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Abstract. Dynamic skeletal data, represented as the 2D/3D coordi-
nates of human joints, has been widely studied for human action recog-
nition due to its high-level semantic information and environmental ro-
bustness. However, previous methods heavily rely on designing hand-
crafted traversal rules or graph topologies to draw dependencies between
the joints, which are limited in performance and generalizability. In this
work, we present a novel decoupled spatial-temporal attention network
(DSTA-Net) for skeleton-based action recognition. It involves solely the
attention blocks, allowing for modeling spatial-temporal dependencies
between joints without the requirement of knowing their positions or
mutual connections. Specifically, to meet the specific requirements of
the skeletal data, three techniques are proposed for building attention
blocks, namely, spatial-temporal attention decoupling, decoupled posi-
tion encoding and spatial global regularization. Besides, from the data
aspect, we introduce a skeletal data decoupling technique to emphasize
the specific characteristics of space/time and different motion scales, re-
sulting in a more comprehensive understanding of the human actions.
To test the effectiveness of the proposed method, extensive experiments
are conducted on four challenging datasets for skeleton-based gesture
and action recognition, namely, SHREC, DHG, NTU-60 and NTU-120,
where DSTA-Net achieves state-of-the-art performance on all of them.

1 Introduction

Human action recognition has been studied for decades since it can be widely
used for many applications such as human-computer interaction and abnormal
behavior monitoring [1–4]. Recently, skeletal data draws increasingly more at-
tention because it contains higher-level semantic information in a small amount
of data and has strong adaptability to the dynamic circumstance [5–7].

The raw skeletal data is a sequence of frames each contains a set of points.
Each point represents a joint of human body in the form of 2D/3D coordi-
nates. Previous data-driven methods for skeleton-based action recognition rely
on manual designs of traversal rules or graph topologies to transform the raw
skeletal data into a meaningful form such as a point-sequence, a pseudo-image
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or a graph, so that they can be fed into the deep networks such as RNNs, CNNs
and GCNs for feature extraction [5, 8, 9]. However, there is no guarantee that
the hand-crafted rule is the optimal choice of modeling global dependencies of
joints, which limits the performance and generalizability of previous approaches.
Recently, transformer [10, 11] has achieved big success in the NLP field, whose
basic block is the self-attention mechanism. It can learn the global dependen-
cies between the input elements with less computational complexity and better
parallelizability. For skeletal data, employing the self-attention mechanism has
an additional advantage that there is no requirement of knowing a intrinsic rela-
tions between the elements, thus it provides more flexibility for discovering useful
patterns. Besides, since the number of joints of the human body is limited, the
extra cost of applying self-attention mechanism is also relatively small.

Inspired by above observations, we propose a novel decoupled spatial-temporal
attention networks (DSTA-Net) for skeleton-based action recognition. It is based
solely on the self-attention mechanism, without using the structure-relevant
RNNs, CNNs or GCNs. However, it is not straightforward to apply a pure atten-
tion network for skeletal data as shown in following three aspects: (1) The input
of original self-attention mechanism is the sequential data, while the skeletal data
exists in both the spatial and temporal dimensions. A naive method is simply
flattening the spatial-temporal data into a single sequence like [12]. However,
it is not reasonable to treat the time and space equivalently because they con-
tain totally different semantics [3]. Besides, simple flattening operation increases
the sequence length, which greatly increases the computation cost due to the
dot-product operation of the self-attention mechanism. Instead, we propose to
decouple the self-attention mechanism into the spatial attention and the tempo-
ral attention sequentially. Three strategies are specially designed to balance the
independence and the interaction between the space and the time. (2) There are
no predefined orders or structures when feeding the skeletal joints into the at-
tention networks. To provide unique markers for every joint, a position encoding
technique is introduced. For the same reason as before, it is also decoupled into
the spatial encoding and the temporal encoding. (3) It has been verified that
adding proper regularization based on prior knowledge can effectively reduce the
over-fitting problem and improve the model generalizability. For example, due
to the translation-invariant structure of images, CNNs exploit the local-weight-
sharing mechanism to force the model to learn more general filters for different
regions of images. As for skeletal data, each joint of the skeletons has specific
physical/semantic meaning (e.g., head or hand), which is fixed for all the frames
and is consistent for all the data samples. Based on this prior knowledge, a
spatial global regularization is proposed to force the model to learn more gen-
eral attentions for different samples. Note the regularization is not suitable for
temporal dimension because there is no such semantic alignment property.

Besides, from the data aspect, the most discriminative pattern is distinct for
different actions. We claim that two properties should be considered. One prop-
erty is whether the action is motion relevant or motion irrelevant, which aims
to choose the specific characters of space and time. For example, to classify the
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gestures of “waving up” versus “waving down”, the global trajectories of hand is
more important than hand shape, but when recognizing the gestures like “point
with one finger” versus “point with two finger”, the spatial pattern is more im-
portant than hand motion. Based on this observation, we propose to decouple
the data into the spatial and temporal dimensions, where the spatial stream
contains only the motion-irrelevant features and temporal stream contains only
the motion-relevant features. By modeling these two streams separately, the
model can better focus on spatial/temporal features and identity specific pat-
terns. Finally, by fusing the two streams, it can obtain a more comprehensive
understanding of the human actions. Another property is the sensibility of the
motion scales. For temporal stream, the classification of some actions may rely
on the motion mode of a few consecutive frames while others may rely on the
overall movement trend. For example, to classify the gestures of “clapping” ver-
sus “put two hands together”, the short-term motion detail is essential. But for
“waving up” versus “waving down”, the long-term motion trend is more impor-
tant. Thus, inspired by [3], we split the temporal information into a fast stream
and a slow stream based on the sampling rate. The low-frame-rate stream can
capture more about global motion information and the high-frame-rate stream
can focus more on the detailed movements. Similarly, the two streams are fused
to improve the recognition performance.

We conduct extensive experiments on four datasets, including two hand ges-
ture recognition datasets, i.e., SHREC and DHG, and two human action recog-
nition datasets, i.e., NTU-60 and NTU-120. Without the need of hand-crafted
traversal rules or graph topologies, our method achieves state-of-the-art perfor-
mance on all these datasets, which demonstrates the effectiveness and general-
izability of the proposed method.

Overall, our contributions lie in four aspects: (1) To the best of our knowl-
edge, we are the first to propose a decoupled spatial-temporal attention networks
(DSTA-Net) for skeleton-based action recognition, which is built with pure at-
tention modules without manual designs of traversal rules or graph topologies.
(2) We propose three effective techniques in building attention networks to meet
the specific requirements for skeletal data, namely, spatial-temporal attention de-
coupling, decoupled position encoding and spatial global regularization. (3) We
propose to decouple the data into four streams, namely, spatial-temporal stream,
spatial stream, slow-temporal stream and fast-temporal stream, each focuses on
a specific aspect of the skeleton sequence. By fusing different types of features,
the model can have a more comprehensive understanding for human actions.
(4) On four challenging datasets for action recognition, our method achieves
state-of-the-art performance with a significant margin. DSTA-Net outperforms
SOTA 2.6%/3.2% and 1.9%/2.9% on 14-class/28-class benchmarks of SHREC
and DHG, respectively. It achieves 91.5%/96.4% and 86.6%/89.0% on CS/CV
benchmarks of NTU-60 and NTU-120, respectively. The code is released4.

4 https://github.com/lshiwjx/DSTA-Net
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2 Related Work

Skeleton-based action recognition has been widely studied for decades. The
main-stream methods lie in three branches: (1) the RNN-based methods that for-
mulate the skeletal data as a sequential data with a predefined traversal rules,
and feed it into the RNN-based models such as the LSTM [9, 13–15]; (2) We
propose three effective techniques in building attention networks to meet the
specific requirements for skeletal data, namely, spatial-temporal attention de-
coupling, decoupled position encoding and spatial global regularization. (3) the
GCN-based methods that encode the skeletal data into a predefined spatial-
temporal graph, and model it with the graph convolutional networks [5, 16, 6].
In this work, instead of formulating the skeletal data into the images or graphs,
we directly model the dependencies of joints with pure attention blocks. Our
model is more concise and general, without the need of designing hand-crafted
transformation rules, and it outperforms the previous methods with a significant
margin.

Self-attention mechanism is the basic block of transformer [10, 11], which
is the mainstream method in the NLP field. Its input consists of a set of queries
Q, keys K of dimension C and values V , which are packaged in the matrix form
for fast computation. It first computes the dot products of the query with all
keys, divides each by

√
C, and applies a softmax function to obtain the weights

on the values [10]. In formulation:

Attention(Q,K, V ) = softmax(
QKT

√
C

) (1)

The similar idea has also been used for many computer vision tasks such as
relation modeling [17], detection [18] and semantic segmentation [19]. To the
best of our knowledge, we are the fist to apply the pure attention networks
for skeletal data and further propose several improvements to meet the specific
requirements of skeletons.

3 Methods

3.1 Spatial-temporal attention module

Original transformer is fed with the sequential data, i.e., a matrix X ∈ RN×C ,
where N denotes the number of elements and C denotes the number of channels.
For dynamic skeletal data, the input is a 3-order tensor X ∈ RN×T×C , where T
denotes the number of frames. It is worth to investigate how to deal with the
relationship between the time and the space. Wang et al. [12] propose to ignore
the difference between time and space, and regard the inputs as a sequential data

X ∈ RN̂×C , where N̂ = NT . However, the temporal dimension and the spatial
dimension are totally different as introduced in Sec. 1. It is not reasonable to
treat them equivalently. Besides, the computational complexity of calculating
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Fig. 1. Illustration of the three decoupling strategies. We use the spatial attention
strategy as an example and the temporal attention strategy is an analogy. N and T
denote the number of joints and frames, respectively.

the attention map in this strategy is O(T 2N2C) (using the naive matrix mul-
tiplication algorithm), which is too large. Instead, we propose to decouple the
spatial and temporal dimensions, where the computational complexity is largely
reduced and the performance is improved.

We design three strategies for decoupling as shown in Fig 1. Using the spatial
attention as an example, the first strategy (Fig 1, a) is calculating the attention
maps frame by frame, and each frame uses a unique attention map:

At = softmax(σ(Xt)φ(Xt)
′) (2)

where At ∈ RN×N is the attention map for frame t. Xt ∈ RN×C . σ and φ
are two embedding functions. ′ denote matrix transpose. This strategy only
considers the dependencies of joints in a single frame thus lacks the modeling
capacity. The computational complexity of calculating spatial attention of this
strategy is O(TN2C). For temporal attention, the attention map of joint n is
An ∈ RT×T and the input data is Xn ∈ RT×C . Its calculation is analogical
with the spatial attention. Considering both the spatial and temporal attention,
the computational complexity of the first strategy for all frames is O(TN2C +
NT 2C).

The second strategy (Fig 1, b) is calculating the relations of two joints be-
tween all of the frames, which means both the intra-frame relations and the
inter-frame relations of two joints are taken into account simultaneously. The
attention map is shared over all frames. In formulation:

At = softmax(

T∑
t

T∑
τ

(σ(Xt)φ(Xτ )′)) (3)

The computational complexity of this strategy is O(T 2N2C +N2T 2C).
The third strategy (Fig 1, c) is a compromise, where only the joints in same

frame are considered to calculate the attention map, but the obtained attention
maps of all frames are averaged and shared. It is equivalent to adding a time
consistency restriction for attention computation, which can somewhat reduce
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the overfitting problem caused by the element-wise relation modeling of the
second strategy.

At = softmax(

T∑
t

(σ(Xt)φ(Xt)
′)) (4)

By concatenating the frames into an N × TC matrix, the summation of mat-
multiplications can be efficiently implemented with one big mat-multiplication
operation. The computational complexity of this strategy is O(TN2C+NT 2C).
as shown in ablation study 4.3, we finally use the strategy (c) in the model.

3.2 Decoupled Position encoding

The skeletal joints are organized as a tensor to be fed into the neural networks.
Because there are no predefined orders or structures for each element of the
tensor to show its identity (e.g., joint index or frame index), we need a position
encoding module to provide unique markers for every joint. Following [10], we use
the sine and cosine functions with different frequencies as the encoding functions:

PE(p, 2i) = sin(p/100002i/Cin)

PE(p, 2i+ 1) = cos(p/100002i/Cin)
(5)

where p denotes the position of element and i denotes the dimension of the
position encoding vector. However, different with [10], the input of skeletal data
have two dimensions, i.e., space and time. One strategy for position encoding is
unifying the spatial and temporal dimensions and encoding them sequentially.
For example assuming there are three joints, for the first frame the position of
joints is 1, 2, 3, and for the second frame it is 4, 5, 6. This strategy cannot well
distinguish the same joint in different frames. Another strategy is decoupling the
process into spatial position encoding and temporal position encoding. Using the
spatial position encoding as an example, the joints in the same frame are encoded
sequentially and the same joints in different frames have the same encoding.
In above examples, it means for the first frame the position is 1, 2, 3, and for
the second frame it is also 1, 2, 3. As for the temporal position encoding, it is
reversed and analogical, which means the joints in the same frame have the
same encoding and the same joints in different frames are encoded sequentially.
Finally, the position features are added to the input data as shown in Fig 2. In
this way, each element is aligned with an unique marker to help learning the
mutual relations between the joints, and the difference between space and time
is also well expressed.

3.3 Spatial global regularization

As explained in Sec. 1, each joint has a specific meaning. Based on this prior
knowledge, we propose to add a spatial global regularization to force the model
to learn more general attentions for different samples. In detail, a global attention
map (N×N matrix) is added to the attention map (N×N matrix) learned by the
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Fig. 2. Illustration of the attention module. We show the spatial attention module as an
example. The temporal attention module is an analogy. The purple rounded rectangle
box represents a single-head self-attention module. There are totally S self-attention
modules, whose output are concatenated and fed into two linear layers to obtain the
output. LReLU represents the leaky ReLU [20].

dot-product attention mechanism introduced in Sec. 3.1. The global attention
map is shared for all data samples, which represents a unified intrinsic relation-
ship pattern of the human joints. We set it as the parameter of the network and
optimize it together with the model. An α is multiplied to balance the strength
of the spatial global regularization. This module is simple and light-weight, but
it is effective as shown in the ablation study. Note that the regularization is only
added for spatial attention computing because the temporal dimension has no
such semantic alignment property. Forcing a global regularization for temporal
attention is not reasonable and will harm the performance.

3.4 Complete attention module

Because the spatial attention module and the temporal attention module are
analogical, we select the spatial module as an example for detailed introduction.
The complete attention module is showed in Fig 2. The procedures inside the
purple rounded rectangle box illustrate the process of the single-head attention
calculation. The input X ∈ RN×TCin is first added with the spatial position en-
coding. Then it is embedded with two linear mapping functions to X ∈ RN×TCe .
Ce is usually small than Cout to remove the feature redundancy and reduce the
computations. The attention map is calculated by the strategy (c) of Fig. 1 and
added with the spatial global regularization. Note that we found the Tanh is
better than SoftMax when computing the attention map. We believe that it is
because the output of Tanh is not restricted to positive values thus can gener-
ate negative relations and provide more flexibility. Finally the attention map is
mat-multiplied with the original input to get the output features.

To allow the model jointly attending to information from different repre-
sentation sub-spaces, there are totally S heads for attention calculations in the
module. The results of all heads are concatenated and mapped to the output
space RN×TCout with a linear layer. Similar with the transformer, a point-wise
feed-forward layer is added in the end to obtain the final output. We use the
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Fig. 3. Illustration of the overall architecture of the DSTA-Net. N, T, C denote the
number of joints, frames and channels, respectively. The red rounded rectangle box
represents one spatial-temporal attention layer. There are totally L layers. The final
output features are global-average-pooled (GAP) and fed into a fully-conected layer
(FC) to make the prediction.

leaky ReLU as the non-linear function. There are two residual connections in the
module as shown in the Fig 2 to stabilize the network training and integrate dif-
ferent features. Finally, all of the procedures inside the green rounded rectangle
box represent one whole attention module.

3.5 Overall architecture

Fig. 3 shows the overall architecture of our method. The input is a skeleton
sequence with N joints, T frames and C channels. In each layer, we first regard
the input as an N × TC matrix, i.e., N elements with TC channels, and feed
it into the spatial attention module (introduced in Fig. 2) to model the spatial
relations between the joints. Then, we transpose the output matrix and regard
it as T elements each has NC channels, and feed it into the temporal attention
module to model the temporal relations between the frames. There are totally L
layers stacked to update features. The final output features are global-average-
pooled and fed into a fully-connected layers to obtain the classification scores.

3.6 Data decoupling

The action can be decoupled into two dimensions: the spatial dimension and the
temporal dimension as illustrated in Fig. 4 (a, b and c). The spatial information
is the difference of two different joints that are in the same frame, which mainly
contains the relative position relationship between different joints. To reduce
the redundant information, we only calculate the spatial information along the
human bones. The temporal information is the difference of the two joints with
same spatial meaning in different frames, which mainly describes the motion
trajectory of one joint along the temporal dimension. When we recognize the
gestures like “Point with one finger” versus “Point with two finger”, the spa-
tial information is more important. However, when we recognize the gestures
like “waving up” versus “waving down”, the temporal information will be more
essential.

Besides, for temporal stream, different actions have different sensibilities of
the motion scale. For some actions such as “clapping” versus “put two hands
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Fig. 4. For simplicity, we draw two joins in two consecutive frames in a 2D coordinate
system to illustrate the data decoupling. as shown in (a), P i

tk denotes the joint i in
frame k. Assume that joint i and joint j are the two end joints of one bone. (a) denotes
the raw data, i.e., the spatial-temporal information. The orange dotted line and blue
dotted line denote the decoupled spatial information and temporal information, which
are showed as (b) and (c), respectively. (d) illustrates the difference between the fast-
temporal information (blue arrow) and the slow-temporal information (orange arrow).

together”, the short-term motion detail is essential. But for actions like “waving
up” versus “waving down”, the long-term movement trend is more important.
Inspired by [3], we propose to calculate the temporal motion with both the
high frame-rate sampling and the low frame-rate sampling as shown in Fig. 4
(d). The generated two streams are called as the fast-temporal stream and the
slow-temporal stream, respectively.

Finally, we have four streams all together, namely, spatial-temporal stream
(original data), spatial stream, fast-temporal stream and slow-temporal stream.
We separately train four models with the same architecture for each of the
streams. The classification scores are averaged to obtain the final result.

4 Experiments

To verify the generalization of the model, we use two datasets for hand gesture
recognition (DHG [21] and SHREC [22]) and two datasets for human action
recognition (NTU-60 [23] and NTU-120 [24]). We first perform exhaustive abla-
tion studies on SHREC to verify the effectiveness of the proposed model com-
ponents. Then, we evaluate our model on all four datasets to compare with the
state-of-the-art methods.

4.1 Datasets

DHG: DHG [21] dataset contains 2800 video sequences of 14 hand gestures
performed 5 times by 20 subjects. They are performed in two ways: using one
finger and the whole hand. So it has two benchmarks: 14-gestures for coarse
classification and 28-gestures for fine-grained classification. The 3D coordinates
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of 22 hand joints in real-world space is captured by the Intel Real-sense camera.
It uses the leave-one-subject-out cross-validation strategy for evaluation.

SHREC: SHREC [22] dataset contains 2800 gesture sequences performed 1
and 10 times by 28 participants in two ways like the DHG dataset. It splits the
sequences into 1960 train sequences and 840 test sequences. The length of sample
gestures ranges from 20 to 50 frames. This dataset is used for the competition
of SHREC’17 in conjunction with the Euro-graphics 3DOR’2017 Workshop.

NTU-60: NTU-60 [23] is a most widely used in-door-captured action recog-
nition dataset, which contains 56,000 action clips in 60 action classes. The clips
are performed by 40 volunteers and is captured by 3 KinectV2 cameras with
different views. This dataset provides 25 joints for each subject in the skeleton
sequences. It recommends two benchmarks: cross-subject (CS) and cross-view
(CV), where the subjects and cameras used in the training/test splits are differ-
ent, respectively.

NTU-120: NTU-120 [23] is similar with NTU-60 but is larger. It contains
114,480 action clips in 120 action classes. The clips are performed by 106 volun-
teers in 32 camera setups. It recommends two benchmarks: cross-subject (CS)
and cross-setup (CE), where cross-setup means using samples with odd setup
IDs for training and others for testing.

4.2 Training details

To show the generalization of our methods, we use the same configuration for
all experiments. The network is stacked using 8 DSTA blocks with 3 heads.
The output channels are 64, 64, 128, 128, 256, 256, 256 and 256, respectively.
The input video is randomly/uniformly sampled to 150 frames and then ran-
domly/centrally cropped to 128 frames for training/test splits. For fast-temporal
features, the sampling interval is 2. When training, the initial learning rate is 0.1
and is divided by 10 in 60 and 90 epochs. The training is ended in 120 epochs.
Batch size is 32. Weight decay is 0.0005. We use the stochastic gradient descent
(SGD) with Nesterov momentum (0.9) as the optimizer and the cross-entropy
as the loss function.

4.3 Ablation studies

In this section, we investigate the effectiveness of the proposed components of
the network and different data modalities. We conduct experiments on SHREC
dataset. Except for the explored object, other details are set the same for fair
comparison.

Network architectures We first investigate the effect of the position embed-
ding. as shown in Tab. 1, removing the position encoding will seriously harm the
performance. Decoupling the spatial and temporal dimension (DPE) is better
than not (UPE). This is because the spatial and temporal dimensions actually
have different properties and treat them equivalently will confuse the model.
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Then we investigate the effect of the proposed spatial global regularization
(SGR). By adding the SGR, the performance is improved from 94.3% to 96.3%,
but if we meanwhile regularize the temporal dimension, the performance drops.
This is reasonable since there are no specific meanings for temporal dimension
and forced learning of a unified pattern will cause the gap between the training
set an testing set.

Finally, we compare the three strategies introduced in Fig. 1. It shows that
the strategy (a) obtains the lowest performance. We conjecture that it dues
to the fact that it only considers the intra-frame relations and ignore the inter-
frame relations. Modeling the inter-frame relations exhaustively (strategy b) will
improve the performance and a compromise (c) obtains the best performance. It
may because that the compromise strategy can somewhat reduce the overfitting
problem.

Table 1. Ablation studies for architectures of the model on the SHREC dataset.
ST-ATT-c denotes the spatial temporal attention networks with attention type
c introduced in Fig 1. PE denotes position encoding. UPE/DPE denote using
unified/decoupled encoding for spatial and temporal dimensions. STGR denotes
spatial-temporal global regularizations for computing attention maps.

Method Accuracy

ST-Att-c w/o PE 89.4
ST-Att-c + UPE 93.2
ST-Att-c + DPE 94.5

ST-Att-c + DPE + SGR 96.3
ST-Att-c + DPE + STGR 94.6

ST-Att-a + DPE + SGR 94.6
ST-Att-b + DPE + SGR 95.1

We show the learned attention maps of different layers (layer #1 and layer
#8) in Fig. 5. Other layers are showed in supplement materials. It shows that
the attention maps learned in different layers are not the same because the
information contained in different layers has distinct semantics. Besides, it seems
the model focuses more on the relations between the tips of the fingers (T4, I4,
M4, R4) and wrist, especially in the lower layers. This is intuitive since these
joints are more discriminative for human to recognize gestures. On the higher
layers, the information are highly aggregated and the difference between each of
the joints becomes unapparent, thus the phenomenon also becomes unapparent.

Data decoupling To show the necessity of decoupling the raw data into four
streams as introduced in Sec. 3.6, we show the results of using four streams
separately and the result of fusion in Tab. 2. It shows that the accuracies of
decoupled streams are not as good as the raw data because some of the informa-
tion is lost. However, since the four streams focus on different aspects and are
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Fig. 5. Examples of the learned attention maps for different layers. T, I, M, R and L
denote thumb, index finger, middle finger, ring finger and little finger, respectively. As
for articulation, T1 denotes the base of the thumb and T4 denote the tip of the thumb.

complementary with each other, when fusing them together, the performance is
improved significantly.

Table 2. Ablation studies for feature fusion on the SHREC dataset. Spatial-temporal
denotes the raw data, i.e., the joint coordinates. Other types of features are introduced
in Sec. 3.6.

Method Accuracy

spatial-temporal 96.3
spatial 95.1
fast-temporal 94.5
slow-temporal 93.7

Fusion 97.0

As shown in Fig. 6, We plot the per-class accuracies of the four streams
to show the complementarity clearly. We also plot the difference of accuracies
between different streams, which are represented as the dotted lines. For spatial
information versus temporal information, it (orange dotted lines) shows that
the network with spatial information obtains higher accuracies mainly in classes
that are closely related with the shape changes such as “grab”, “expand” and
“pinch”, and the network with temporal information obtains higher accuracies
mainly in classes that are closely related with the positional changes such as
“swipe”, “rot” and “shake”. As for different frame-rate sampling, it (red dotted
lines) shows that the slow-temporal performs better for classes of “expand”,
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Fig. 6. Per-class accuracies for different modalities on SHREC-14 dataset. The dotted
lines shows the difference between two modalities.

“tap”, etc, and the fast-temporal performs better for classes of “swipe”, “rot”,
etc. These phenomenons verify the complementarity of the four modalities.

Table 3. Recognition accuracy comparison of our method and state-of-the-art methods
on SHREC dataset and DHG dataset.

Method Year
SHREC DHG

14 gestures 28 gestures 14 gestures 28 gestures

ST-GCN [5] 2018 92.7 87.7 91.2 87.1
STA-Res-TCN [25] 2018 93.6 90.7 89.2 85.0

ST-TS-HGR-NET [26] 2019 94.3 89.4 87.3 83.4
DG-STA. [27] 2019 94.4 90.7 91.9 88.0

DSTA-Net(ours) - 97.0 93.9 93.8 90.9

4.4 Comparison with previous methods

We evaluate our model with state-of-the-art methods for skeleton-based action
recognition on all four datasets, where our model significantly outperforms the
other methods. Due to the space restriction, we only show some representa-
tive works, where more comparisons are showed in supplement materials. On
SHREC/DHG datasets for skeleton-based hand gestures recognition (Tab. 3),
our model brings 2.6%/1.9% and 3.2%/2.9% improvements for 14-gestures and
28-gestures benchmarks compared with the state-of-the-arts. Note that the state-
of-the-art accuracies are already very high (94.4%/91.9% and 90.7%/88.0% for
14-gestures and 28-gestures, respectively), but our model still obtains remark-
able performance. On NTU-60 dataset (Tab. 4), our model obtains 1.6% and
0.3% improvements. The performance of CV benchmark is nearly saturated. For
both CS and CV benchmarks, we visualize the wrong examples and find that it
is even impossible for human to recognize many examples using only the skeletal
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Table 4. Recognition accuracy comparison of our method and state-of-the-art methods
on NTU-60 dataset. CS and CV denote the cross-subject and cross-view benchmarks,
respectively.

Methods Year CS (%) CV (%)

ST-GCN [5] 2018 81.5 88.3
SRN+TSL [14] 2018 84.8 92.4

2s-AGCN [6] 2019 88.5 95.1
DGNN [7] 2019 89.9 96.1

NAS [28] 2020 89.4 95.7

DSTA-Net(ours) - 91.5 96.4

Table 5. Recognition accuracy comparison of our method and state-of-the-art methods
on NTU-120 dataset. CS and CE denote the cross-subject and cross-setup benchmarks,
respectively.

Methods Year CS (%) CE (%)

Body Pose Evolution Map [29] 2018 64.6 66.9
SkeletonMotion [30] 2019 67.7 66.9

DSTA-Net(ours) - 86.6 89.0

data. For example, for the two classes of reading and writing, the humans are
both in a same posture (standing or sitting) and holding a book. The only dif-
ference is whether there is a pen in the hand, which cannot be captured through
the skeletal data. On NTU-120 dataset (Tab. 5), our model also achieves state-
of-the-art performance. Since this dataset is released recently, our method can
provide a new baseline on it.

5 Conclusion

In this paper, we propose a novel decoupled spatial-temporal attention net-
work (DSTA-Net) for skeleton-based action recognition. It is a unified framework
based solely on attention mechanism, with no needs of designing hand-crafted
traversal rules or graph topologies. We propose three techniques in building
DSTA-Net to meet the specific requirements for skeletal data, including spatial-
temporal attention decoupling, decoupled position encoding and spatial global
regularization. Besides, we introduce a skeleton-decoupling method to emphasize
the spatial/temporal variations and motion scales of the skeletal data, resulting
in a more comprehensive understanding for human actions and gestures.
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