAI). [22] consists of 3-band IRRG (Infrared,
Red, Green) image data acquired by airborne sensors, there are 16
annotated images with high resolution about 2500 × 2000 pixels at
a GSD of 9cm. We randomly sampled 10 images as training set,
and the rest as testing set. We cropped training set to a number of
512× 512 patches with overlap of 300 pixels (no overlap in testing
set). Finally, there are 2152 images in training set and 423 images in
testing set.

ISPRS Postdam (POT). [22], which consists of 3-band IRRG
(Infrared, Red, Green) image data acquired by airborne sensors,
there are 24 annotated images with high resolution about 6000 ×
6000 pixels at a GSD of 5cm. We randomly sampled 15 images as
training set, and the rest as testing set. We cropped training set to a
number of 512× 512 patches with overlap of 200 pixels (no overlap
in testing set). In this way, we produced 6000 images for training
and 1296 images for testing.

BeiJing (BEJ). The BeiJing dataset used in this paper is satel-
lite images collected by ourselves from BaiDu Map with a GSD of
30cm, which consists of 3-band RGB image data. There are 4716
images of 512 × 512 pixels and we randomly sampled 800 images
as testing set with the rest as training set.
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Fig. 4: Qualitative results on domain adaptation from BEJ to VAI.

Although six different domain adaptation experiments can be
formed by combining any two cities datasets, due to space limits,
we chose to show here the two typical and generalized experiments:
POT to VAI and BEJ to VAI. We compared the proposed approach
with three competing methods: DANN [12], ADDA [13] and MCD-
UDA [17]. Since these methods do not release their codes or not be
applied to segmentation problem, we implement them by ourselves.

Implementation details. All experiments are conducted utiliz-
ing the PyTorch [23] framework. For fair comparison, in all exper-
iments we used the DeepLabV3 [5] as our base network, which is
pre-trained on ImageNet [24]. Following [5], we adopt the Inter-
section over Union (IoU) as evaluation criterion: IoU(Pm, Pgt) =
|Pm

⋂
Pgt|

|Pm
⋃

Pgt
, where Pgt denotes ground truth and Pm denotes the pre-

diction map. We trained our network with 50,000 iterations using
Adam solver [25] with learning rate 2e− 5 and betas 0.5 and 0.999.
We used a batch size of 2 for source domain and 1 for target domain,
and the hyper-parameters were set as: α = 0.1, β = 1.

Table 1: The performance of adaptation from POT to VAI(%). road:
impervious surface, veg: low vegetation. The symbol ∗ denotes that
the code we implement ourselves.

car roof tree veg road mIoU
Souce-only 6.0 46.6 42.0 23.9 27.5 29.2

DANN∗ [12] 33.1 68.3 55.5 26.9 64.0 49.5
ADDA∗ [13] 30.4 67.6 43.1 29.7 62.3 46.7

MCD-UDA∗ [17] 8.3 52.9 32.0 25.3 55.0 34.7
Ours 38.0 70.8 53.3 29.6 65.6 51.5

Target-only 68.2 87.0 77.2 60.0 81.1 74.7

3.2. Postdam to Vaihingen

In this experiment, we treated the POT dataset as our source domain,
and VAI dataset as our target domain. The domain shift is mainly due
to different architectural styles between two cities and different GSD
of these datasets. In the training procedure we only used the ground
truth of POT dataset, and randomly sampled 400 images from VAI’s
training set as validation set. We tested our model on the testing set
of VAI. POT and VAI contains the same five classes: impervious
surface, building roof, low vegetation, tree and car.

Table 1 reports the performance of our method in comparison
with [12, 13, 17]. The baseline method is a source-only model,
which only uses source domain data for training and tests on target
data, achieving a mean IoU (mIoU) of 29.2%. On the contrary, the

target-only means training target domain with annotations, which is
not the case of domain adaptation but its performance can be consid-
ered as a upper bound for the domain adaptation performance. The
results show that all the domain adaptation methods achieve better
results than the baseline, showing the effectiveness of domain adap-
tation. Among all these methods, our method performs the best and
improves the baseline significantly from 29.2% to 51.5%. The sec-
ond best results are achieved by DANN with mIoU as 49.5%, 2%
lower than ours. In order to prove the validity of our domain similar-
ity discriminator, we remove the auxiliary pixel-wise loss by setting
α = 0. Experimental result shows that our method achieves a mean
IoU of 50.2%, which is still higher than DANN’s 49.5%. The qual-
itative results are shown in Fig. 3. From the segmentation results,
we can see that the source-only model seems to suffer from domain
shift seriously. Our method can produce better segmentation results,
especially for cars, roofs, and roads.

3.3. BeiJing to Vaihingen

The second quantitative experiment we conducted is transferring the
BEJ dataset to VAI dataset. For POT and VAI, they are both Ger-
man cities, and have the same spectra. While for both BEJ and
VAI, their architectural styles and GSD are quite different, but also
they are from different countries and have different spectra. Fur-
thermore, BEJ is collected from satellite sensors but VAI is acquired
by airborne sensors. In addition, compared to POT and VAI, BEJ
treats both the low vegetation and the tree as the tree, so BEJ dataset
only has four classes: impervious surface, building roof, tree and
car. During training procedure, we assigned the same label to low
vegetation and tree in the VAI dataset.

Table 2: The performance of adaptation BEJ to VAI(%), tree denotes
low vegetation and tree. The symbol ∗ denotes that the code we
implement ourselves.

car roof tree road mIoU
Souce-only 2.3 30.8 0.0 44.0 19.3

DANN∗ [12] 19.3 27.1 1.8 49.6 24.4
ADDA∗ [13] 5.9 61.7 26.8 30.2 31.1

MCD-UDA∗ [17] 9.7 47.5 19.2 38.2 28.6
Ours 18.3 61.9 12.0 38.3 32.6

Target-only 60.6 85.6 88.7 79.4 78.6

The results of this experiment are reported in Table 2, the base-
line performance (source-only) is 19.3% and our method achieves a
mIoU of 32.6%, thereby improving the baseline by 13.3%. Com-
pared with other competing methods, our approach can yield the
best performance, which proves the stability and generalization of
our method. The qualitative results are shown in Fig. 4.

4. CONCLUSION

In this paper, we present an end-to-end domain adaptation method
in the framework of GANs by introducing a novel domain similarity
discriminator (DSD) to eliminate the domain shift for semantic seg-
mentation of urban areas. A Siamese network is taken as our domain
similarity discriminator to train our network in a pairwise training
scheme. By DSD we can use the similar information between the
same domain and the dissimilar information between different do-
mains to obtain the domain-invariant features. The experimental re-
sults show that our approach can yield the best performance over the
competing methods across three different cities.
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