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Abstract

The skeleton data have been widely used for the action
recognition tasks since they can robustly accommodate dy-
namic circumstances and complex backgrounds. In existing
methods, both the joint and bone information in skeleton
data have been proved to be of great help for action recog-
nition tasks. However, how to incorporate these two types
of data to best take advantage of the relationship between
joints and bones remains a problem to be solved. In this
work, we represent the skeleton data as a directed acyclic
graph (DAG) based on the kinematic dependency between
the joints and bones in the natural human body. A novel di-
rected graph neural network is designed specially to extract
the information of joints, bones and their relationships and
make prediction based on the extracted features. In addi-
tion, to better fit the action recognition task, the topological
structure of the graph is made adaptive based on the train-
ing process, which brings notable improvement. Moreover,
the motion information of the skeleton sequence is exploited
and combined with the spatial information to further en-
hance the performance in a two-stream framework. Our fi-
nal model is tested on two large-scale datasets, NTU-RGBD
and Skeleton-Kinetics, and exceeds state-of-the-art perfor-
mance on both of them.

1. Introduction
Action recognition, which plays an essential role in

video surveillance and human-computer interaction, has
been widely investigated but not yet fully addressed [27,
31, 36, 5, 32, 38]. Compared with conventional processes
that use RGB images or videos for recognition, skeleton-
based action recognition has drawn increasingly more at-
tention since it is robust against changes in body scales,
motion speeds, camera viewpoints and interference of back-
grounds. The skeleton data represent the human body as a

*Corresponding Author

sequence of coordinates of the major body joints, which can
be easily captured by the depth sensors (e.g., Kinetics) or
the pose estimation algorithms [4, 10].

Conventional methods for skeleton-based action recog-
nition focus mainly on designing handcrafted features to
represent the skeleton [30, 8]. With the development of
deep-learning-based methods, the data-driven methods have
become the mainstream [7, 25, 20, 28, 37, 18, 19, 14, 13,
21, 17, 16, 34, 29, 3]. The most widely used models in
deep-learning-based methods are recurrent neural networks
(RNNs), convolutional neural networks (CNNs) and graph
convolutional networks (GCNs), where the coordinates of
joints are represented as vector sequences, pseudo-images
and graphs, respectively.

Recently, bone information, which represents the direc-
tions and lengths of bones, has been proved to be a good
modality for skeleton-based action recognition [26, 18].
This information is intuitive since humans naturally evalu-
ate action according to the directions and positions of bones
in the human body rather than the positions of joints. More-
over, it has been proved that joint and bone information are
complementary to each other and combining them can lead
to further improvement of recognition performance. For
the natural human body, joints and bones are strongly cou-
pled, and the position of each joint (bone) is actually de-
termined by their connected bones (joints). For example,
the position of the elbow joint depends on the location of
the upper arm bone, which also determines the location of
the forearm bone at the same time. Existing graph-based
methods usually represent the skeleton as an undirected
graph and model the bones and joints with two separate
networks, which cannot fully exploit these dependencies
between joints and bones. To solve this problem, we rep-
resent the skeleton as a directed acyclic graph with joints
as vertexes and bones as edges, where the dependencies be-
tween the joints and bones can be easily modeled by the
directed edges of the graph. Furthermore, a novel directed
graph neural network (DGNN) is designed to model the
constructed directed graph, which can propagate the infor-



mation in adjacent joints and bones and update their associ-
ated information in each layer. The final extracted features
contain not only the information of each joint and bone but
also their dependencies which can facilitate action recogni-
tion.

Another problem is that the original skeleton is designed
by hand according to the structure of the human body, which
may be not optimal for the action recognition tasks. For
example, the two hands have strong dependencies in some
action classes such as clapping and hugging, but this con-
nection does not exist in the graph constructed based on the
human body structure. We solved this problem by apply-
ing an adaptive graph instead of a fixed graph inspired by
[26], which means that the topology of graph is parameter-
ized and is optimized during the learning process. Since
there is no constraint in the learned graph, the approach de-
scribed in [26] adds a fixed manually set graph to stabilize
the training process, which somewhat loses the flexibility at
the same time. In this work, we propose a simple yet ef-
fective method to not only ensure the stability of training
process but also avoid losing flexibility, which brings a no-
table improvement.

Two-stream-based architecture, a widely used method
for RGB-based action recognition, extracts the optical flow
field of the video to model the temporal dependency be-
tween frames [27, 31]. This approach is effective since
some classes strongly rely on the sequential information of
the action, such as “waving a hand to the left” versus “wav-
ing a hand to the right”. Inspired by this method, we extract
the motion information from both joints and bones to aid in
recognition. A two-stream framework is proposed to fuse
the results of the spatial stream and motion stream to fur-
ther enhance the performance.

The final model is evaluated on two large-scale datasets
for skeleton-based action recognition tasks, i.e., NTU-
RGBD and Skeleton-Kinetics, and exceeds state-of-the-art
performance on both. The main contributions of our work
can be included as follows: (1) To the best of our knowl-
edge, this is the first work to represent the skeleton data
as a directed acyclic graph to model the dependencies be-
tween joints and bones. A novel directed graph neural net-
work is designed specially to extract these dependencies for
the final action recognition task. (2) An adaptively learned
graph structure, which is trained and updated jointly with
model parameters in the training process, is used to better
suit the action recognition task. (3) The motion informa-
tion between consecutive frames is extracted for temporal
information modeling. Both the spatial and motion infor-
mation are fed into a two-stream framework for the final
recognition task. (4) On the two large-scale datasets for
skeleton-based action recognition, our model exceeds the
state-of-the-art performance with a significant margin.

2. Related work
2.1. Skeleton-based action recognition

Conventional methods for skeleton-based action recog-
nition usually use handcrafted features to represent the hu-
man body, which present challenges during design and re-
sult in unsatisfactory performance [30, 8]. Recently, deep-
learning-based methods have been shown to be superior
over conventional methods. There are mainly three frame-
works for deep-learning-based methods: sequence-based
methods, image-based methods and graph-based methods.

Sequence-based methods represent the skeleton data as
a sequence of joints based on the designed traversal strat-
egy, which is then modeled with RNN-based architec-
tures [25, 20, 28, 37, 18, 3]. Another framework, involving
the image-based methods, represents the skeleton data as a
pseudo-image to implement CNNs applied successfully in
the field of image classification [6, 14, 21, 16] . Instead of
representing skeleton data as sequences or pseudo-images,
graph-based methods model the data as a graph with joints
as vertexes and bones as edges [34, 29, 26]. Compared
with the sequence-based methods and image-based meth-
ods, the graph-based methods are more intuitive since the
human body is naturally organized as a graph rather than a
sequence or an image.

2.2. Graph networks

Graph is a more general data structure than image and
sequence, which cannot be directly modeled by conven-
tional deep learning modules such as CNNs and RNNs.
Approaches for operating directly on graphs and solving
graph-based problems have been explored extensively for
several years [15, 9, 33, 24, 1, 11, 2]. For example, Kipf et
al. [15] propose an unsupervised neural relational inference
model that can infer the interactions and learn the dynamics
from the observational data on physical simulations. Gilmer
et al. [9] propose a message passing network to solve chem-
ical prediction problems, which can directly extract features
from molecular graphs and is invariant to the graph isomor-
phism. Wang et al. [33] represent videos as space-time re-
gion graphs to model the temporal dynamics and relation-
ships between humans and objects, which can then be used
to understand human action.

3. Method
Typically, the raw skeleton data are a sequence of frames,

each of which contains a set of joint coordinates. Given a
skeletons sequence, we first extract the bone information
according to the 2D or 3D coordinates of the joints. Then,
the joints and bones (the spatial information) in each frame
are represented as the vertexes and edges within a directed
acyclic graph, which is fed into the directed graph neural
network (DGNN) to extract features for action recognition.



Finally, the motion information, which is represented with
the same graph structure that used for spatial information,
is extracted and combined with the spatial information in a
two-stream framework to further improve the performance.

3.1. Bone Information

Previous works have shown the importance of combin-
ing the joint information and bone information together for
skeleton-based action recognition [26, 18]. The bone is rep-
resented as the difference of coordinates between two con-
nected joints. Take the 3D skeleton data as an example: the
joint in raw data is represented as a vector with three ele-
ments, i.e., its x-coordinate, y-coordinate and z-coordinate.
Given two joints v1 = (x1, y1, z1) and v2 = (x2, y2, z2),
the bone linked from v1 to v2 is formulated as the differ-
ence of the two joint vectors, i.e., ev1,v2 = (x1 − x2, y1 −
y2, z1 − z2).

3.2. Graph Construction

Conventional methods always model the skeleton data
as a sequence of vectors or a pseudo-image to be processed
by RNNs or CNNs. However, these representations ignore
the kinematic dependencies between joints and bones. In
human parsing, the skeleton data are always modeled as a
tree-based pictorial structure [39, 35] according to the phys-
ical structure of the human body. In this work, we represent
the skeleton data as a directed acyclic graph (DAG) with the
joints as vertexes and bones as edges. The direction of each
edge is determined by the distance between the vertex and
the root vertex, where the vertex closer to the root vertex
points to the vertex farther from the root vertex. Here, the
root vertex is defined as the center of gravity of the skeleton.
Figure 1 shows an example of a skeleton and its correspond-
ing directed graph representation, where the vertex one is
the root vertex. This representation is intuitive since the
human body is naturally an articulated system. The joints
farther from the center of the human body are always phys-
ically controlled by an adjacent joint which is closer to the
center. For example, the wrist position is determined by the
position of the elbow and the shape of the forearm. In this
way, we represent the forearm as an directed edge pointing
to the wrist from the elbow.

Formally, for each vertex vi, we define the edge head-
ing to it as the incoming edge e−i and the edge emitting
from it as the outgoing edge e+i . Similarly, for a directed
edge ej , we define that it is a vector from the source ver-
tex vs

j to the target vertex vt
j . If vi is the target (source)

vertex of ej , then ej is the incoming (outgoing) edge of
vi, and vice versa. For example, as shown in Figure 2 (a),
v1 and v2 are the source and target vertexes of e1, respec-
tively. e1 is the incoming edge of v2. e2 and e3 are the
outgoing edges of v2. Note that each edge has only one
source vertex and one target vertex. For one vertex, how-
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Figure 1. Illustration of the graph construction for skeleton data.
The blue circle indicates the root vertex.

ever, the number of its incoming edges and outgoing edges
is varied. We use E−i and E+i to denote the set of incoming
edges and the set of outgoing edges of vertex vi, respec-
tively. In this way, a skeleton-based frame can be formu-
lated as a directed graph G = (V, E), where V is a set of
vertexes (joints) and E is a set of directed edges (bones).
A skeleton-based video is a sequence of frames that can be
formulated as S = {G1,G2, · · · ,GT }, where T denotes the
length of the video.

3.3. Directed graph neural network

Since we have represented the skeleton data as a directed
graph, the problem now lies in how to extract the informa-
tion contained in the graph for action classification, spe-
cially how to make use of the dependencies between the
joints and bones in the graph. In this work, we propose a di-
rected graph neural network (DGNN) to solve this problem.
The network contains multiple layers, each of which is fed
with a graph containing the attributes of the vertexes and
edges, and outputs the same graph with updated attributes.
Here, the attributes denote the properties of the vertexes and
edges that are encoded as vectors. In each layer, the at-
tributes of the vertexes and edges are updated according to
its adjacent edges and vertexes. On the bottom layers, each
vertex or edge can receive attribute only from its adjacent
edge or vertex. The model in these layers aims to extract
the local information of the vertexes and edges when up-
dating the attributes. For example, the model can extract
the angle information of a joint, which needs only the in-
formation of one joint and its two connected bones. On
the top layers, messages from the joints and bones farther
from each other can be accumulated together. Thus, the
extracted information is more global and semantic for the
recognition task. This concept is similar to the principle of
the convolutional neural networks, i.e., the hierarchical rep-
resentation and locality. In contrast to CNNs, the DGNN
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Figure 2. (a) is the original graph. (b) shows the procedure of vertex updating, where the attribute of the vertex itself (v2) and the attributes
of its incoming edge (e1) and outgoing edges (e2 and e3) are combined to obtain an updated vertex (v2′). (c) shows the procedure of edge
updating, where the attribute of the edge itself (e1) and the attributes of its source vertex (v1′) and target vertex (v2′) are combined to obtain
an updated edge (e1′). The blue circle represents the edge (or vertex) that is being updated. The orange circle and red circle represent the
source vertex (or incoming edge) and target vertex (or outgoing edge) that are involved in the update, respectively.

is designed for the directed acyclic graphs that can model
the tree-based structure of the skeleton data. This design
is also similar to the “body parts” conception in previous
works for skeleton-based action recognition, which aims to
restrict the modeling of joints in a local part of the human
body [6, 25, 16]. However, our method does not need the
process of manually designing the segmentation strategies
and achieves better performance than these methods.

3.3.1 Directed graph network block

The directed graph network (DGN) block is the basic block
for a directed graph neural network; it contains two updat-
ing functions, hv and he, and two aggregation functions,
ge

−
and ge

+

. The updating function is used to update the
attributes of vertexes and edges based on their connected
edges and vertexes. The aggregation function is used to ag-
gregate the attributes contained in multiple incoming (out-
going) edges connected to one vertex. It is because the num-
ber of incoming (outgoing) edges connected to each vertex
is varied whereas the number of parameters is fixed. Be-
cause there are no apparent orders for these edges, the ag-
gregation function should be invariant to the permutation of
its inputs and can take variable numbers of arguments, such
as the average pooling, max pooling and elementwise sum-
mation. Formally, this process is formulated as follows:

ē−i = ge
−

(E−i )

ē+i = ge
+

(E+i )

v′i = hv([vi, ē
−
j , ē

+
j ])

e′j = he([ej ,v
s
j
′,vt

j
′
])

(1)

where [·] denotes the concatenation operation. v′ and e′ are
the updated versions of v and e, respectively. The process
involves four steps:

1. For each vertex vi, all of the edges that point to it are
processed by the incoming aggregation function ge

−
,

which returns the aggregated result ē−i .

2. Similar to step 1, all of the edges that emit from vi are
processed by the outgoing aggregation function ge

+

,
which returns the aggregated result ē+i .

3. vi, ē−i and ē+i are concatenated and fed into the vertex-
update function hv, which returns v′i as the updated
version of vi.

4. For each edge ej , its source vertex, target vertex and it-
self are concatenated and processed by the edge-update
function he. The function returns e′j , which is the up-
dated version of edge ej .

The process can be also summarized as a vertex-update
process followed by an edge-update process as shown in
Fig. 2. With extensive experiments, we have chosen the
average pooling as the aggregation functions for both the
incoming edges and outgoing edges and chosen the single
fully-connected layer as the update functions in this work.

3.3.2 Implementation of the DGN block

When implementing the DGN block, the input data of the
vertexes actually form a C × T × Nv tensor fv , where C
is the number of the channels and T is the number of the
frames. Nv denotes the number of the vertexes in a skeleton



graph. Similarly, the data of the edges form a C × T ×Ne

tensor fe, where Ne is the number of the edges in the graph.
It is not satisfactory to implement the DGN block with this
form of input data. According to the last section, the key
for implementing DGN block is to find the incoming edges
and outgoing edges for each vertex (i.e., E−i and E+i ), and
find the source vertex and target vertex for each edge (i.e.,
vs
j and vt

j). To this end, we use the incidence matrix of
the graph. Given a directed graph with Nv vertexes and
Ne edges, the incidence matrix of A is an Nv ×Ne matrix
whose element (Aij , i = 1, · · · , Nv; j = 1, · · · , Ne) indi-
cates the relationship between the corresponding vertex (vj)
and edge (ei). In detail, if vi is the source vertex of ej , then
Aij = −1. If vi is the target vertex of ej , then Aij = 1. If
there are no connections between vi and ej , then Aij = 0.

To separate the source vertexes and target vertexes, we
use As to denote the incidence matrix of source vertexes,
which contains only the absolute value of the elements of
A that are smaller than 0. Similarly, we define At as the
incidence matrix of target vertexes, which contains only the
elements of A that are greater than 0. For example, Eq. 2
shows the incidence matrix and its corresponding As and
At for the graph shown in Figure 1 (a).

A =

−1 1 0 0
0 −1 1 0
0 −1 0 1

ᵀ

As=

 1 0 0 0
0 1 0 0
0 1 0 0

ᵀ

At=

 0 1 0 0
0 0 1 0
0 0 0 1

ᵀ

(2)

where ᵀ denotes the transpose operation of the matrix.
Given an input tensor and incidence matrix, we can now
filter the required edges and vertexes and perform the ag-
gregation function by matrix multiplication. For example,
given fv and As, we first reshape fv into a CT ×Nv matrix;
then, the multiplication of fv andAs can provide aCT×Ne

tensor. According to the definition of matrix multiplication,
each element of this tensor corresponds to the summation
of the source vertexes for the corresponding edge. Note
that the aggregation function used in this work is the av-
erage pooling operation and that the incidence matrix needs
to be normalized. In detail, we define Ã = AΛ−1 as the
normalized version of A, where Λ is a diagonal matrix and
Λii =

∑
j Aij + ε. ε is a small number to avoid division by

zero. With these modifications, Eq. 1 is transformed into

f ′v = Hv([fv,feÃs
ᵀ
,feÃt

ᵀ
])

f ′e = He([fe ,fvÃ
s ,fvÃ

t ])
(3)

whereH denotes the single-layer fully connected layer, i.e.,

the updating function in Eq. 1. Similar to the conventional
convolutional layer, we add a BN layer and a ReLU layer
after each DGN block.

3.3.3 Adaptive DGN block

The input graph of the DGN block is manually designed ac-
cording to the natural structure of the human body. We sug-
gest that this configuration may be not suitable for the action
recognition task. For example, there are no connections be-
tween the left hand and the right hand; however, for many
actions such as clapping and hugging, the relations between
two hands are important for recognition. To give more flex-
ibility to graph construction, conventional methods aim to
construct an adaptive graph by learning the topology of the
graph structure in the training process. For example, Yan
et al. [34] apply an attention map on the original adjacency
matrix to assign different levels of importance to different
edges. If we useAo to denote the original adjacency matrix,
the new adjacency matrix A is calculated by A = PAo,
where the elements of P are initialized as 1 and are up-
dated during training process. However, the multiplication
operation cannot change the elements that are 0 in the orig-
inal adjacency matrix, which means that this approach can
change only the importance of existing edges and cannot
add new edges, e.g., an edge between two hands. Different
from ST-GCN, Shi et al. [26] directly set the adjacency ma-
trix as the parameter of networks. To stabilize the training
process, they set A = Ao + P , where P has the same size
as Ao and is initialized with 0. In this way, new edges can
be added through the parameter P in the learning process if
necessary. Nevertheless, since Ao is unmodifiable, we can-
not remove the edges we do not want, which also reduces
the flexibility of the model. However, if we remove Ao,
directly learning the graph structure without any restriction
will degrade the performance.

In this work, we found that the difference between the
cases with or without Ao in [26] lies mainly in the begin-
ning of the training process (note that A here denotes the
incidence matrix rather than the adjacency matrix as in pre-
vious work). This result is intuitive since there is more un-
certainty in the beginning of the training process; thus, the
model with less restrictions but a large number of parame-
ters easily converges to the local optimum. Adding a graph
with fixed topology is equivalent to regularizing the model
based on the prior knowledge of the human body, which can
help the model converge to the global optimum. Based on
this observation, we propose a simple and effective strategy
to solve the problem. We directly set A as the parameter
of the model but fix it at the first several training epochs.
Fixing the graph structure in the early stage can ease the
training and unfixing it afterwards can provides more flexi-
bility for graph construction.



3.3.4 Temporal information modeling

Typically, an action is recorded as a sequence of skeleton-
based frames. The DGN blocks introduced above can pro-
cess the spatial information of a single frame only; thus, we
now advance to the task of modeling the temporal dynam-
ics within the skeleton sequence. The pseudo-3D CNN [23]
has shown its superiority in the RGB-based action recog-
nition field, which models the spatial information with the
2D convolutions and then models the temporal information
with the 1D convolutions. By decoupling the spatial and
temporal dimensions, the pseudo-3D CNN can model the
spatiotemporal information in a more economic and effec-
tive way. Inspired by this approach, after updating the spa-
tial information of joints and bones in each DGN block, we
apply a 1D convolution along the temporal dimension to
model the temporal information. This is easy to achieve
since the same joints or bones in all of the frames can be
naturally organized as a 1D sequence.

Similar to the DGN block, each 1D convolutional layer
is followed with a BN layer and a ReLU layer to form
a temporal convolutional block (TCN). The overall ar-
chitecture of the directed graph neural network (DGNN)
has 9 units, each containing one DGN block and one
TCN block. The output channels of the units are
64,64,64,128,128,128,256,256 and 256. A global-average-
pooling layer followed by a softmax layer is added at the
end for class prediction.

3.3.5 Two-Stream Framework

Some actions such as “standing up” versus “sitting down”
are difficult to recognize from spatial information along.
Conventional RGB-based action recognition methods usu-
ally use optical flow fields to describe the motion infor-
mation of a video [27, 31, 5], which calculates the pixel
movement information between the consecutive frames. In-
spired by these methods, we extract both the movements of
joints and the deformations of bones in this work to help the
recognition. Since the skeleton data are represented as the
coordinates of the joints, the motion of joints is easily cal-
culated as the difference of coordinates along the temporal
dimension. Similarly, the deformation of bones is repre-
sented as the difference of the vectors for the same bone in
consecutive frames. Formally, the movement of joint v in
time t is calculated as mvt

= vt+1 − vt. The deforma-
tion of bones is defined similarly as met

= et+1 − et. As
with the spatial information modeling, the motion informa-
tion is formulated as a sequence of directed acyclic graphs
Sm = {Gm1 ,Gm2 , · · · ,GmT }, where Gm = (Vm, Em), Vm =
{mvj}j=0,··· ,Nv and Em = {mei}i=0,··· ,Ne . Then, the
motion graphs are fed into another DGNN to make the pre-
diction for the action label. Two networks are finally fused
by adding the output scores of the softmax layer.

4. Experiments
To validate our method, we conducted extensive exper-

iments on two skeleton-based action recognition datasets:
NTU-RGBD [25] and Skeleton-Kinetics [34]. Both of
these datasets have been widely used in previous work for
skeleton-based action recognition. We performed ablation
studies on the NTU-RGBD dataset to validate the effective-
ness of the proposed model components since it is smaller
than Skeleton-Kinetics. Finally, the model was evaluated on
both the NTU-RGBD dataset and Skeleton-Kinetics dataset
to make a comparison with the state-of-the-art methods.

4.1. Datasets
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Figure 3. Illustration of the human skeleton graphs in NTU-RGBD
dataset (left) and Skeleton-Kinetics dataset (right).

NTU-RGBD: NTU-RGBD is currently the most widely
used dataset for skeleton-based action recognition; it con-
tains 56,000 videos, each containing an action. There are
a total of 60 classes including single-person action, e.g.,
drinking water, and two-person action, e.g., kicking an-
other person. The dataset contains 4 different modalities
of data: RGB videos, depth map sequences, 3D skeleton
data and infrared videos. Here, we use only the skeleton
data. These data are captured by Microsoft Kinect V2 at
30 fps. The actions are performed by 40 volunteers aging
from 10 to 35. There are three cameras for every action,
set at the same height but aimed from different horizontal
angles: −45◦, 0◦, 45◦. The camera can provide 25 3D lo-
cations of joints as labeled and shown in Figure 3, left. We
follow the convention of the original paper [25] describing
the dataset, which recommends two benchmarks: 1). Cross-
subject (CS): The persons in the training and validation sets
are different. The training set contains 40,320 videos, and
validation set contains 16,560 videos. 2).Cross-view (CV):
The horizontal angles of the cameras used in the training
and validation sets are different. The training set (0◦, 45◦)



contains 37,920 videos, and the validation set (−45◦) con-
tains 18,960 videos. Top-1 accuracy is reported on both of
the two benchmarks.

Skeleton-Kinetics: The original Deepmind Kinetics hu-
man action dataset [12] contains no skeleton data, instead
containing approximately 300,000 video clips retrieved
from YouTube. There are 400 human action classes, with
at least 400 video clips for each action. Each clip lasts ap-
proximately 10 seconds. The actions cover a large range
of classes focusing on human actions. The skeleton data in
Skeleton-Kinetics [34] are extracted using the OpenPose [4]
toolbox. All videos are resized to a resolution of 340× 256
and are converted to a frame rate of 30 fps. The Open-
pose toolbox can predict 18 joints for each person, as la-
beled and shown in Figure 3, right. The toolbox provides
2D coordinates (X, Y) of the predicted joints in the image
coordinate system and their corresponding confidence score
C. Yan et al.[34] represent each joint with a tuple of (X,
Y, C); we followed this approach to enable comparison of
the results. If there are more than two persons, the persons
with lower confidence are ignored. The released data pad
every clips to 300 frames. Top-1 and Top-5 recognition ac-
curacies are reported as the recommendation. The dataset
is split into training and validation sets containing 240000
clips and 20000 clips, respectively.

4.2. Training details

All of the models are trained with the same batch size
(32), learning schedule (SGD with an initial learning rate
as 0.1 and reduced by 10 in epoch 60 and 90) and train-
ing epochs (120) with the Pytorch [22] framework. In addi-
tion, we performed some preprocessing for the NTU-RGBD
dataset. The body tracker of Kinect is prone to detecting
more than 2 bodies, some of which are objects. To filter the
wrong bodies, we first define the energy of each bodies as
the summation of the skeleton’s standard deviation across
each channel. We then select two bodies in each sample
according to their body energies. Subsequently, each sam-
ple is normalized and translated to the central perspective,
which is the same approach as that used earlier [25].

4.3. Ablation Study

In this section, we examine the effectiveness of proposed
DGN block, adaptive graph strategy and two-stream frame-
work. The recognition accuracy is used as the evaluation
indicator.

4.3.1 DGN block

First, we evaluate the necessity of applying the DGN block
to combine the bone information and joint information. Ta-
ble 1 shows the results. We use ST-GCN [34] as the baseline
method. Due to the adjustment of the learning-rate sched-

uler and data preprocessing, we obtain a higher recogni-
tion accuracy (92.7%) than the results in the original pa-
per (88.7%). 2s-ST-GCN indicates that the joint informa-
tion and bone information are modeled with two ST-GCNs
separately and are fused by adding the predicted scores of
the softmax layers. This approach achieves better perfor-
mance than using only the joint information, which shows
the importance of using bone information. We also test the
addition of a fully-connected layer or pooling-based meth-
ods to fuse the softmax scores, which results in similar
accuracies as adding them directly. 1s-ST-GCN indicates
that the joint information and bone information are con-
catenated along the channel dimension and fed into the ST-
GCN, whose number of channels in each layer is twice the
original number. Better performance is obtained than with
2s-ST-GCN, possibly because of the deep fusion of two
modalities of information caused by concatenation. Then
we test our DGNN model in the same condition. Since the
graph structure in ST-GCN is multiplied by a mask, we also
fix the graph structure of DGNN and multiply using a mask
with the incidence matrix for fair comparison. The result-
ing model is called masked DGNN. The final result shows
that our masked DGNN model achieves better performance
than 1s-ST-GCN. Thus, the superiority of our fusion strat-
egy, which fully exploit the graph structures of skeletons
and the dependencies between joints and bones, is verified.

Method Accuracy
ST-GCN 92.7
2s-ST-GCN 93.4
1s-ST-GCN 93.7
Masked DGNN 95.0

Table 1. Comparisons of the recognition accuracy (%) for ST-
GCNs and the masked DGNN.

4.3.2 Adaptive DGN blocks

We test four strategies to make the graph adaptive: (1) Sim-
ilar to ST-GCN, we multiply a mask P by the original in-
cidence matrix A, which is set as the model parameter and
initialized to 1 (marked as PA in Table 2); (2) We set P as
a residual connection, which is initialized as 0 and added to
A (marked as P +A); (3) We directly set the incidence ma-
trix as the parameter P , which is initialized with A (marked
as P0); and (4) Similar to (3), the incidence matrix is set as
the parameter of the model and initialized with A but fixed
at the first 10 epochs (marked as P10). We also test the
performance without the adaptive graph strategy (marked
as A). Table 2 shows the results; the P10 strategy is found
to provide the best performance. This supports our design
strategy as described in Section 3.3.3.



Method A PA P +A P0 P10

Accuracy 94.4 95.0 95.3 95.2 95.5

Table 2. Comparisons of the recognition accuracy (%) for different
adaptive graph strategies.

4.3.3 Two-Stream framework

To test the necessity of using the motion information, we
compare the performance of using spatial information and
motion information separately with the performance of
fusing two streams in both the NTU-RGBD dataset and
Skeleton-Kinetics dataset as shown in Table 3. We found
that fusing the spatial information and motion information
improves the performance on all of the benchmarks, which
verifies the superiority of the proposed method.

Method NTU(cv) NTU(cs) SK(t1) SK(t5)
Spatial 95.5 89.2 36.1 58.7
Motion 93.8 86.8 31.8 54.8
Fusion 96.1 89.9 36.9 59.6

Table 3. Comparisons of the recognition accuracy (%) using spa-
tial information, motion information, and the fusion of two modal-
ities. SK denotes the Skeleton-Kinetics dataset; t1 and t5 denote
the top-1 and top-5 accuracy, respectively.

4.4. Comparisons with state-of-the-art methods

To show the superiority and generality of our method, the
model is compared with state-of-the-art methods using both
the NTU-RGBD dataset and Skeleton-Kinetics dataset. We
divide these methods into four classes, including handcraft-
feature-based methods, RNN-based methods, CNN-based
methods and GCN-based methods, and split them with a
horizontal line in the table of results. With the NTU-RGBD
dataset, our model is tested on both cross-view (CV) and
cross-sub (CS) benchmarks as shown in Table 4. The per-
formance of the deep-learning-based methods is generally
better than that of handcraft-feature-based methods, and
CNN-based methods are generally better than RNN-based
methods. Our model outperforms these methods with a
large margin, which verifies the superiority of our model
for skeleton-based action recognition.

The Skeleton-Kinetics dataset is larger and more chal-
lenging than the NTU-RGBD dataset due to the diversity
of videos collected from YouTube. We report the top-1
and top-5 recognition accuracies in Table 5. The results
are identical to the experiments on NTU-RGBD, where our
model shows the best performance. Such results confirm the
generality capability of our model for large-scale datasets.

Method CS CV
Lie Group [30] 50.1 82.8
HBRNN [7] 59.1 64.0
Deep LSTM [25] 60.7 67.3
ST-LSTM [20] 69.2 77.7
STA-LSTM [28] 73.4 81.2
VA-LSTM [37] 79.2 87.7
ARRN-LSTM [18] 80.7 88.8
TCN [14] 74.3 83.1
Clips+CNN+MTLN [13] 79.6 84.8
Synthesized CNN [21] 80.0 87.2
3scale ResNet152 [16] 85.0 92.3
ST-GCN [34] 81.5 88.3
DPRL+GCNN [29] 83.5 89.8
DGNN (ours) 89.9 96.1

Table 4. Comparisons of the recognition accuracy (%) with the
state-of-the-art methods on the NTU-RGBD dataset.

Method Top-1 (%) Top-5 (%)
Feature Encoding [8] 14.9 25.8
Deep LSTM [25] 16.4 35.3
TCN [14] 20.3 40.0
ST-GCN [34] 30.7 52.8
DGNN (ours) 36.9 59.6

Table 5. Comparisons of recognition accuracy (%) with the state-
of-the-art methods on the Skeleton-Kinetics dataset.

5. Conclusion

In this work, we represent both joint and bone informa-
tion as a directed acyclic graph and design a customized
novel directed graph neural network (DGNN) to predict ac-
tion based on the constructed graph. In addition, we make
the graph structure adaptive to better fit the multilayer ar-
chitecture and the recognition task. Furthermore, the mo-
tion information between consecutive frames is extracted to
model the temporal information of a skeleton sequence, and
both the spatial and motion information are fused in a two-
stream framework. The final model exceeds current state-
of-the-art performance on two large-scale datasets: NTU-
RGBD and Skeleton-Kinetics. Future work might focus on
how to exploit the skeleton data and RGB data together. In
addition, exploration is recommended into how to combine
the problem of pose estimation with skeleton-based action
recognition in a unified architecture.
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