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ABSTRACT

Dynamic gesture recognition, which plays an essential role
in human-computer interaction, has been widely investigated
but not yet addressed. The interference of the varied and
complex background makes the classifier easily be misguided
due to the relatively smaller size of the hands and arms com-
pared with the full scenes. In this paper, we address the prob-
lem by proposing a novel spatiotemporal deformable convo-
lutional neural network for end-to-end learning. To elimi-
nate the background interference, a light-weight spatiotem-
poral deformable convolution module is specially designed to
augment the spatiotemporal sampling locations of 3D convo-
lution by learning additional offsets according to the preced-
ing feature map. The proposed method is evaluated on two
challenging datasets, EgoGesture and Jester, and achieves the
state-of-the-art performance on both of the two datasets. The
code and trained models will be released for better communi-
cation and future work.

Index Terms— Gesture recognition, 3D CNNs

1. INTRODUCTION

Gesture recognition in real-world has drawn significant atten-
tion from computer vision community, owing to its broad ap-
plications in many areas like VR/AR and human-computer
interaction[1, 2, 3, 4, 5, 6]. In the past decades, although
many methods have been proposed, dynamic gesture recog-
nition from video sequences is still a challenging problem.
Generally speaking, the most discriminative parts in a gesture
video clip are hands and arms. However, the region occu-
pied by the hands and arms is relatively small compared to
the whole video frame. As a result, the classifier is easily mis-
guided by the varied environments and complex backgrounds
in real-world scenes.

To address the issue of the interference from background
clutter in gesture recognition, some methods perform hand
detection to reduce the effect of the backgrounds [7]. Nev-
ertheless, the additional process for hand detection needs ex-

∗Corresponding Author

Input

3
D

 C
o

n
v

𝑿

Output

𝒀

Offset

Input

𝑿 𝒀

𝑭

Output

(a) Standard 3D Convolutional Layer

(b) Deformable 3D Convolutional Layer

3D Convolution

Deformable 3D 

Convolution

Fig. 1. Illustration of standard 3D convolutional layer (a) and
deformable 3D convolutional layer (b).

tra computation cost and hand position annotations. Further-
more, the final recognition performance heavily relies on the
accuracy of hand detection, which may become the bottleneck
of the overall framework. Recently, Cao et al. [6] propose
to insert a spatiotemporal transformer module into LSTM to
warp the feature map to a canonical view in both spatial and
temporal dimensions. It can be trained end-to-end without ad-
ditional preprocessing. However, based on the learned trans-
form matrix, the transformer can only globally warp the entire
feature map which lacks the flexibility for locally geometric
transformation. Inspired by Dai et al. [8], a spatiotemporal
deformable convolution is proposed in this work to replace
the spatiotemporal transformer.

The spatiotemporal deformable convolution augments the
sampling locations for each convolution step by learning addi-
tional offsets in both spatial and temporal dimensions accord-
ing to the preceding feature map. It enables free-form defor-
mation of a spatiotemporal sampling grid and can generalize
various transformations for the shift, scale and rotation. In
contrast with Dai et al. [8] which only focus on 2D deforma-
tion, our spatiotemporal deformable convolution can not only



diversify the sample region and shape to better match the ap-
pearance of hands and arms, but also help models pay more
attention to the discriminative frames in a video sequence.
The spatiotemporal deformable module is light-weight with
a small number of parameters for offset learning. It can read-
ily replace the plain 3D convolutional layers and be trained
end-to-end with standard back-propagation.

To the best of our knowledge, this is the first work to de-
sign spatiotemporal deformable convolution and combine it
with 3D CNNs to directly modeling the whole gesture in an
end-to-end manner. We demonstrate that our method, which
needs only RGB videos without any additional pre-processing
such as optical flow extraction, outperforms other methods on
two challenge datasets, EgoGesture [9] and Jester [10].

2. RELATED WORK

Gesture recognition has been widely investigated for decades
with many works proposed for this issue, ranging from static
to dynamic gestures, and from the hand-crafted feature based
to convolutional neural network-based methods. Traditional
methods focus on designing various hand-crafted features for
gesture recognition [1, 2]. However, the performance of these
hand-crafted feature based methods is barely satisfactory
since it cannot consider all factors at the same time.

Recently, deep leaning based methods have shown the
big success [11, 5]. On the 2017 ChaLearn LAP Large-scale
Isolated Gesture Recognition Challenge, the C3D [12] based
methods have demonstrated the powerful spatiotemporal fea-
ture representation ability and achieved remarkable perfor-
mance [13]. However, compared with the successful mod-
els employed in image classification area, e.g. ResNet [14],
Inceptions [15], C3D is relatively shallow and its capacity is
limited.

3. METHOD

3D convolution can be seen as the weighted sum over a reg-
ular 3D sampling grid with weight W . For each location pi
on the input feature map X , the value of corresponding lo-
cation po on the output feature map Y can be calculated as
Equation 1.

Y (p̂o) =
∑
p̂n∈V

W (p̂n) ·X(p̂i + p̂n) (1)

where the hat symbol indicates that the variable is inte-
gral. p̂ = (p̂x, p̂y, p̂z) is the 3D vector representing the 3D
points in the feature map. p̂n enumerates the locations in
3D sampling grid V , which is decided by the kernel size
and the dilation value of convolution. For example, if the
kernel size is 3 and the dilation value is 1, the V will be
{(−1,−1,−1), (−1,−1, 0), (−1,−1, 1), · · · , (1, 1, 1)}. A
simple 3D convolutional layer is shown in Figure 1(a), where
the output size is assumed the same as input.

Rather than using the regular sampling grid, deformable
3D convolution learns 3D offset ∆pi,n to deform the conven-
tional sampling grid as Equation 2.

Y (p̂o) =
∑
p̂n∈V

W (p̂n) ·X(p̂i + p̂n + ∆pi,n) (2)

where ∆pi,n is individual for each convolution step according
to the p̂i and p̂n. As illustrated in Figure 1(b), the offset map
F is obtained in an additional branch inside the dashed box.
It is learned by a carefully designed 3D convolutional layer,
whose kernel size is set to 3 × 3 × 3 with pad 1 and stride 1.
It ensures the spatiotemporal resolution of F the same as X .
The number of kernels is designed as 3NCX , where 3 indi-
cates three offset directions (one temporal dimension and two
spatial dimensions), CX is the number of input channels and
N is the volume of V (e.g., N = 27 for 3×3×3 kernel). Be-
cause the CX is large sometimes (e.g., the last convolutional
layer of ResNeXt has 2048 channels), we apply grouped de-
formable convolution which divides the CX into G groups,
and each group shares the same offsets. The resulting F has
3NG channels. If G is set to a small number, the number of
parameters needed to learn can be greatly reduced. Finally,
the learned offsets are used in deformable convolution to aug-
ment the sampling locations.

Note that the offset learned by convolutional layer is
typically fractional. To make the architecture differentiable,
trilinear interpolation is applied to get the final output. As
shown in Figure 2, trilinear interpolation is the extension of
linear interpolation and bilinear interpolation. It calculates
the target value according to the surrounding points whose
distance to the target is less than 1 as Equation 3

X(p) =
∑
q̂

X(q̂) · [(1− |q̂x − px|)]+

· [(1− |q̂y − py|)]+[(1− |q̂z − pz|)]+

(3)

where [x]+ = max(0, x). X is the input feature map.
p = (px, py, pz) represents the fractional sampling position
after adding the offset and q̂ represent the surrounding inte-
gral points of p. X(p) is calculated by weighted sum over
X(q̂), where weights are determined by the distance between
p and q̂.

During training, both the convolutional kernels for gener-
ating the output features and the offsets are learned simultane-
ously. The gradients can be back-propagated through Equa-
tion 2 and Equation 3, which is formulated as Equation 4,
Equation 5 and Equation 6.

∂Y (p̂o)

∂X(q̂)
=

∑
p̂n∈V

W (p̂n) · [(1− |q̂x − px|)]+

· [(1− |q̂y − py|)]+[(1− |q̂z − pz|)]+

(4)



Fig. 2. Illustration of trilinear interpolation. p is the original
point whose coordinates are fractional. Its value is calculated
by weighted sum of q̂i, i = 1, 2, · · · , 8, which are the sur-
rounding integral points.

∂Y (p̂o)

∂∆pxi,n
=W (p̂n)

∑
q̂

X(q̂) · sign(q̂x − pxi )

· [(1− |q̂y − pyi |)]
+[(1− |q̂z − pzi |)]+

(5)

∂Y (p̂o)

∂W (p̂n)
= X(p̂i + p̂n + ∆pi,n) (6)

where the definitions of symbols are same as Equation 2 and
Equation 3. In Equation 5, we only list the partial derivative
of the output feature map with respect to the offset along the
x dimension, The formulation along the y and z dimensions
can be deduced accordingly.

4. EXPERIMENTS

4.1. Datasets

EgoGesture [9] is a large-scale multi-modal dataset for ego-
centric hand gesture recognition, which designs 83 gestures
for interaction with wearable devices. It contains 2081 RGB-
D videos, 24161 gesture samples and 2953224 frames from
50 distinct subjects in 6 scenes. The average length of iso-
lated gesture videos is 38 frames.

Jester [10] is a recent video dataset for hand gesture
recognition, which contains 27 kinds of predefined hand ges-
tures performed in front of a camera. It has totally 148092
gesture samples extracted from the original videos at 12
frames per second. The samples are officially split into three
sets, 118562 samples for training, 14787 samples for valida-
tion and 14743 samples for testing without providing labels.
The average length of the video is 35 frames.

4.2. Experiments on EgoGesture Dataset

4.2.1. Training Details

Since the average length of video samples in EgoGesture is
38 frames, we use 32 frames with 112 × 112 pixels as a clip
to balance the GPU memory and information contained in
each clip. For training, we first randomly sample 32 frames

and sort them in temporal order, then perform random crop-
ping for each frame to 224 × 224 and finally resize them to
112 × 112 pixels. If the sample is shorter than 32 frames,
we expand it by duplicating every frame (e.g., given xy, it
will be extended to xxyy). This process will be executed re-
currently until the sample is longer than 32 frames. Mean-
subtraction and std-division are performed for each frame.
We use stochastic gradient descent (SGD) with Nesterov mo-
mentum (0.9) on 4 GPUs (NVIDIA TITAN XP) for training.
Weight decay is set to 0.0005, and initial learning rate is set to
0.001. The learning rate is multiplied by 0.1 at the 20th and
30th epoch. The training process is ended at the 40th epoch.
When testing, we uniformly sample 32 frames, then perform
central cropping and resizing for each frame.

Table 1. The performance of different 3D CNNs. (D) repre-
sents the models embedded with deformable 3D convolution

Model Depth Acc #Params
ResNet3D-18 18 90.68 31.8M
ResNet3D-18 (D) 18 91.66 35.5M
ResNet3D-34 34 91.86 60.8M
ResNet3D-34 (D) 34 92.17 65.8M
ResNet3D-101 101 94.01 81.7M
ResNet3D-101 (D) 101 94.20 85.5M
ResNeXt3D-101 101 94.18 45.8M
ResNeXt3D-101 (D) 101 94.72 52.2M
Inception3D-V1 22 89.61 12.0M
Inception3D-V1 (D) 22 90.92 12.5M
InceptionResNet3D-V2 190 92.27 111.5M
InceptionResNet3D-V2 (D) 190 92.73 118.0M

4.2.2. Spatiotemporal deformable convolution

The C3D used in traditonal methods is relatively shallow
compared with the successful models used in image clas-
sification. In this work we propose three types of deeper
and more powerful models to evaluate the proposed method.
In detail, the ResNet3D-18, ResNet3D-34, ResNet3D-101,
ResNext3D-101, Inception3D-V1 and InceptionResNet3D-
v2 are used for evaluation. All the above models are pre-
trained on the Kinetics dataset and finetuned on the EgoGes-
ture dataset.

As introduced in Section 3, we plug our proposed spa-
tiotemporal deformable convolution modules in above mod-
els to test the effectiveness. Although the plain convolutional
layers can be substituted by deformable version easily, it is
not sensible to replace them all.

According to the experiments, we replace top 2 layers for
ResNet3D-18, top 3 layers for ResNet3D-34 and ResNext3D-
101, top 2 layers for Inception3D-V1 and top 11 layers for
InceptionResNet3D-V2. The details can be found in the re-
leased code. All the results are shown in Table 1, where



adding the deformable module brings a consistent increase
in accuracy. This fully illustrates the effectiveness of the pro-
posed spatiotemporal deformable convolution modules. Be-
sides, there is only a limited increase in the amount of param-
eters.

4.2.3. Compared with the state-of-the-art methods

The proposed model is compared with previous state-of-the-
art methods using RGB videos as input. Table 2 shows the
final recognition accuracy of these methods, where our model
achieves the best performance compared with other methods
with a large margin.

Table 2. Validation Accuracy on EgoGesture.
Methods Accuracy
iDT-FV [16] 64.30
VGG16+LSTM [17] 74.70
C3D+SVM [12] 86.40
C3D+RSTTM [6] 89.30
Deformable 3D ResNeXt 94.72

4.3. Experiments on Jester Dataset

The Jester dataset is split into training, validation and test-
ing sets according to the official provided .csv files. Training
details are similar with the Section 4.2.1.

4.3.1. Analysis of the spatiotemporal deformable convolution

To better emphasize the effect of spatiotemporal deformable
convolution, we use part of the gestures as input to evaluate
the performance of ResNeXt3D-101 with or without embed-
ding deformable convolution module. In particular, we cut
out the 32-frame clips from the beginning, middle and end
of videos as input, and crop the left-top, central and right-
bottom corner of frames respectively. The results are shown
in Table 3, from which we can see the performance gain of
using deformable convolution increases when the gestures are
incomplete or not in the center. It is intuitive because the off-
sets learned by deformable convolution can help the model
find the right things.

Table 3. Accuracy of model using a corner of videos as input.
DC stands for the deformable convolution

Position w/o DC w/ DC Gain
Middle,center-crop 95.6 96.1 0.5
Beginning,left-top-crop 91.5 92.3 0.8
End,right-bottom-crop 81.1 82.6 1.5

Two successfully recognized samples in Jester are visual-
ized in Figure 3. Sample locations of one deformable convo-
lutional step are plotted with red points. It can be seen that
sample locations are deformed in both spatial and temporal
dimensions to match the video content better.

Fig. 3. Visualization of offsets learned by deformable 3D
convolution. The labels of two samples are “Turning Hand
Clockwise” and “Zooming In With Full Hand”.

4.3.2. Compared with the state-of-the-art methods

Our models are evaluated on the test set of Jester. Table 4
shows the final results compared with other methods listed in
the leaderboard, where our model achieves the best perfor-
mance until the submission time. It can be seen that deep 3D
CNN shows excellent capacity for video representation, and
embedding the deformable convolutional layers brings addi-
tional improvement.

Table 4. Test accuracy in Jester dataset.
Methods Accuracy

20BN’s Jester System [10] 82.34
TRN [18] 94.78
Motion Fused Frames [19] 96.28
ResNeXt3D-101 95.68
Deformable ResNeXt3D-101 96.60

5. CONCLUSION

In this work, a spatiotemporal deformable convolution mod-
ule is specially designed to augment the sampling locations
of 3D convolution for dynamic gesture recognition. It helps
models pay attention to discriminative parts of the video se-
quence in both spatial and temporal dimensions. The final
model achieves state-of-the-art performance on two challeng-
ing datasets, EgoGesture and Jester.
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