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Abstract
Multi-channel deep clustering (MDC) has acquired a good per-
formance for speech separation. However, MDC only applies
the spatial features as the additional information, which does
not fuse them with the spectral features very well. So it is dif-
ficult to learn mutual relationship between spatial and spectral
features. Besides, the training objective of MDC is defined at
embedding vectors, rather than real separated sources, which
may damage the separation performance. In this work, we deal
with spatial and spectral features as two different modalities.
We propose the gated recurrent fusion (GRF) method to adap-
tively select and fuse the relevant information from spectral and
spatial features by making use of the gate and memory mod-
ules. In addition, to solve the training objective problem of
MDC, the real separated sources are used as the training ob-
jectives. Specifically, we apply the deep clustering network to
extract deep embedding features. Instead of using the unsu-
pervised K-means clustering to estimate binary masks, another
supervised network is utilized to learn soft masks from these
deep embedding features. Our experiments are conducted on
a spatialized reverberant version of WSJ0-2mix dataset. Ex-
perimental results show that the proposed method outperforms
MDC baseline and even better than the oracle ideal binary mask
(IBM).
Index Terms: Multi-channel deep clustering, speech separa-
tion, deep attention fusion, deep embedding features

1. Introduction
Speech separation is known as the cocktail party problem [1],
which aims to estimate the target sources from a noisy mixture.
To address this problem, there are many works have been done
and made significant advances, such as deep clustering (DC)
[2, 3], permutation invariant training (PIT) [4, 5], Conv-TasNet
[6] and end-to-end post-filter with deep attention fusion features
[7, 8]. They all do not use the spatial information because they
are monaural speech separation methods. As for the multiple
microphones, they contain the directional information of each
source. Therefore, the spatial features can be leveraged to the
multi-channel speech separation. In this work, we focus on the
multi-channel speech separation.

Recently, to utilize the spatial information, many works
have been done for multi-channel speech separation [9, 10, 11,
12, 13]. Multi-channel deep clustering (MDC) [14] extends the
DC to multi-channel. DC [2] is a single channel speech separa-
tion technique. It trains a bidirectional long-short term memory
(BLSTM) network to map the mixed spectrogram into an em-
bedding space. At testing stage, the embedding vector of each

time-frequency (T-F) bin is clustered by K-means to obtain bi-
nary masks. Different from DC, MDC uses the interchannel
phase differences (IPDs) [15] as the additional spatial features
to the separation model. In other words, MDC applies not only
spectral but also the spatial features as the input for better sepa-
ration. Although MDC can separate the mixture well, there are
still two limitations. Firstly, MDC only uses the spatial features
as the additional information, which is difficult to learn mutual
relationship between spatial and spectral features. Secondly, the
training objective of MDC is defined at the embedding vectors,
rather than real separated sources. These embedding vectors do
not necessarily imply the perfect separation of sources in signal
space.

Motivated by [16] and our previous work [17], we pro-
pose a spatial and spectral features gated recurrent fusion (GRF)
method for multi-channel speech separation using deep em-
bedding representations. Different from MDC only using the
IPDs as the additional features, we utilize the GRF algorithm
to fuse the spectral and spatial features as two different modal-
ities. Therefore, the GRF could learn to adaptively select and
fuse the relevant information from spectral and spatial features
by making use of the gate and memory modules. In addition,
to address the training objective problem of MDC, motivated
by our previous work [17], we apply the deep embedding repre-
sentations for multi-channel speech separation. Specifically, the
MDC network is utilized to extract deep embedding represen-
tations. Instead of using the unsupervised K-means clustering
algorithm to estimate binary masks, the supervised utterance-
level PIT (uPIT) [5] network is applied to learn soft masks from
these deep embedding representations. Therefore, the separa-
tion model can use the real separated sources as the training
objective. Finally, to reduce the distance between the same
speakers and increase the distance between different speakers,
the discriminative learning [18, 19, 20] is utilized to fine-tune
the separation model.

To summarize, the main contribution of this paper is two-
fold. Firstly, we deal with the spectral and spatial features as
two different modalities and apply the gated recurrent fusion al-
gorithm to fuse them deeply. Secondly, the MDC is applied
to extract deep embedding representations. And another su-
pervised uPIT network with discriminative learning is used to
learn target masks instead of the unsupervised K-means cluster-
ing. Therefore, the separation model can use the real separated
sources as the training objective.

The rest of this paper is organized as follows. Section
2 presents the multi-channel deep clustering. The proposed
method is stated in section 3. Section 4 shows detailed experi-
ments and results. Section 5 draws conclusions.
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Figure 1: (a) Overall schematic diagram of our proposed method for multi-channel speech separation. (b) Schematic diagram of Gated
Recurrent Fusion, which fuses the spatial and spectral features as two different modalities.

2. Multi-channel deep clustering
The aim of single-channel deep clustering (DC) [2, 3] is to map
the mixture spectrogram into a high-dimensional embedding V
for each T-F bin by a deep neural network (DNN). The loss
function of DC is defined as follows:

JDC = ||V V T −BBT ||2F
= ||V V T ||2F − 2||V TB||2F + ||BBT ||2F

(1)

where B ∈ R
TF×S is the source membership function for each

T-F bin, i.e.,Btf,s = 1, if source s has the highest energy at time
t and frequency f compared to the other sources. Otherwise,
Btf,s = 0. S is the number of sources. || ∗ ||2F is the squared
Frobenius norm.

The difference between single-channel DC and multi-
channel DC (MDC) is the input features. As for the single-
channel DC, only the mixture spectrogram |Y (t, f)| is used as
the input feature: ζDNN = {|Y (t, f)|}. As for the MDC, the
phase difference between two microphones, θi(t, f) (i is the
index of a microphone pair), is applied as an additional input
feature as follows:

ζDNN = {|Y (t, f)|; cosθi(t, f); sinθi(t, f)} (2)

Besides, when the number of microphone Nm > 2, MDC
firstly chooses a reference microphone and each pair θi(t, f) is
computed between a reference and non-reference microphone.
Therefore, there will be Nm − 1 embeddings. When these em-
beddings are stacked at each T-F bin, the K-means clustering
is applied to estimate binary masks. Finally, these masks are
utilized to the reference microphone signal for separation.

3. The proposed separation method
In this section, we present our proposed spatial and spec-
tral features with gated recurrent fusion (GRF) algorithm for

speech separation using deep embedding representations, which
is shown in Fig. 1(a). Instead of simply stacking the spatial
and spectral features, the GRF algorithm is utilized to combine
them deeply, which deals with them as two different modali-
ties. Therefore, the GRF could learn to adaptively select and
fuse the relevant information from spectral and spatial features
by making use of the gate and memory modules. In addition, to
address the training objective problem of MDC, the real sepa-
rated sources are used as the training objectives, which uses the
deep embedding representations for multi-channel speech sep-
aration. Finally, the discriminative learning is used to educe the
distance between the same speakers and increase the distance
between different speakers.

3.1. Gated Recurrent Fusion

As shown in Fig. 1(a), the spectral features |Y (t, f)| and spa-
tial IPDs {cosθi(t, f); sinθi(t, f)} are firstly processed by the
BLSTM network to acquire the deep representations. These
spectral and spatial deep representations are denoted by ry and
rθi , respectively. We apply the GRF to fuse the spectral and
spatial features as two different modalities. The gate structure
in gated recurrent unit (GRU) [21] enables the selective fusion
of multi-modal features. In this paper, we extend the GRU as
our GRF block and modify it to fit the feature fusion.

As shown in Fig. 1(b), at fist step (left), GRF block takes
one of the spatial features as input. The outputs of this step will
be used as the hidden state. Then, in the second step (right),
GRF fusion block takes the spectral features as input. These
two steps reuse the GRF block and share the same set of pa-
rameters. The GRF block consists of reset gate, update gate,
adaptive memory and selective fusion.

As for the reset gate, at step p, the hidden state hp and the
input rθi together to decide the status of the reset gate r by

r = σ(Wr, (rθi , hp)) (3)
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where σ denotes the sigmoid function, Wr is the weight of reset
gate.

The update gate z is also decided by the hidden state hp and
input features rθi .

z = σ(Wz, (rθi , hp)) (4)

where Wz is the weight of update gate.
As for adaptive memory, through the element-wise product

�, the reset gate r determines how much information in the past
needs to be memorized.

h
′
p = r � hp (5)

hc
p = tanh(Wh(rθi , h

′
p)) (6)

where hc
p acts similarly to the memory cell in the LSTM and

helps the GRF block to remember long term information within
the multi-stage fusion.

The selective fusion aims to combine the rθi and hp. The
fusion result at step p is

hq = z � hp + (1− z)� hc
p (7)

In this way, the forget gate z and the input gate (1 − z) are
linked. That is, if the previous information is ignored with a
weight of z , then the information for the current input hc

p would
be selected with a weight of (1− z).

In this paper, we use the 4-stage GRF. The first stage, we
randomly initialize the hidden state hp. After the 4-stage GRF,
we can acquire the fusion features: fGRF = hp. Finally, the
fusion features fGRF and these spectral and spatial deep repre-
sentations (ry and rθi ) are used as the GRF features. They are
applied to extract the deep embedding representations.

3.2. Deep Embedding Representations for Separation

Clusters in the embedding space of MDC can represent the in-
ferred spectral masking patterns of individual sources. In this
paper, we utilize the MDC network to extract deep embedding
representations, which contain the information of each source
and are conducive to speech separation. The D-dimensional
deep embedding representations Vi (i is the index of a micro-
phone pair) can be extracted as follows:

Vi = ξBLSTM{ry; f
GRF ; rθi} (i = 1, 2, ..., Nm − 1) (8)

where ξBLSTM denotes the mapping of BLSTM network.
In order to address the training objective problem of

MDC, instead of using the unsupervised K-means cluster-
ing, the supervised uPIT network is applied to estimate soft
masks from these deep embedding representations. When the
V1, V2, ..., VNm−1 are stacked, they are sent to the uPIT net-
work: ζuPIT = {V1, V2, ..., VNm−1}. The uPIT network com-
putes the mean square error (MSE) for all possible speaker per-
mutations at utterance-level. Then the minimum cost among all
permutations (P) is chosen as the optimal assignment.

φ∗ = argmin
P

S∑
s=1

|||Y | � M̃s − |Xs|cos(θy − θs)||2F (9)

where the number of all permutations P is S! (! denotes the fac-

torial symbol). M̃s is the estimated phase sensitive mask (PSM)
[22] of source s. θy and θs are the reference microphone phase
of mixture speech and target source s. |Xs| is the spectrogram
of target source s.

3.3. Discriminative Learning and Joint Training

To reduce the distance between the same speakers and increase
the distance between different speakers, discriminative learning
(DL) is applied to our proposed model. The DL loss function
can be defined as follows:

JDL = φ∗ −
∑

φ�=φ∗,φ∈P

αφ (10)

where φ is a permutation from P but not φ∗, α ≥ 0 is the
regularization parameter of φ. When α = 0, the loss function
is same as the φ∗ in Eq. 9. It means without DL.

To extract embedding features effectively, we apply the
joint training framework to the proposed system. The loss func-
tion of joint training is defined as follows:

J = λJDC + (1− λ)JDL

= λJDC + (1− λ)(φ∗ −
∑

φ�=φ∗,φ∈P

αφ) (11)

where λ ∈ [0, 1] controls the weight of JDC and JDL.

4. Experiments and Results
4.1. Dataset

The room impulse response (RIR) generator 1 is used to spa-
tialize the WSJ0-2mix dataset [2]. The dataset consists of three
sets: training set (20,000 utterances about 30 hours), valida-
tion set (5,000 utterances about 10 hours) and test set (3,000
utterances about 5 hours). Specifically, the training and valida-
tion sets are generated by randomly selecting utterances from
WSJ0 training set (si tr s). Similar as generating training
and validation set, the test set is created by mixing the utterances
from the WSJ0 development set (si dt 05) and evaluation set
(si et 05).

The RIR is generated using the image-source method [23]
with a linear microphone array with 4 microphones. The re-
verberation time RT60 is set to 0.16s. The distances between 4
microphones are 4-8-4 cm. For any two speakers, we constrain
them to be at least 45° apart. We mix the images of two speak-
ers with signal-to-noise ratios (SNRs) between -5dB and 5dB.
The average distance between a source and array center is set to
1m.

4.2. Experimental setup

The first channel is used as the reference microphone. The sam-
pling rate of all generated data is 8 kHz. The short-time Fourier
transform (STFT) has 32 ms length hamming window and 8 ms
window shift.

The proposed method contains 4 BLSTM layers, each with
600 units in each direction. More specifically, as for the deep at-
tention fusion module, there is only one BLSTM layer for spec-
tral and spatial, respectively. As for the DC network, there is
also only one BLSTM layer. As for the uPIT network, there are
two BLSTM layers. The dimension D of the embeddings is set
to 20 per T-F bin [14]. The regularization parameter α of dis-
criminative learning is set to 0.1. And the joint training weight
λ is set to 0.01.

In this work, the models are evaluated on the signal-to-
distortion ratio (SDR) [24], the perceptual evaluation of speech
quality (PESQ) [25] measure and the short-time objective intel-
ligibility (STOI) measure [26].

1Available online at https://github.com/ehabets/RIR-Generator
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Table 1: The results of SDR, PESQ and STOI for different separation methods for different gender combinations. The “MDC+GRF”
means that the MDC applies the GRF for spatial and spectral features. The “MDC+GRF+uPIT” means that the uPIT loss is used in
MDC+GRF. The “MDC+GRF+uPIT+DL” means that the discriminative learning is used in MDC+GRF+uPIT.

Methods
Male-Female Female-Female Male-Male AVG.

SDR(dB) PESQ STOI(%) SDR(dB) PESQ STOI(%) SDR(dB) PESQ STOI(%) SDR(dB) PESQ STOI(%)

Mixture 0.15 1.32 61.26 0.16 1.37 62.38 0.15 1.30 61.74 0.15 1.33 61.59

MDC(baseline) 12.7 2.70 89.75 13.0 2.81 90.95 11.9 2.55 89.67 12.5 2.68 89.94

MDC+GRF 13.0 2.74 90.03 13.4 2.84 91.21 12.1 2.59 89.96 12.8 2.71 90.22
MDC+GRF+uPIT 14.5 3.39 93.36 15.0 3.44 95.08 13.6 3.32 93.49 14.4 3.38 93.70

MDC+GRF+uPIT+DL 14.7 3.40 93.58 15.2 3.45 95.24 13.8 3.33 93.73 14.5 3.39 93.92

IBM 13.7 3.29 91.77 14.2 3.36 93.75 12.8 3.17 91.05 13.5 3.26 91.91
IAM 13.0 3.80 95.44 13.4 3.79 96.38 12.0 3.82 95.19 12.8 3.80 95.53
IPSM 16.7 4.05 96.40 17.1 4.05 97.15 15.7 4.04 95.71 16.5 4.05 96.33

We apply the MDC [14] as our baseline and re-implement
it with our experimental setup. More specifically, the MDC has
4 BLSTM layers with 600 units, which is same as the proposed
method. As for the test, unsupervised K-means clustering is
always performed on the entire utterance to acquire a binary
mask for speech separation.

All models contain random dropouts with a dropout rate
0.5. Each minibatch contains 8 randomly selected utterances.
The number of epoch is 20. The learning rate is initialized
as 0.00001. Our models are implemented using Pytorch deep
learning framework 2.

4.3. Experimental results
Table 1 shows the results of SDR, PESQ and STOI for dif-
ferent separation methods and different gender combinations.
The “MDC+GRF” means that the MDC applies the GRF
for spatial and spectral features. The “MDC+GRF+uPIT”
means that the uPIT loss is used in MDC+GRF. The
“MDC+GRF+uPIT+DL” means that the discriminative learn-
ing is used in MDC+GRF+uPIT. In addition, the last three rows
present the results of the ideal binary mask (IBM), ideal am-
plitude mask (IAM) [5] and the ideal PSM (IPSM), which are
oracle masks.

4.3.1. Evaluation of gated recurrent fusion

From Table 1 we can find that when the gated recurrent fu-
sion is applied to the MDC, the performance of speech sepa-
ration can be improved no matter what gender combinations for
these three evaluation metrics. For example, the average SDR
of “MDC+GRF” can be increased from 12.5 to 12.8 compared
with the MDC method. This result indicates that this GRF al-
gorithm is effective for speech separation. The reason is that
the GRF fuses the spectral and spatial features as two different
modalities. Therefore, the GRF could learn to adaptively select
and fuse the relevant information from spectral and spatial fea-
tures by making use of the gate and memory modules. In other
words, it combines the spectral and spatial features deeply. So
compared with the MDC method, the proposed “MDC+GRF”
method can acquire a better speech separation performance.

4.3.2. The effectiveness of our proposed method

From Table 1 we can make several observations. Firstly,
compared with the MDC baseline method, the performance
of the proposed methods can be significantly improved.

2Available online at https://pytorch.org/

More specifically, compared with the MDC, the proposed
“MDC+GRF+uPIT+DL” method obtains 16.0%, 26.5% and
4.4% relative improvements in SDR, PESQ, and STOI, respec-
tively. Secondly, we surprisingly find that the results of the
proposed “MDC+GRF+uPIT+DL” method are better than us-
ing the oracle mask of IBM. Note that these IBM results are
the limit results of MDC baseline method. These results indi-
cate the effectiveness of the proposed method. Thirdly, when
the deep embedding representations (“MDC+GRF+uPIT”) are
applied, the separation performance can be improved. This is
because that these deep embedding representations contain the
potential information of each target source so that they can ef-
fectively estimate the masks of target sources. Therefore, these
deep embedding features are discriminative features for speech
separation. In addition, the separation model can use the real
separated sources as the training objective. Finally, no mat-
ter what gender combinations, our proposed speech separation
method can acquire better results than the baseline method.
These results reveal that our proposed method has an effective
ability to reconstruct target sources for all of the gender combi-
nations.

5. Conclusions
In this paper, we propose a spatial and spectral gated recur-
rent fusion method for multi-channel speech separation using
deep embedding representations. The GRF fuses the spectral
and spatial features as two different modalities. In addition, to
address the training objective problem of MDC, the MDC is
applied to extract deep embedding representations. Instead of
utilizing the unsupervised K-means clustering, the supervised
uPIT network is used to learn soft target masks. Results show
that the proposed method outperforms MDC baseline, with rel-
ative improvements of 16.0%, 26.5% and 4.4% in SDR, PESQ,
and STOI, respectively. Besides, the proposed method is even
better than the oracle IBM. In the future, we will explore phase
enhancement based on the proposed method.
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