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Abstract— Rehabilitation training combined with human psy-
chological and physiological information can enhance patients’
neural engagement. For this purpose, a facial expression and
muscle fatigue based rehabilitation training method is proposed
in this paper. Signals from major zygomaticus and corrugator
supercilii muscles are used for facial expression recognition, and
signals from rectus femoris and biceps femoris muscles are used
for fatigue level analysis. Facial expressions (positive, neutral,
and negative) are recognized by a classifier which is constructed
by wavelet packet features and neural network, and median
frequency (MF) is applied to analyze fatigue level. A passive
training mode and five-level active training modes are included.
Different training modes have different damping levels. When
the patient is with positive expression and without fatigue,
the damping will be raised automatically in order to increase
exercise difficulties and enhance the patient’s engagement; when
with negative expression and mild fatigue, damping will be
decreased properly to reduce exercise difficulties and ease
user’s burden to obtain more efficient training. Moreover,
when patient is severe fatigue, passive training is selected to
avoid overfatigue and muscle injury. Feasibility of the proposed
method is validated by the experiment conducted on the
platform of a damping adjustable treadwheel.

I. INTRODUCTION

Enhancing patient’s neural engagement plays an important
role in improving the functional outcome of technology-
assisted rehabilitation [1]. Many methods, including mo-
tor imagery [2] and steady state visual evoked potential
(SSVEP) [3] based brain computer interfaces (BCI) and
virtual reality [1], have been introduced for this purpose.
Affection computing can also be used to enhance neural
engagement by monitoring and optimizing emotional states
[4]. In the traditional training mode modification methods
(eg. rehabilitation training modes adjusted by the patient’s
motion intention [5]), patients’ psychological or physiologi-
cal change usually hasn’t been considered, which will lead to
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low engagement and inefficient training. Facial expressions
can reflect emotional states and can be used to modify
training modes to maintain or improve engagement; muscle
fatigue information can embody patient’s training intensity,
thus it can be used to avoid overfatigue and muscle injury.
Therefore, these two kinds of signals are applied to modify
training modes, and to improve patients’ neural engagement
accordingly.

Facial expression, a non-verbal psychological signal, plays
an important role in social information exchange [6]. A
number of factors, such as emotion elicitation and labeling
methods, can affect the recognition precision and should be
considered. Several approaches based on image processing
or video analysis have been used to capture and analyze
patients’ facial expression [7][8][9]. The limitation of these
methods is that they require cameras placed towards patients’
faces, and the recognition performance is easily affected by
the light quality. Human physiological signals, especially
electroencephalogram (EEG) and sEMG, have also been
used for facial expression recognition. On one hand, EEG
signals can reflect the user “inner” ture emotions, but the
signals are too weak (microvolt level) and easily disturbed
by environment and internal noise (e.g. emotional fluctu-
ation and artifacts). On the other hand, sEMG method is
more efficient and robust due to the higher amplitude (0-
10 millivolt) and broader bandwidth (0-500 hz); moreover,
compared to the methods based on image processing or video
analysis, the high temporal resolution attribute of sEMG
signals also makes it suitable for emotion recognition. Thus,
sEMG sensors are used to capture facial expressions at real
time in this paper.

During the rehabilitation training session, muscles may
be injured because of the overfatigue caused by excessive
amount of exercises and the inappropriate postures. Several
methods have been introduced for the detection of muscle
fatigue. Muscle stiffness sensors (MSS) can be used to
measure the change of the stiffness signals under different
muscle fatigue conditions, thus can be used to analyze the
fatigue levels, but muscle stiffness signals are less sensitive
to muscle fatigue than other biosignals [10]. The analysis of
amplitude or frequency of sEMG signals can also be used
to detect muscle fatigue [11]. It has been proved that, with
the level of fatigue increasing, the amplitude of the sEMG
signal will get bigger and the median frequency (MF) will
move towards lower frequency areas. This phenomenon can
be used to detect the occurrence of muscle fatigue.
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This paper presents a novel method for online modifica-
tion of training modes, which is based on patients’ facial
expression and muscle fatigue information and has potential
to increase the engagement of patients. In section 2, the way
of data acquisition and signal denoising is introduced firstly;
then, a classifier for real-time facial expression recognition is
constructed by wavelet packet features and neural network;
moreover, the methods for muscle fatigue evaluation are
explained; modification scheme of the training modes is
introduced finally. A damping adjustable treadwheel is used
to conduct the experiment in section 3, based on which
feasibility of the proposed method is validated. In section
4, a brief discussion and future works are presented.

II. MATERIAL & METHODS

A. Data Acquisition and Signal Denoising

Delsys TrignoTM IM sensors are used to collect sEMG
data. Every electrode is equipped with a sEMG sensor and
an inertial measurement unit (IMU). The former is used
to record wireless sEMG signals with 1111.11 hz sample
rate, and the later is used to record inertial measurements
such as acceleration. In the experiment, data acquired from
sEMG sensors are used for facial expression recognition and
muscle fatigue detection. Two electrodes are placed on the
major zygomaticus muscle and corrugator supercilii muscle
for smiling and frown recognition respectively [12]; the other
two electrodes are placed on the rectus femoris and biceps
femoris muscle for lower limb fatigue analysis [13]. Some
precautions should be taken into account in order to get
high quality signals. For example, the skin areas for placing
electrodes should be cleaned to improve the signal-to-noise
ratio.

Four healthy subjects (3 males and 1 female, aged between
22 and 25 years old) participated in the experiment. It is
required that the subjects should have a good rest the day
before experiment. The facial expression and muscle fatigue
signals during treadmill training were recorded respectively
(facial expression: 20 sets of data per subject, 1.5 seconds
per set; fatigue signal: the subjects performed treadmill
training until exhausted, ensuring that severe muscle fatigue
occurred). The raw signals are band-passed filtered by a six-
order butterworth filter with a frequency band between 10
hz and 400 hz which can cover the most important sEMG
spectrum [14], and slow transients can also be reduced. Then
a six-order butterworth bandstop filter is applied to filter out
50 hz power frequency interference.

B. Facial Expression: Feature Extraction and Classification

Referring to the previous research [15], wavelet packet
(WP) features and a three-layer neural network (NN) are used
to construct the classifier to obtain the high classification
accuracy in this paper.

After denoise processing of the two-channel facial expres-
sion signals, these data are decomposed by a 3-order wavelet
packet firstly. Then the first three root nodes of each channel,
which can reconstruct signals with frequency band between 0
hz and 416.7 hz, are reserved (total nodes = channel number

× nodes/channel = 6). WP energy value of each node is
calculated finally and saved as the neural network input data.
For channel m, WP energy value (EV) of the node n is
calculated by

EV (m,n) =
∑
i

|(nodei(m,n))| (1)

where nodei represents the ith data of the node. And for the
three-layer NN, it has one input layer with 6 neurons, one
hidden layer with 10 neurons, and one output layer with 3
neurons. The transfer functions are logsigmoid for hidden
layer and purelin for output layer.

C. Evaluation of Muscle Fatigue

As a good response to the patient’s engagement and
training intensity, muscle fatigue conditions should be mon-
itored at real time to avoid overfatigue and muscle injury.
Based on the previous work [11], MF, a frequency-domain
analysis method, is applied to estimate the fatigue level. After
the signal denoising, the time-domain signals are converted
into frequency-domain signals by fast Fourier transformation
(FFT) firstly. Then power spectral density (PSD) and MF
were calculated in turns. For signal s(t), the MF can be
calculated as follows [11]:

psd(f) = |fft(s(t))|2 =

∣∣∣∣∫ +∞

−∞
s(t)e−j2πftdt

∣∣∣∣2 (2)

∫ MF

0

psd(f)df =

∫ ∞
MF

psd(f)df =
1

2

∫ ∞
0

psd(f)df (3)

After MF calculation, a 10-order polynomial fitting
method based on least mean square criterion is applied for
fatigue condition analysis.

Relative change rate of the MF (∆MF) is applied to
quantify muscle fatigue.

∆MF (t) =
MF (t0)−MF (t)

MF (t0)
(4)

where t0 means the time of start training and t means the
duration of the experiment.

D. Adjustment Scheme of Training Modes

Passive training and five-level active training are included
in the training modes. In the passive training, rehabilitation
robot will run with a fixed velocity. And in the active training,
with the training level increased (level 1 to 5), the damping
will be raised gradually (level 1 to 5). The training modes
are determined by the subject’s facial expression and muscle
fatigue level, and the specific modification strategy are given
in table I.

According to [16][17] and subject’s description about
fatigue feeling during the experiment, we defined that mild
fatigue occurred when ∆MF is greater than 0.21, and sever
fatigue occurred when ∆MF is greater than 0.35.

Once severe fatigue is detected, passive training mode will
be chosen regardless of subject’s facial expression, in order
to avoid the occurrence of overfatigue which can lead to
muscle injury.
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TABLE I
RELATIONSHIP AMONG FACIAL EXPRESSIONS, MUSCLE FATIGUE AND

TRAINING MODES (TM)

Expression

TM Fatigue

Without fatigue Mild fatigue Severe fatigue

Positive Up+ Keep Passive training
Neutral Keep Keep Passive training
Negitive Down- Down- - Passive training

Note: “Keep” means keep the current training level; “Up+” / “Down-”
means increase or decrease training one level; “Down- -” means decrease
training two levels.

Fig. 1. The placement of the electrods in treadmill training

As for active training, the relationship among force (F)
imposed by patient, system damping (d), and velocity (v)
can be given by :

v =
F
d

(5)

It can be seen from (5) that, with the damping increasing,
patients need to apply a greater interaction force to maintain
the current training velocity. Consequently, in the modifica-
tion of training modes, when user is with positive emotion
and without fatigue, the damping will be increased one level
automatically in order to increase exercise difficulties and en-
hance patients’ engagement; when with negative expression
and mild fatigue, damping will be decreased two levels to
reduce exercise difficulties and ease user’s burden to obtain
more efficient training.

III. EXPERIMENT AND RESULT

A. Experiment Setup

A treadwheel is used in this experiment and its damping
is adjustable. Prior to the experiment, four EMG electrodes
were placed on the subjects’ faces (major zygomaticus and
corrugator supercilii muscles) and legs (rectus femoris and
biceps femoris muscles), and the actual electrodes’ place-
ment is given by Fig. 1. Subjects are asked to do treadmill
training and signals captured by the EMG electrodes are
recorded at real time.

System control block diagram is given in Fig. 2. First, the
four-channel signals, which have been denoised by filters,
are segmented by sliding windows (facial expression: a 800
ms sliding window with 150 ms offset; muscle fatigue: a
30 s sliding window with 15 s offset). Then, the real-time
facial expression data segment is imported into the trained

classifier to identify the expression, meanwhile, the muscle
fatigue level is calculated by (4). Finally, according to the
result of facial expression recognition and muscle fatigue
level, the training mode (passive training or five-level active
training) is adjusted at real time according to table I.

B. Results
One of the volunteers’ real-time parameters variations are

shown in Fig. 3. First, the default training mode is active
training, and damping level is three. Except the moments
when local details of the facial expression signals are shown,
the subject is detected with neutral expression and without
or mild fatigue, thus the damping level is maintained all
the time. At the time of 1.3 minutes, subject is detected
with positive expression and without fatigue, so the damping
level is increased one level. The other conditions at the
5.6, 9.8, 14.1 or 19.2 minutes can also be explained by
table I. Particularly, at the minutes of 9.8, the damping has
reached its maximum level. Even though positive expression
is detected, the damping level is still maintained instead
of increased. From Fig. 3 we can see, severe fatigue is
not occurred for the volunteer during the 20-min treadmill
training, thus passive training mode is not be used in this
exercise. Combining subject’s current facial expression and
muscle fatigue condition, training modes of the treadmill can
be switched smoothly by subjects at real time.

IV. DISCUSSION & FUTURE WORK

An online modification of training modes, which is based
on facial expression and muscle fatigue information, is
presented in this paper. To enhance patients’ engagement, the
previous research mainly focused on monitoring and improv-
ing patients’ emotion or facial expression during the training,
and patients’ muscular capacity is rarely taken into account
simultaneously, which will inevitably leads to overfatigue.
For example, some patients are too eager to recovery, even
when their muscle is overfatigue or injury, they can still keep
in a good mood to proceed with rehabilitation training, and
this condition can be avoided in our proposed method.

Affection computing has been widely researched, however
patients’ specific emotion inducement or labeling methods
during rehabilitation training, are relatively less studied. Pa-
tients’ emotions are very complex and closely related to the
actual training environment and methods. General emotion
induced methods ( such as music-induced, picture-induced,
or video-induced methods) are difficult to induce patients’
real emotion during rehabilitation training well. Some new
paradigms should be investigated for patients’ emotion in-
duction and labeling. What’s more, detailed method to quan-
tify muscle fatigue conditions will be carried out in the future
to accurate understand patient’s physical states. Realization
of the proposed method in our lower limb rehabilitation robot
will also be conducted in the future.
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Muscle fatigue evaluation

• Median frequency (MF) calculation
• MF calculation

Signal denoising
• Wavelet packet feature extraction
• Neural network classifier

Table  
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Training mode selection 

Real-time Data Acquisition

Real-time 
damping 
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Fig. 2. System control block diagram
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