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Abstract—Knowledge graph plays an important role in de-
tection, prediction, early warning, and other security related
applications. A fundamental task in applying knowledge graph
is the so-called multi-hop reasoning, which focuses on inferring
new relations between entities. In this paper, we introduce
attention mechanism to the classic compositional method. After
finding reasoning paths between entities, we aggregate these
paths’ embeddings into one according to their attentions, and
infer the relation of entities based on the combined embedding.
Two experiments on NELL-995 dataset, fact prediction and link
prediction, validated that our method outperforms all baselines.

Index Terms—knowledge graph, multi-hop reasoning, attention
mechanism, random walking

I. INTRODUCTION

Knowledge graph is a large-scale knowledge base con-
taining entities and their relations. The semantic associations
stored in knowledge graph are very essential and helpful in
varies applications. As reasoning on knowledge graph can help
discover unknown relations between entities, it can be used
to reveal connections between seemingly disparated people,
places, and events [1], which are key roles in security related
tasks, such as detection, prediction, and early warning.

Multi-hop reasoning is one of the basic problems in knowl-
edge graph, it aims to make inference on entities and relations
not directly stored in the given knowledge graph based on
stored knowledge [2]. For example, as shown in Fig 1, there
are three paths between entity “Jared Leto” and “English”,
each consists of multiple entities and relations, The goal of
multi-hop reasoning is to infer new relation “personLanguage”
between these two entities based on the known paths. Existing
methods for multi-hop reasoning include symbolic methods,
such as Path Ranking Algorithm (PRA) [3], compositional
methods like Path-RNN [4], and reinforcement learning meth-
ods like DeepPath [5] and MINERVA [6].

In this paper, we present an approach for multi-hop reason-
ing based on compositional methods. Existing compositional
methods calculate each path’s similarity score with the target
relation separately, then simply combine these scores by
averaging or summing. However, as showing in Fig 1, different
paths may related with the target relation in a different level.

Jared Leto English

Louisiana U.S.A

Requiem 

for a Dream

30 Seconds 

to Mars
This is War

born
In

Locatio
n

personLanguage

countrySpokenIn

locatedIn

castActor
movieLanguage

m
em

berO
f

albumReleased

alb
um

Language

-1

-1

Fig. 1: Multi-hop Reasoning in Knowledge Graph

Thus, simply applying the average or summation operation
may cause loss of knowledge. To utilize the disparate knowl-
edge better, we introduce attention mechanism into the com-
positional model. To be more specific, we first find multiple
paths between entities by random walking, and compute the
attention for each path based on its semantic similarity with
the query. Then we aggregate the representations of these paths
according to their attention, final result is formed based on the
similarity of this aggregated representation and the query. Two
experiments, fact prediction and link prediction, on dataset
NELL-995 validate the effectiveness of the proposed method.

II. RELATED WORK

Several methods have been proposed to accomplish the
reasoning task on knowledge graph. One of the most popular
approach determines whether a triple is true based on the
similarity score of embeddings. This approach includes TransE
[7], TransH [8], etc. However, these methods cannot be em-
ployed to address problems involving multi-hop relation paths
as they can only deal with triples. Path-Ranking Algorithm
(PRA) [3] is the first algorithm which uses random walking
to find multiple paths and reasons relations. Path-RNN [4] is
the first compositional method, it reasons relations of entities
based on paths between them, However, path-RNN only con-
siders relations on paths. Das et al. [2] improved Path-RNN
by adding entities into consideration and introducing much
better score pooling function. Besides, reinforcement learning
methods have also been explored, such as DeepPath [5] and
MINERVA [6]. They model multi-hop reasoning as a Markov
Decision Process and perform reasoning using reinforcement
learning.
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Fig. 2: Overall Architecture of Our Approach

III. METHODOLOGY

The whole architecture of our proposed approach is shown
in Fig 2. In the first phase, for each triple (h, r, t), multiple
reasoning paths can be found between head entity h and tail
entity t through random walking. These paths usually include
more than one relation or entity, so are referred to as “multi-
hop” paths. In general, every path is semantically related to the
target relation “r” in a different level, while complementary
to each other as well. To bring more flexibility and diversity
to the path finding process, we also take the inverse r−1, from
tail entity t to head entity h, of relation r into consideration.
Thus, for every triple (h, r, t), we add a triple (t, r−1, h) into
the knowledge graph, which allows each entity can be visited
several times if required.

For a triple (h, r, t), suppose we found n paths, each consists
of several entities and relations, denote the i-th path as pi, pi
can be represented as a list of ordered relations and entities:

pi = h, r1, e1, r2, e2, . . . , rm, t. (1)

Where path pi starts from the head h, passes through entity
e1, e2, . . . via relations r1, r2, . . . , rm respectively, finally,
arrives at the tail t. The set of all found paths for this triple
is denoted as S = p1, p2, . . . , pn.

For a query, say q, we also represent it by entities and
relations, as shown in Fig 2. For fact prediction task, the
query can be denoted in form qi = (h, r, t), which is a path
with two entities and a single relation (The output for fact
prediction task will be 1/0, which indicates the triple is true
or false respectively). For other tasks, the resulting forms of
queries can still be denoted as paths consisting of entities and
relations, but may be different from each other. This structure
not only provides a unified architecture to solve different tasks
which increases flexibility of the model, but also offers the
opportunity to guide the learning process by the query to
achieve better results.

To better represent the semantic knowledge of different
paths, we initialize the entity and relation representations with
pretrained embeddings. Pretraining usually uses fundamental
representation learning methods, such as TransE [7], TransH
[8], etc. Next, we compute the attention for each path based
on embeddings. Then we combine these paths based on their
attentions to get an aggregated embedding through average
or summation of the paths’ embeddings. The final answer
to a specific task can be obtained based on this aggregated
embedding and the query’s embedding.

Let A denote the pretrained embedding matrix, then the
representation for path pi can be computed as

ri =
∑
j

Apij , (2)

where j runs through all entities and relations included in path
pi. To encode the order information into representations, we
add position encoding to the representation ri:

i =
∑
j

lj ·Apij , (3)

where lj is a vector [9] with the following definition

ljk = (1− j/J)− (k/d)(1− 2j/J), k = 1, 2, · · · , J (4)

where J is the total number of entities and relations in the
path. The query will be represented in the same way.

As different paths carry different knowledge, each related
to the query in a different level. Thus, it is nature to give each
path a different attention while combing them. For query q,
attention ai for path pi can be calculated as

ai = softmax(qT ri). (5)

Combining different paths according to their attentions, then
we can get the aggregated representation p as:

p =
∑
i

aipi. (6)

After getting the aggregated representation of different
paths, we can construct the final prediction with respect to
the query q by

o = softmax(W (p+ q)), (7)

where W is the weight matrix, output o is the final prediction
respecting to query q. Besides, the similarity score s of the
aggregated path and target relation r is

s = normalize(W (p+ q)), (8)

again W is the weight matrix.
For each query, the loss is defined as the crossing entropy

between the ground truth and our model’s prediction, we then
minimize the loss function with stochastic gradient descent
(SGD) algorithm.
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TABLE I: Dataset Statistics

Dataset #Entities #Relations #Triples #Tasks

NELL-995 75492 200 154213 12

IV. RESULTS

In this section, we evaluate the proposed approach through
two kinds of experiments, fact prediction and link prediction,
on the NELL-995 dataset, the 995-th iteration of the NELL
system [5]. The statistics of the dataset is shown in Table
I, it includes 12 reasoning tasks, each focuses on a different
relation and corresponds to multiple reasoning paths.

A. Baselines and Implementation Details

For fact prediction, we use translation based representation
methods [7], [8], [10] and DeepPath [5] as baselines. In this
experiment, we make direct comparison with results reported
by Xiong et al. [5]. As for link prediction, we compare our
methods with PRA [3] and translation based methods [7], [8].

For both experiments, we use Mean Average Precision
(MAP) as criterion. Triples in the original knowledge base
are treated as “golden” ones, while triples constructed by
replacing their head or tail entities are “corrupted” ones, for
each golden triple, there may exist several corrupted triples in
the test dataset. MAP evaluates whether similarity scores for
golden triples are higher than corrupted ones. A higher MAP
value indicates better performance. In both experiments, we
limit the path number found for each triple to no more than 6,
and initialize entity and relation embeddings with embeddings
pretrained by TransE [7].

B. Fact Prediction

For a given triple (h, r, t), fact prediction task aims to decide
whether a triple is true or false. Experimental results are shown
in table Table II. We report two kinds of results of our method
in the table, the one without entities refers to the experiment
where only relations are involved. During this experiment,
entities are not included in paths and representations. Entities
are also not included in the query, query is represented as
target relation directly, e.g., q = r. For the experiment with
entities, entities and relations are both considered in paths and
query. From table II, we can conclude that our method is better
than all baselines and the performance is much better when
both entities and relations are taken into account.

TABLE II: Results of Fact Prediction

Methods TransE TransH TransR TransD DeepPath

MAP(%) 49.3 38.3 38.9 40.6 41.3

Methods Our model(without entities) Our model(with entities)

MAP(%) 49.6 52.5

TABLE III: Results of Link Prediction

Methods PRA TransE TransR TransH Our Model

MAP(%) 67.5 75 74 75.1 76.5

C. Link Prediction

Link prediction is a task first proposed in [11] to predict
the missing entities in triples. It has been widely used to
evaluate the representation learning and reasoning methods.
Both entities and relations are considered in this task, results
are shown in Table III, from which we can observe that our
model get better results on MAP.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a new multi-hop reasoning method
for knowledge graph based on compositional methods. By
introducing attention mechanism into the model, knowledge
dispersed among all the paths between entities is effectively
exploited. We applied our method in both fact and link predic-
tion applications, the experiments validated the effectiveness
of the devised method. In our ongoing works, to better capture
the semantic knowledge, we will use RNN or LSTM to get
the representation of paths. Another direction is using memory
mechanism to accomplish larger storage of knowledge.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
Research and Development Program of China under Grant
2017YFC0820105 and 2016QY02D0305, the National Nat-
ural Science Foundation of China under Grants 71702181,
71621002, and U1435221, as well as the Key Research
Program of the Chinese Academy of Sciences under Grant
ZDRW-XH-2017-3.

REFERENCES

[1] A. Sheth, B. Aleman-Meza, I. B. Arpinar, C. Bertram, Y. Warke
et al., “Semantic association identification and knowledge discovery
for national security applications,” Journal of Database Management
(JDM), vol. 16, no. 1, pp. 33–53, 2005.

[2] R. Das, A. Neelakantan, D. Belanger, and A. McCallum, “Chains
of reasoning over entities, relations, and text using recurrent neural
networks,” in ACL, 2017, pp. 132–141.

[3] N. Lao and W. W. Cohen, “Relational retrieval using a combination of
path-constrained random walks.” Machine Learning, vol. 81, pp. 53–67,
2010.

[4] A. Neelakantan, B. Roth, and A. McCallum, “Compositional vector
space models for knowledge base completion,” in ACL, 2015.

[5] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforce-
ment learning method for knowledge graph reasoning,” arXiv preprint
arXiv:1707.06690, 2017.

[6] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis et al., “Go for a walk and
arrive at the answer: Reasoning over paths in knowledge bases with
reinforcement learning,” arXiv preprint arXiv: 1711.05851, 2017.

[7] A. Bordes, N. Usunier, A. Garcia-Duran et al., “Translating embeddings
for modeling multi-relational data,” in NIPS, 2013, pp. 2787–2795.

[8] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in AAAI, 2014, pp. 1112–1119.

[9] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in NIPS, 2015, pp. 2440–2448.

[10] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in ACL (1), 2015, pp. 687–696.

[11] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured
embeddings of knowledge bases,” in AAAI, 2011, pp. 301–306.

213

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 02,2021 at 14:32:54 UTC from IEEE Xplore.  Restrictions apply. 



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20170330081459
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 3.60 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     3.6000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     3
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



