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Abstract

As an indispensable part in Intelligent Traffic System (ITS),
the task of traffic forecasting inherently subjects to the fol-
lowing three challenging aspects. First, traffic data are phys-
ically associated with road networks, and thus should be
formatted as traffic graphs rather than regular grid-like ten-
sors. Second, traffic data render strong spatial dependence,
which implies that the nodes in the traffic graphs usually
have complex and dynamic relationships between each other.
Third, traffic data demonstrate strong temporal dependence,
which is crucial for traffic time series modeling. To address
these issues, we propose a novel framework named Structure
Learning Convolution (SLC) that enables to extend the tradi-
tional convolutional neural network (CNN) to graph domains
and learn the graph structure for traffic forecasting. Techni-
cally, SLC explicitly models the structure information into
the convolutional operation. Under this framework, various
non-Euclidean CNN methods can be considered as particular
instances of our formulation, yielding a flexible mechanism
for learning on the graph. Along this technical line, two SLC
modules are proposed to capture the global and local struc-
tures respectively and they are integrated to construct an end-
to-end network for traffic forecasting. Additionally, in this
process, Pseudo three Dimensional convolution (P3D) net-
works are combined with SLC to capture the temporal depen-
dencies in traffic data. Extensively comparative experiments
on six real-world datasets demonstrate our proposed approach
significantly outperforms the state-of-the-art ones.

Introduction

Traffic forecasting is regarded as one of the key components
of Intelligent Traffic System (ITS). Accurate traffic forecast-
ing is the foundation of many traffic applications, including
route planning, taxi order allocation, travel time estimation,
and so on. Due to the significance, it has received great at-
tention both in academic and industrial community.

City traffic data are inherently defined on the graph-
domains, due to the complicated topological structure of
traffic networks. Different from the grid-like data (e.g. im-
age in Fig. 1 (a)), the numbers of neighbors in traffic net-
works are variable at different locations (e.g. Fig. 1 (b))
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(a) Grid-like data (b) Traffic data

Figure 1: (a) indicates the classical CNN on grid-like data
(e.g. image) and (b) is the GCNN on traffic data. Red node
denotes the central node, and yellow nodes are the neighbors
of red one. In the traffic data, each node may stand for a road
or junction. It is obvious that the nodes in the traffic data
have various numbers of neighbors.

Although some influential works have been developed for
traffic forecasting (Ahmed and Cook 1979; Lv et al. 2015;
Van Der Voort, Dougherty, and Watson 1996), most of these
traditional methods either process each node individually, or
simply concatenate the signal of different place to a vector,
ignoring the underlying spatial traffic topological informa-
tion.

More recently, a new type of machine learning method,
Graph Convolutional Neural Network (GCNN), is devel-
oped to deal with the signals embedded in graph domains
(Bruna et al. 2013; Henaff, Bruna, and LeCun 2015; Kipf
and Welling 2016; Atwood and Towsley 2016; Niepert,
Ahmed, and Kutzkov 2016; Hechtlinger, Chakravarti, and
Qin 2017; Chang et al. 2018; 2019). GCNN generalizes the
convolution operator from grid-like data to graph-structured
data and has achieved superior performance in many fields,
including molecular feature extraction (Duvenaud et al.
2015), text categorization (Hechtlinger, Chakravarti, and
Qin 2017), point cloud categorization (Simonovsky and Ko-
modakis 2017), and so on. Due to the ability of GCNN to
handle graph-structured data, it motivates us to develop a
new GCNN method for the traffic forecasting task.
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Despite of the great successes of GCNN in many applica-
tions, it is a challenging task to applying GCNN on the traf-
fic forecasting task. The main reason is that current GCNN
methods pay little attention to exploiting the latent graph
structure. They either utilize some predefined methods or
depend on the prior knowledge to obtain the graph struc-
tures. The obtained structures can not be guaranteed to be
accurate for the current learning tasks. Besides, the current
GCNN methods usually adopt local graph structures, which
ignore the long distant relationship. Moreover, the prede-
fined graph structures are generally fixed. Once defined, the
graph structures will not be changed any more. However,
the graph structures of traffic data change over time. For ex-
ample, two specific nodes generally have different relation-
ships on weekdays and weekends, or on morning peak and
evening peak. Using a fixed structure is hard to model the
temporal dynamic. New approaches are needed to learn the
underlying graph structures.

The above concerns motivate us to propose Structure
Learning Convolution (SLC), a generic graph convolutional
formulation which explicitly models the structure informa-
tion into the convolutional operation. In our study, we con-
struct two data-driven and time-vary SLC modules, captur-
ing the global and local structures, respectively. These two
modules formulate the graph structure as learnable parame-
ters or the output of a learnable function, thus they are able
to capture the static and dynamic graph information. In addi-
tion, we integrate pseudo three dimensional (P3D) convolu-
tion with the SLC to capture the important temporal depen-
dencies in traffic data. In practice, Structure Learning Con-
volution Neural Network (SLCNN) is finally constituted by
switching the traditional convolution in CNNs to SLC. Ex-
periments on real-world traffic datasets demonstrate SLCNN
outperforms state-of-the-art traffic forecasting methods by a
large margin. The main contributions of our work can be
summarized as follows:

• We propose a generic graph convolutional formulation,
which defines convolution operation as a combination of
structure module and kernel module. Many previously
proposed GCNN methods can be regarded as particular
instances of our formulation.

• Two data-driven and time-vary SLC modules are pro-
posed to capture the global and local structures, respec-
tively. Each of two proposed modules contains a static
structure learning term designed to learn the shared struc-
ture of all samples, and a dynamic structure learning term
designed to learn the unique structure of each sample.

• P3D ConvNet is incorporated in SLCNN to capture the
temporal dependencies in traffic data. To the best of our
knowledge, this work is the first to exploit P3D ConvNet
in graph-structured traffic data.

• The proposed method is evaluated on six real-world traf-
fic datasets. Extensively comparative experiments demon-
strate our proposed approach significantly outperforms
the state-of-the-art ones.

Related work

Graph Convolutional Neural Network

Bruna et al. first generalized traditional CNN from Eu-
clidean domain to non-Euclidean domain (Bruna et al.
2013), where a spatial method and a spectrum method were
proposed. Since then, the graph convolutional neural net-
works can be divided into two categories, i.e. spectral ap-
proaches and spatial approaches (Bronstein et al. 2017).

Spatial approaches devote to aggregating neighborhood
signals on spatial domains directly. Duvenaud et al. pro-
posed a model where all nodes in a neighborhood shared
the same kernel weights (Duvenaud et al. 2015). Graph la-
beling procedure was utilized to rank and select neighbor-
hood nodes, then the classical CNN was used to execute
the convolution operation (Niepert, Ahmed, and Kutzkov
2016). Different with (Niepert, Ahmed, and Kutzkov 2016),
Hechtlinger et al. adopted the random walk to construct
neighborhoods (Hechtlinger, Chakravarti, and Qin 2017).

Spectral approaches implement the convolution opera-
tion by means of the spectral graph theory. By introduc-
ing C order Chebyshev polynomials parametrization, Def-
ferrard et al. reduced the computational complexity and
achieved strictly localized filters (Defferrard, Bresson, and
Vandergheynst 2016) on ChebNet. The computational com-
plexity of ChebNet was further simplified by limiting C = 2
(Kipf and Welling 2016).

Traffic Forecasting

As a key component of ITS, traffic forecasting has been
studied for decades. As early as 1979, AutoRegressive In-
tegrated Moving Average (ARIMA) was adopted to forecast
freeway traffic data (Ahmed and Cook 1979). Subsequently,
many variant of ARIMA and nonparametric methods were
applied on this task, including KARIMA (Van Der Voort,
Dougherty, and Watson 1996), ARIMAX (Williams 2001),
k-NN (Davis and Nihan 1991), Bayesian network (Sun,
Zhang, and Yu 2006), and so on.

Many scholars pay much attention to deep learning mod-
els on account of the extraordinary abilities to solve non-
linear problems. Deep belief network was applied on traf-
fic speed and flow forecasting tasks (Jia, Wu, and Du 2016;
Koesdwiady, Soua, and Karray 2016). Lv et al. leveraged a
stacked autoencoder to learn latent traffic flow features (Lv
et al. 2015). Deep Recurrent Neural Networks were applied
to traffic forecasting (Yu et al. 2017; Laptev et al. 2017).
Zhang et al. constructed the traffic network as a regular 2D
grid and utilized traditional CNN to forecast the traffic data
(Zhang, Zheng, and Qi 2017).

Recently, some GCNN models have been adopted in
traffic forecasting tasks. For example, Li et al. proposed
DCRNN which combined diffusion process and gated recur-
rent unit (Li et al. 2018). Yu et al. proposed STGCN which
employed a generalization of Chebnet to capture the spatial
correlations of traffic data (Yu, Yin, and Zhu 2018). How-
ever, these methods usually do not notice to exploit the graph
structures, and they generally only utilize the predefined, lo-
cal and fixed graph structures.
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Structure Learning Convolution

Formulation of SLC

Inherently, convolution can be regarded as an aggregation
operation on input signals. However, in graph-structured
data, the aggregation operation involves not only the val-
ues of the signals but also the graph structures. Therefore,
the graph convolutional method should enable to handle the
inputs with different topological structures. To this end, we
propose SLC that explicitly models the structure information
into the convolutional operation.

Given a input signal x ∈ R
N embedded on a graph G with

N nodes, the convolutional operator of SLC can be formu-
lated as:

yi = f

( ∑
eij∈E

Sijwjxj

)
, (1)

where f(·) is the activation function, yi is the output sig-
nal on the i-th node, xj indicates the input data embedded
on the j-th node. wj is the j-th element in w ∈ R

n and
w denotes the n-dimensional convolutional kernel weights.
eij ∈ E means that there is a edge between the j-th node
and the i-th node. Note that E is not necessarily pre-defined,
it can be learnable during the training phase. Sij is the en-
try at the i-th row and j-th column of S and Sij denotes the
correlation degree between the j-th node and the i-th node.

In practice, SLC contains two modules, i.e. structure mod-
ule and convolutional kernel module, which are modeled
to learn S and w, respectively. Suppose Cin is the num-
ber of input channels, Cout is the number of output chan-
nels and Kmax denotes the maximum neighborhood range,
w ∈ R

Cin×Cout×Kmax and S ∈ R
N×Kmax . If Kmax = N ,

S denotes a global graph structure, else it is a local one.
Note that the convolutional kernels w are weight-sharing
and capture the features that generally exist in each node.
Graph structure S, which is variable with locations but shar-
ing across input and output channels, is designed to explic-
itly model the diverse structure information. Profiting from
the construction, the SLC enables to aggregate input signals
with different topological structures.

Relationship Between SLC and CNN Methods

As the key module in our construction, the definition of S
is very flexible. It can be fixed and predefined, or learnable
on the training phase, or obtained by a function. In this sub-
section, we illustrate that various previously proposed CNN
methods can be obtained as particular instances of SLC with
suitable definition of S.

Classical CNN. The classical CNN can be formulated as:

yi = f

( ∑
eij∈E

wjxj

)
. (2)

Actually, Eq. (2) is equivalent to Eq. (1) in the case that
all entries of S are set to 1. This indicates that classical
CNN omits the structure learning and treats the neighbor-
hood nodes equally without distinction. Thus, it only per-
tains to handle signals with the same local structure.

Chebyshev Spectral CNN (ChebNet) Defferrard et al.
proposed to utilize the Chebyshev polynomial to represent

the spectral filters (Defferrard, Bresson, and Vandergheynst
2016). Assuming Tj is the jth term of Chebyshev polyno-
mial and αj is the corresponding coefficient, then the Cheb-
Net can be defined as:

y = f

( C∑
j=1

αjTj(L̃)x

)
, (3)

where L̃ = 2
λmax

L − I, L presents the Laplacian matrix, I
presents the identity matrix, C is the max order of polyno-
mial and λmax is the maximal eigenvalue of L. Eq. (3) can
be regraded as a summation of C different SLCs, each of
which defines the graph structure as the Chebyshev polyno-
mial of Laplacian matrix. That is, for the j-th SLC, it has
Sj = Tj(L̃) ∈ R

N×N . Namely, although the ChebNet de-
rives from graph spectral theory, it can be regarded as a sum-
mation of several particular SLCs.

Graph Neural Network (GNN) Kipf et al. simplified the
construction of ChebNet with C = 2 (Kipf and Welling
2016). Accordingly, GNN can be defined as:

y = f

(
αD̃−1/2W̃D̃−1/2x

)
, (4)

where W̃ = W + I, D̃ = diag(
∑

j �=i w̃ij). In the case
we set S = D̃−1/2W̃D̃−1/2 and wj = α for any j, Eq.
(4) is equivalent to Eq. (1). That is, GNN only considers
the 1-order neighborhood and directly uses the normalized
adjacent matrix W to represent local graph structure (adding
I to capture the central node). In addition, all neighbor nodes
share one kernel weight α.

Graph Convolutional Network (GCN) Although GCN
(Hechtlinger, Chakravarti, and Qin 2017) does not model the
graph structure explicitly, it utilizes the structure informa-
tion to construct the neighborhood. Namely, GCN converts
the graph-structure data to grid-like data by feat of the struc-
ture information, then executes the classical 1D CNN on it.
After neighborhood construction, the formulation of GCN
can be written as Eq. (2), which can be regarded as a partic-
ular instance of SLC.

Graph Attention Networks (GAT) Petar et al. proposed
a spatial GCNN method that execute attention on graph
(Veličković et al. 2017), which can be formulated as:

yi = f

( ∑
j∈Ni

αijwjxj

)
, (5)

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, (6)

where Ni denotes the neighbor nodes of the i-th node. GAT
can be regarded as a particular SLC with the definition of
Sij = αij . Essentially, GAT defines the graph structure as
the output of a attention function. However, restricted by at-
tention mechanism, it has three limitations: 1) For a node
before attention, GAT needs to know which nodes are con-
nected with it and GAT can not add new edges. Namely the
graph shape must be predefined. 2) Due to the softmax func-
tion, αij is always larger than zero, which means that GAT
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can not delete any edge. 3) Generally, the attention range is
restricted to the neighborhood of each node. Consequently,
GAT needs a predefined graph shape, and it can only learns
the edges weights of the fixed graph shape.

SLCNN for Traffic Forecasting

Problem Statement

Given a graph G = {V, E} with N nodes, where V and E
are the set of nodes and edges respectively, the historical
traffic data embedded on graph G with M input channels
and P time intervals can be denoted as D ∈ R

N×P×M . The
task of traffic forecasting is to learn a mapping function h(·),
which takes historical traffic data D and graph G as inputs
to forecast future Q time intervals traffic data:

D̃ = h
(
D,G, ψ), (7)

where D̃ ∈ R
N×Q×M is the forecasting result and ψ is the

learnable parameters.

Motivation

Although GCNN methods have achieved spectacular suc-
cesses in many graph-structured data, three fundamental
problems need to be tackled before applying GCNN on traf-
fic forecasting tasks. First, formulation of graph structure S
is hard to predefined. In the previous GCNN methods, the
formulation of S usually relies on the precise adjacent ma-
trix W. But generally, W is unknown. Second, the prede-
fined graph structures generally are local and static. Hence,
they ignore the long distance dependencies of some nodes
and fail to consider the dynamic property of traffic data.
Third, in traffic forecasting tasks, traffic time series have
complex temporal dependencies. In the paset few years,
scholars proposed many methods to capture the temporal
dependencies, such as directly stacking the data of different
times (Zhang, Zheng, and Qi 2017), classical CNN-LSTM
framework (Yao et al. 2018), Conv-LSTM or GCGRU (Li
et al. 2018), ST-Conv Block (Yu, Yin, and Zhu 2018) and
so on. There is no widely accepted method and how to op-
timally model the temporal dependencies of traffic data is
still a unresolved problem. New ideas or approaches may be
needed.

Based on the above problems, we apply SLC on traf-
fic data, which provides data-driven graph learning mech-
anisms. Specifically, two SLC modules, named global SLC
and local SLC, are developed respectively. The global SLC
is designed to capture the global graph structure, i.e. the re-
lationship between each node and all other nodes no matter
far or near. Besides, although there exist a part of related
nodes that are spatially distant, a majority of nodes are only
closely related with their neighbors because of the localiza-
tion of traffic data. To model the local structure better, the
local SLC is developed. Each of the proposed SLC mod-
ules contains two terms designed to learn the static and dy-
namic structure information, respectively. Then, these two
SLC modules are integrated to construct SLCNN for traffic
forecasting. Additionally , P3D ConvNet is incorporated in
SLCNN to capture the temporal dependencies in traffic data.
The detailed mechanism of each module is described in the
following subsections.

Global Structure Learning Convolution

This subsection concentrates on extracting the global graph
structure, i.e. the relationship between each node and all
other nodes. Specifically, under the framework of SLC, we
learn a static graph adjacency matrix Ws ∈ R

N×N and a
dynamic one Wd ∈ R

N×N from data rather than using
predefined approaches. Utilizing ChebNet, the operator of
global SLC can be defined as:

yg = f

( Cs∑
k=1

θskTk(W
s)x

)
+ f

( Cd∑
k=1

θdkTk(W
d)x

)
,

(8)

Wd = φ(x,Wφ) = xTWφx, (9)

where x ∈ R
N×Cin and yg ∈ R

N×Cout are the input
and output of global SLC, respectively. Tk(·) ∈ R

N×N de-
notes the k-th order Chebyshev polynomial, φ(x,Wφ) is a
function with x as its input and Wφ as its parameter. θs ∈
R

Cs×Cin×Cout , θd ∈ R
Cd×Cin×Cout , Ws ∈ R

N×N and
Wφ ∈ R

Cin×Cin are the learnable parameters. Since SLC
only captures the spatial structure, the input x ∈ R

N×Cin

has no time axis. The input x can be the traffic data on one
time interval or the stacked traffic data of multiple intervals.

Two terms in Eq. (8) correspond to global static and
global dynamic structure learning, respectively. According
to the previous content, ChebNet can be regard as the sum-
mation of several particular SLCs which define the graph
structure as the Chebyshev polynomial of Laplacian matrix.
Specifically, the former term defines Sk = Tk(W

s), and di-
rectly learns the graph adjacency matrix Ws ∈ R

N×N to
capture the global graph structure. After training phase, all
samples of one dataset adopt the same Ws, which extracts
the static structure information shared by all samples. The
latter term defines Sk = Tk(W

d). Note that Wd ∈ R
N×N

is not the learnable parameter but the output of function
φ(x), which is inspired by non-local network (Wang et al.
2018) that captures the long-range relationship of two nodes
by constructing a function with the current sample (x) as in-
put. Hence Wd is dynamic and depends on the current sam-
ple (x). Each sample has a unique graph structure, which is
consistent with the dynamic property of traffic data.

Some previous traffic forecasting methods, such as
STGCN and DCRNN, also adopt ChebNet as their basic
graph CNN operator, however the proposed global SLC dif-
fers from theirs in three respects: 1) STGCN and DCRNN
need a predefined adjacent matrix W as input, however
in global SLC, W is learned from data. 2) STGCN and
DCRNN adopt thresholded Gaussian kernel 1 to define their
adjacent matrix, thus they only capture the local graph struc-
ture but fail to consider relationships of distant nodes. In
global SLC, Ws and Wd ∈ R

N×N contain the relationship
of each pair nodes, no matter they are far or near, and are
able to capture the global graph structure. 3) The previous
methods assume all samples in a dataset share a same graph

1 Wij = exp(−dist(vi, vj)/σ)
2, if dist (vi, vj) < ε, other-

wise Wij = 0. dist(vi, vj) is the distance between node i and j
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structure. Conversely, since Wd of the latter term is inher-
ently based on current input, global SLC can obtain different
structures with different input samples. That is, our formu-
lation enables to learn the dynamic graph structures rather
than a static one.

Local Structure Learning Convolution

In this subsection, the local SLC is proposed, which only
concentrates on extracting the local graph structure. Specif-
ically, we assume that distant nodes are irrelevant and only
consider the relationship of nodes in the neighborhoods to
construct the local structure. Relying on such modeling, the
graph structure is simplified from R

N×N to R
N×K , where

K is the kernel size and N indicates the number of nodes in
the graph. For any node in the graph, K nearest nodes are
considered to construct the neighborhood. Under the frame-
work of SLC, a static local graph structure Bs ∈ R

N×K

and a dynamic one Bd ∈ R
N×K are learned. Given an in-

put x ∈ R
N×Cin embedded on the graph and a activation

function f(·), the local SLC is defined as:

yl
i = f

( K∑
j=1

Bs
ijw

s
jxj

)
+ f

( K∑
j=1

Bd
ijw

d
jxj

)
, (10)

Bd = g(x, ϑ), (11)

where xi ∈ R
Cin and yl

i ∈ R
Cout are the input and output

signals on the i-th node respectively, g(x, ϑ) is a function
with x as its input and ϑ as its parameter. ws

j ∈ R
Cout×Cin

and wd
j ∈ R

Cout×Cin are the kernel weights on the j-th
neighbor node. ws ∈ R

K×Cout×Cin , wd ∈ R
K×Cout×Cin ,

Bs ∈ R
N×K and ϑ are the learnable parameters.

Similar with global SLC, two terms in Eq. (10) corre-
spond to local static and dynamic structure learning, respec-
tively. These two term can be regarded as two particular in-
stances of SLC with two different definitions of S. The for-
mer term defines S = Bs, and directly learns the graph adja-
cency matrix Bs ∈ R

N×K to capture the local graph struc-
ture. The latter term defines S = Bd. Note that Bd ∈ R

N×K

is not the learnable parameter but the output of function
g(x, ϑ). Hence Bd depends on the current sample (x) and
each sample has a unique local graph structure. The func-
tion g(·) can be instantiated with many types of networks,
including multi-layer perception. In this paper, the p-layer
graph CNN is adopted to achieve the function g(·) and the
number of output channel of the last convolution layer is K.

Similar with global SLC, local SLC is able to learn lo-
cal graph structure without given a predefined adjacent ma-
trix and can learn dynamic structure with the benefit of
Bd = g(x, ϑ). Besides, compared with ChebNet, local SLC
can avoid the parameter allocating problem. That is, for each
kernel of ChebNet, the number of weights depends on the
max hops of the neighborhood rather than the number of
the nodes, i.e. the nodes with the same hops share the same
weights. It is inflexible and will finally reduce the capacity
of the networks (Li and Huang 2017). However, local SLC
allocates kernel weights to each neighbor node, which can
avoid this problem.

SLCNN Layer

SLCNN Layer

.

.

.

SLCNN Layer

Spatial 

Global SLC

Spatial

Local SLC

Temporal 

graph conv

Temporal 

graph conv

Local 

SLC

Global 

SLC

SLCNN-Layer

Without P3D SLCNN Layer

Figure 2: The left image is the architecture of SLCNN,
where Dt is the traffic data at time t and D̃t is the prediction
result at time t. The middle image is a SLCNN layer with-
out P3D where En is the output of the n-th layer. The right
image is a SLCNN layer with P3D.

Pseudo Three Dimensional SLC

In order to model the temporal correlation that is crucial for
traffic time series modeling, Pseudo three Dimensional SLC
(P3D-SLC) is proposed to capture the temporal dependence,
which combines SLC and P3D together. By modifying C3D
(Tran et al. 2015), P3D is not only an economic and effective
way for spatio-temporal featuring, but also an efficient way
for computing (Qiu, Yao, and Mei 2017). Compared with
C3D, the less computational load and parameters of P3D
reduce the difficulty of training and the risk of overfitting

Technically, the key component in P3D-SLC is a combi-
nation of one structure learning convolutional layer captur-
ing spatial dependencies and one temporal graph convolu-
tion layer which employs a 1-D convolution on time axis to
model temporal connections. As illustrated in the right im-
age of Fig. 2, a temporal graph convolution is deployed be-
hind the global or local SLC to construct the P3D-SLC. This
integrated endows our model the capability of learning spa-
tial and temporal dependencies simultaneously. To the best
of our knowledge, this work is the first to exploit P3D Con-
vNet in graph-structured traffic data.

SLCNN

Structure Learning Convolutional Neural Network
(SLCNN) can be constructed by switching classical
convolutions in convolutional neural network to structure
learning convolutions. Each layer of SLCNN is defined as
summation of global and local P3D-SLC. Intuitively, the
architecture of SLCNN is illustrated in the left image of
Fig. 2.

In addition, it is worthy pointing out that each layer of
SLCNN learns different global and local graph structures,
which is different from previous GCNN methods. Since pre-
vious GCNN methods usually use a fixed and predefined
graph structure, the same structure is uesd in each layer of
the networks.

However, the receptive field sizes vary with layers, thus
the physical meanings of the features embedded on the
nodes change over layers. In the first layer, each node may
correspond to a single road. While in the high layers, fea-
tures embedded on a node may collect the information of
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Table 1: Performance of different models on BJF and BRF.

Model BJF (15/ 30/ 60/ 90 min) BRF (20/ 40/ 80/ 120 min)
MAE RMSE MAE RMSE

HA 80.88 136.5 34.43 86.37
ARIMA 23.86/ 30.07/ 37.62/ 44.25 39.34/ 50.47/ 63.82/ 74.39 15.08/ 18.57/ 22.76/ 26.03 31.74/ 41.77/ 53.46/ 61.51

FNN 29.24/ 29.52 /30.30 /31.25 52.13/ 52.93/ 54.98/ 56.88 15.90/ 16.09/ 16.33/ 16.54 33.91/ 34.84/ 35.89/ 36.50
FC-LSTM 32.38/ 32.20/ 36.27/ 35.48 54.26/ 56.61/ 62.62/ 63.95 18.33/ 20.54/ 19.82/ 19.88 35.34/ 37.48/ 39.31/ 40.04
DCRNN 21.97/ 24.92/ 26.71/ 27.83 36.58/ 42.49/ 46.67/ 49.03 13.56/ 14.92/ 15.86/ 16.51 27.39/ 31.29/ 34.37/ 35.89
STGCN 21.98/ 25.55/ 28.56/ 30.60 36.44/ 43.64/ 49.51/ 53.17 14.06/ 15.87/ 17.62/ 18.90 28.28/ 33.17/ 38.29/ 41.15
GWN 22.01/ 24.91/ 26.74/ 27.97 36.82/ 42.62/ 46.87/ 49.22 13.80/ 15.13/ 16.02/ 16.64 27.94/ 31.66/ 34.69/ 36.35

SLCNN-P 22.02/ 24.51/ 27.89/ 29.74 36.93/ 43.84/ 49.08/ 52.82 14.00/ 15.73/ 17.02/ 18.24 29.29/ 34.92/ 39.21/ 42.72
SLCNN-NP3D 21.65/ 24.63/ 26.42/ 27.59 36.19/ 42.28/ 46.66/ 48.95 13.48/ 14.70/ 15.21/ 15.91 27.74/ 31.28/ 33.09/ 34.77

SLCNN 21.24/ 23.85/ 25.29/ 26.32 35.71/ 41.02/ 44.32/ 46.50 13.24/ 14.22/ 14.69/ 15.18 26.79/ 29.26/ 30.46/ 31.46

Table 2: Performance of different models on PeMS-S.

Model
PeMS-S (15/ 30/ 45 min)

MAE RMSE MAPE (%)

HA 4.01 7.20 10.61
ARIMA 5.55/ 5.86/ 6.27 9.00/ 9.13/ 9.38 12.92/ 13.94/ 15.20

FNN 2.74/ 4.02/ 5.04 4.75/ 6.98/ 8.58 6.38/ 9.72/ 12.38
FC-LSTM 3.57/ 3.94/ 4.16 6.20/ 7.03/ 7.51 8.60/ 9.55/ 10.10
DCRNN 2.37/ 3.31/ 4.01 4.21/ 5.96/ 7.13 5.54/ 8.06/ 9.99
STGCN 2.25/ 3.03/ 3.57 4.04/ 5.70/ 6.77 5.26/ 7.33/ 8.69
GWN 2.12/ 2.80/ 3.08 3.94/ 5.29/ 6.01 5.02/ 6.76/ 7.75

SLCNN-P 2.41/ 3.36/ 4.04 4.34/ 6.08/ 7.30 5.63/ 7.90/ 9.74
SLCNN-NP3D 2.32/ 2.98/ 3.37 4.05/ 6.58/ 6.34 5.32/ 7.35/ 8.31

SLCNN 2.22/ 2.88/ 3.27 4.07/ 5.50/ 6.28 5.21/ 7.17/ 8.20

Table 3: Performance of different models on PeMS-BAY.

Model
PeMS-BAY (15/ 30/ 60 min)

MAE RMSE MAPE (%)

HA 2.88 5.59 6.84
ARIMA 1.62/ 2.33/ 3.38 3.30/ 4.76/ 6.50 3.5/ 5.4/ 8.3

FNN 2.20/ 2.30/ 2.46 4.42/ 4.63/ 4.98 5.19/ 5.43/ 5.89
FC-LSTM 2.05/ 2.20/ 2.37 4.19/ 4.55/ 4.69 4.8/ 5.2/ 5.7
DCRNN 1.38/ 1.74/ 2.07 2.95/ 3.97/ 4.74 2.9/ 3.9/ 4.9
STGCN 1.46/ 2.00/ 2.67 3.01/ 4.31/ 5.73 2.9/ 4.1/ 5.4
GWN 1.30/ 2.63/ 1.95 2.74/ 3.70/ 4.52 2.7/ 3.7/ 4.6

SLCNN-P 1.54/ 1.96/ 2.52 3.13/ 4.19/ 5.40 3.3/ 4.5/ 6.0
SLCNN-NP3D 1.42/ 1.73/ 2.06 2.94 /3.85/ 4.56 3.0/ 4.1/ 5.2

SLCNN 1.44/ 1.72/ 2.03 2.90/ 3.81/ 4.53 3.0/ 3.9/ 4.8

roads in a region. Hence, the relationships of nodes vary
with layers and it is unbefitting to use the graph structure
of the first layer at high layers. The proposed SLCNN learns
different graph structures at different layers, which is more
coincident with actual situations.

Experiments

Dataset Description

Our model is verified on six traffic datasets. Three of them
(PeMS-S, PeMS-BAY and METR-LA) are public datasets
released by previous work (Li et al. 2018; Yu, Yin, and Zhu
2018; Jagadish et al. 2014) and others (BJF, BRF, BRF-
L) are generated by ourselves. Specifically, BJF, BRF, and

Table 4: Performance of different models on METR-LA.

Model
METR-LA (15/ 30/ 60 min)

MAE RMSE MAPE (%)

HA 4.16 7.80 13.0
ARIMA 3.99/ 5.15/ 6.90 8.21/ 10.45/ 13.23 9.6/ 12.7/ 17.4

FNN 3.99/ 4.23/ 4.49 7.94/ 8.17/ 8.69 9.9/ 12.9/ 14.0
FC-LSTM 3.44/ 3.77/ 4.37 6.30/ 7.23/ 8.69 9.6/ 10.9/ 13.2
DCRNN 2.77/ 3.15/ 3.60 5.38/ 6.45/ 7.59 7.3/ 8.8/ 10.5
STGCN 2.87/ 3.48/ 4.45 5.54/ 6.84/ 8.41 7.4/ 9.4/ 11.8
GWN 2.69/ 3.07/ 3.53 5.15/ 6.22/ 7.37 6.9/ 8.4/ 10.0

SLCNN-P 2.75/ 3.22/ 4.04 5.41/ 6.57/ 8.05 7.2/ 9.1/ 11.7
SLCNN-NP3D 2.58/ 2.97/ 3.42 5.26/ 6.25/ 7.45 6.8/ 8.4/ 10.0

SLCNN 2.53/ 2.88/ 3.30 5.18/ 6.15/ 7.20 6.7/ 8.0/ 9.7

BRF-L are generated from a real-world GPS trajectory data,
in which about 80 million GPS points of 30,000 taxis are re-
coded per day. The brief introduction is reported as follows:

PeMS-S. PeMS-S is collected from Caltrans Performance
Measurement System (PeMS) and the data is collected from
California state highway system. The time range of PeMS-S
is the weekdays of May and Jun of 2012, the interval is 5
minute and 228 sensors (nodes) are selected.

PeMS-BAY. This dataset is collected from Caltrans
PeMS too, but the sensors are selected in Bay Area of Cal-
ifornia. PeMS-BAY has 6 months of data of 325 sensors
(nodes), which ranges form Jan 2017 to May 2017.

METR-LA. This dataset is collected from loop detectors
in the highway of Los Angeles County. The data ranges form
Mar 2012 to Jun 2012 and there are 207 sensors (nodes).

BJF. Each node in BJF indicates a junction and 190 im-
portant junctions in Beijing are selected. The traffic data of
each node is recorded in every 15 minutes and the time range
is from November 2015 to October 2016.

BRF. BRF has totally 300 nodes and each node indicates
a road. The time interval is set to 20 minutes and the time
period used of BRF is from November 2015 to May 2016.

BRF-L. Similar to BRF, the traffic flow of each road is
recoded in the dataset. BRF-L contains 1586 roads and the
time interval is set to 10 minutes. The time period used of
BRF-L is from November 2015 to December 2015.
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Table 5: Performance of different models on BRF-L.

Model
BRF-L (20/ 40/ 60 min)

MAE RMSE

HA 7.99 20.12
ARIMA 6.87/ 8.35/ 8.90 13.57/ 18.45/ 20.73

FNN 4.60/ 4.62/ 4.62 11.54/ 11.79/ 12.06
FC-LSTM 4.52/ 4.60/ 4.73 11.19/ 11.55/ 12.05
DCRNN 5.95/ 6.45/ 6.77 11.11/ 12.41/ 13.24
STGCN 4.21/ 4.56/ 4.81 9.15/ 10.06/ 10.68
GWN 5.83/ 6.25/ 6.49 11.00/ 12.06/ 12.71

SLCNN-P 4.00/ 4.35/ 4.53 9.10/ 10.25/ 11.05
SLCNN-NP3D 3.89/ 4.22/ 4.45 8.92/ 9.89/ 10.53

SLCNN 3.79/ 4.02/ 4.16 8.73/ 9.45/ 9.94

Experimental Settings

All experiments are conducted on a 64-bit Linux Server with
2.40 GHz CPU and NVIDIA Titan GPU. Grid search strat-
egy is executed to choose hyper-parameters on validation.

Evaluation Metric. For PeMS-S, PeMS-BAY and
METR-LA, Mean Absolute Errors (MAE), Root Mean
Squared Errors (RMSE) and Mean Absolute Percentage Er-
ror (MAPE) are adopted to evaluate the performance of dif-
ferent methods. Due to the non-uniform distribution of urban
taxis in temporal and spatial domains, there are many zeros
in BJF, BRF and BRF-L. Hence, we only adopt MAE and
RMSE in these three datasets.

Baselines. SLCNN is compared with widely used traffic
forecasting methods, which contain the traditional methods,
including Historical Average (HA), Auto-Regressive Inte-
grated Moving Average (ARIMA), FC-LSTM (Sutskever,
Vinyals, and Le 2014) and Feed-Forward Neural Network
(FNN), and GCNN methods, including GWN (Wu et al.
2019), STGCN (Yu, Yin, and Zhu 2018) and DCRNN (Li
et al. 2018). Moreover, SLCNN-NP3D, which removes P3D
module and stacks multiple intervals data as input, is car-
ried out to verify the effectiveness of P3D. In addition, to
verify the effectiveness of structure learning, we carry out
SLCNN-P(redefined), which freezes the structure learning
ability of SLCNN, only uses the predefined graph structure
and removes the P3D module.

Hyper-parameters Setting. The two kernel ranges (Cs,
Cd) of global SLC are set to 6 and the kernel size (K) of
local SLC is set to 8. The temporal depth of P3D is set to 3.
For the sake of fairness, GCNN methods adopt the architec-
ture consisting 3 layers (blocks), where the output channels
of three layers are 32, 32, Q, respectively. Q is the number
of time intervals of predicted results. We train our models by
minimizing MAE and use Adma as optimizer.

Experimental Results

Table 1 to 5 give the results of SLCNN and the compared
methods on six datasets. The proposed methods (SLCNN
and SLCNN-NP3D) achieve best results on four datasets
(BJF, BRF, METR-LA, BRF-L). Although on the other two

datasets (PeMS-S and PeMS-bay) the performances of the
proposed methods are slightly worse than the performances
of GWN, they still outperforms other baselines, including
STGCN and DCRNN.

Several observations can be get by further analyses. First,
among all the methods, ARIMA has the worst performance.
It indicates that comparing with deep learning approaches,
traditional statistical method is incapable to handle com-
plex spatio-temporal data. Second, GCNN methods gener-
ally achieve better results than non-graph methods, which
implies that GCNN methods are more effective to deal with
the graph-structured data since they enable to capture the
spatial information. Third, the results of SLCNN-NP3D out-
perform the results of SLCNN-P significantly. It empirically
proves that the meaningful or beneficial structures will be
learned during training by the graph learning. Fourth, com-
pared with SLCNN-NP3D, more enhances are achieved by
SLCNN. It verifies that P3D contributes to capturing the
temporal dependencies and it is able to help SLCNN to bet-
ter model the time series of traffic data.

It is noteworthy that SLCNN-NP3D has achieved amaz-
ing performance even when P3D is removed and only
spatial features are extracted. In most cases, the results
of SLCNN-NP3D outperform the results of STGCN and
DCRNN which extract spatio-temporal features simultane-
ously. This is mainly because these methods ignore exploit-
ing the graph structure, and usually only utilize the fixed,
local and predefined graph structures. The improvement of
SLCNN-NP3D validates the effectiveness of graph structure
learning designed in graph-structured traffic data modeling.

Ablation Study of Local and Global Graph

To verify the effectiveness of the local SLC and global SLC,
two variants are compared with SLCNN:
• SLCNN-L(ocal): only retaining the local SLC module

and removing the global SLC module.
• SLCNN-G(lobal): only retaining the global SLC module

and removing the local SLC module.
Fig. 3 shows the prediction results of MAE on six datasets.
Due to the localization of traffic data, a majority of nodes are
only closely related with their near nodes. Compared with
global SLC which devotes to modeling the global structure,
local SLC can better capture the local structure. However,
only adopting local SLC will ignore the relationship of dis-
tant nodes. Combination of global and local SLC can capture
the local and graph structure simultaneously, and the per-
formance improvement brought by the combination module
superior to that of only utilizing one of them.

Ablation Study of Static and Dynamic Graph

To verify the effectiveness of the static term and dynamic
term of SLC , two variants are compared with SLCNN:
• SLCNN-S(tatic): only retaining the static terms (the first

term of Eq. (8) and (10)) and removing the dynamic terms.
• SLCNN-D(ynamic): only retaining the dynamic terms

(the second term of Eq. (8) and (10)) and removing the
static terms.
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Figure 3: Comparison of SLCNN variants with local graph structure or global graph structure.
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Figure 4: Comparison of SLCNN variants with static graph structure or dynamic graph structure.

Fig. 4 reports the prediction results on six datasets. SLCNN-
S captures the graph structure by learnable parameters. Af-
ter training phase, all samples of one dataset utilize the same
parameters. SLCNN-S assums that all samples share a same
structure, thus it fail to consider the dynamic property of
traffic data. SLCNN-D captures the graph structure by learn-
able functions. The outputs of the functions are depended on
the current sample, and each sample can have a unique graph
structure. However SLCNN-D ignore the static structure in-
formation shared by all samples. In Fig. 3, compared with
other two variants, the proposed model combining the static
and dynamic structure learning achieves the best results.

Computation Time

We compare the computation cost of SLCNN with its vari-
ants and other methods on the METR-LA dataset in Table 6.
Note that the main time consumption is introduced by P3D,
while the SLC only consume a little time, since the 3D con-
volution operation is time consuming. The inference time of
SLCNN-NP3D (2.54s) is comparable with GWN, while the
inference time of SLCNN (21.53s) is close to DCRNN. As
reported in Table 1 - 5, In most cases, the results of SLCNN-
NP3D outperform the results of STGCN and DCRNN and
the introducing of P3D further improves the results slightly.
If users care more about time consumption, SLCNN-NP3D
may be a good trade-off, which not only yields superior per-
formances and maintaining high efficiency.

Conslusion

In this paper, we have proposed a generic graph convolu-
tional framework (SLC) for traffic forecasting, which explic-
itly models the structure information into the convolutional
operation. Various previously proposed GCNN methods can
be regarded as particular instances of our formulation. Un-
der the framework of SLC, we construct two modules to
capture the global and local structures, respectively. Each
module formulates the graph structure as learnable parame-
ters or the output of a learnable function to capture the static
and dynamic information. Moreover, P3D is incorporated in

Table 6: The computation cost on META-LA

Model
Computation Time

Training(s/epoch) Inference(s)

DCRNN 249.31 18.73
STGCN 19.10 11.37
GWN 53.68 2.27

SLCNN-NP3D 29.3 2.54
SLCNN 381.25 21.53

SLCNN-S 169.1 9.15
SLCNN-D 273.1 12.40
SLCNN-G 153.5 9.02
SLCNN-L 277.3 11.84

SLCNN-S-NP3D 11.2 1.32
SLCNN-D-NP3D 11.4 1.21
SLCNN-G-NP3D 20.5 1.87
SLCNN-L-NP3D 9.3 1.22

our model for better capturing the temporal dependence. Ex-
periments on six datasets demonstrate our proposed method
outperforms the state-of-the-art ones.
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