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Abstract
The challenge in deep learning for speaker independent speech
separation comes from the label ambiguity or permutation prob-
lem. Utterance-level permutation invariant training (uPIT) tech-
nique solves this problem by minimizing the mean square error
(MSE) over all permutations between outputs and targets. It is a
state-of-the-art deep learning architecture. However, uPIT only
minimizes the chosen permutation with the lowest MSE, not
discriminates it with other permutations. This may lead to in-
crease the possibility of remixing the separated sources. In this
paper, we propose a uPIT with discriminative learning (uPIT-
DL) method to solve this problem by adding one regularization
at the cost function. In other words, we minimize the difference
between the outputs of model and their corresponding reference
signals. Moreover, the dissimilarity between the prediction and
the targets of other sources is maximized. We evaluate the pro-
posed model on WSJ0-2mix dataset. Experimental results show
22.0% and 24.8% relative improvements under both closed and
open conditions compared with the uPIT baseline.
Index Terms: Utterance-level Permutation Invariant Training,
Discriminative Learning, BLSTM, Single Channel Speech Sep-
aration

1. Introduction
The human auditory system can easily segregate their interested
speech in a complex acoustic environment [1, 2, 3]. However,
such a problem, known as the cocktail party problem [4], seems
to be extremely difficult for machine.

Over the decades, many attempts have been made to solve
the cocktail-party problem. Inspired by the human auditory,
computational auditory scene analysis (CASA) [5] is proposed
to explain perceptual grouping of regions in terms of their sim-
ilarity [6]. Non-negative matrix factorization (NMF) [7] is an-
other popular technique, which aims to learn a set of nonneg-
ative bases that can be used to estimate mixing factors during
evaluation. However, both CASA and NMF not only rely on
accurate trackers but also increase computational complexity,
they have led to very limited success in multi-talker speech sep-
aration [8].

In recent years, deep learning has emerged as a powerful
learning method which achieves state-of-the-art performance in
many applications. Motivated by the success of deep learning,
many deep learning based methods are proposed for speech
separation recently [9, 10, 11, 12, 13]. However, for speaker-
independent multi-talker speech separation, the difficulty comes
from the label ambiguity or permutation problem. To solve this

problem, deep clustering (DPCL) [14] is proposed and achieves
competitive results. In DPCL, a bidirectional long-short term
memory (BLSTM) network is trained to assign contrastive em-
bedding vectors to each time-frequency (TF) bin of the spec-
trogram. During evaluation, TF bins of different speakers are
clustered by using K-means to obtain speaker-dependent mask.
And then masks are applied on the mixed signals to acquire the
speech of individual speakers. However, researchers assume
that each TF bin only belongs to one speaker in DPCL, which
is inappropriate. Another shortcoming of DPCL is that they de-
fine the objective function in the embedding space, which is
sub-optimal because it can’t train the model end-to-end. To
overcome this limitation, the deep attractor network (DANet)
[15] method is proposed. Its network forms attractor points in a
high-dimensional embedding space of the signal, and the simi-
larity between attractors and T-F embeddings is converted into
a soft separation mask. Unfortunately, the limitation of deep
attractor is that it has to estimate attractor points during test.

Recently, to solve the speaker-independent speech separa-
tion problem with end-to-end training [16], permutation invari-
ant training (PIT) [17] and utterance level PIT (uPIT) [18] are
proposed. The PIT method solves the label ambiguity problem
by minimizing the permutation with the lowest MSE at frame
level, but it does not solve the speaker tracing problem. To
solve the problem, the uPIT is proposed. With uPIT, however,
the permutation corresponding to the minimum utterance-level
separation error is used for all frames in the utterance. In other
words, the pair-wise scores are computed for the whole utter-
ance assuming all output frames follow the same permutation.
Therefore, uPIT doesn’t need to additional speaker tracing step
during inference. However, uPIT only minimizes the chosen
permutation with the lowest MSE, does not discriminates it with
the other permutations. This may lead to increase the possibility
of remixing the separated sources.

The high signal-to-interference ratio (SIR) can improve the
intelligibility of speech separation. Therefore, to have high SIR
and separate the speech better, many researchers explore dis-
criminative objective function by adding one regularization at
the cost function [19, 20, 21]. Motivated by those, in this paper,
we propose a uPIT-DL for single channel speaker-independent
speech separation. We add one regularization at the cost func-
tion following the uPIT, which is called discriminative learning.
We minimize the difference between the outputs of model and
their corresponding reference signals. Furthermore, we maxi-
mize the dissimilarity between the chosen permutation and the
other permutations. In other words, it discriminates the target
speaker with the other speakers. This helps in decreasing the

26978-1-5386-5627-3/18/$31.00 ©2018 IEEE ISCSLP 2018

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 09,2020 at 02:15:20 UTC from IEEE Xplore.  Restrictions apply. 



possibility of remixing the separated sources and also achieves
better separation for the estimated sources.

We evaluate the proposed method uPIT-DL on WSJ0-2mix
dataset. Experimental results show that uPIT-DL compares fa-
vorably to conventional uPIT and generalizes well over unseen
speakers. In other words, the proposed method uPIT-DL is a
speaker independent speech separation architecture, which is
similar to human.

The rest of this paper is organized as follows. In section 2,
masking based monaural speech separation is presented. The
details of the proposed model are described in section 3. Sec-
tion 4 introduces the experimental setup and results. Finally,
conclusions are drawn in Section 5.

2. Masking based monaural speech
separation

Monaural speech separation aims at separating a linearly mixed
single channel microphone signal y(t) into individual source
signals xs(t), s = 1, ..., S, where S is the number of source
signals. The relationship of the mixed signal y(t) and source
signals xs(t) can be represented as:

y(t) =

S∑
s=1

xs(t) (1)

The corresponding short-time Fourier transformation (STFT) of
those signals are Y (t, f) and Xs(t, f). The following relation-
ship is still satisfied after STFT

Y (t, f) =

S∑
s=1

Xs(t, f) (2)

Our aim is to estimate each source signal xs(t) from y(t)
or Y (t, f) . It is well-known that mask based speech separation
can obtain a better result [22]. According to the commonly used

masking method, the estimated magnitude |X̃s(t, f)| of each
source can be estimated by

|X̃s(t, f)| = |Y (t, f)| �Ms(t, f) (3)

where � indicates element-wise multiplication and Ms(t, f) is
the mask of source s. It is very difficult to estimate phase di-
rectly for speech separation and speech enhancement. There-

fore, the estimated magnitude |X̃s(t, f)| and the phase of mixed
signal are used to reconstruct each source signal by inverse
STFT (ISTFT).

3. Discriminative learning system based on
uPIT

In this paper, we propose a uPIT-DL system to estimate the
mask of each source as shown in Figure 1. First, the uPIT
model chooses the permutation with the lowest MSE. Then, a
regularization is added at the cost function following the uPIT,
which is called discriminative learning. With the discriminative
learning, the differences between the chosen permutation and
the other permutations are maximized. This helps in decreasing
the possibility of remixing the separated sources and achieves
better separation for the estimated sources.

Figure 1: The proposed uPIT-DL system architecture.

3.1. Mask and uPIT

We use the BLSTM network to estimate the mask of each source
signal. The ideal amplitude mask (IAM) which is a widely-
accepted mask for speech separation [18, 23] is utilized in this
paper. And it is defined as

MIAM
s (t, f) =

|Xs(t, f)|
|Y (t, f)| (4)

The IAM can achieve the highest SDR when the phase of each
source equals the phase of the mixed speech. However, in most
cases this assumption is unreasonable. Although IAMs satisfy
the constraint that 0 ≤ MIAM

s (t, f) < ∞, the majority of
the TF units are in the range of 0 ≤ MIAM

s (t, f) ≤ 1 [18].
Therefore, the output activation functions for estimating IAMs
can be softmax, sigmoid and ReLU.

As for uPIT, the training criterion is the MSE between the
estimated magnitude and true magnitude.

Jiam =
1

TF

S∑
s=1

|||Y | � M̃s − |Xs|||2F (5)

where TF is the total number of TF units over all sources and
||.||F is the Frobenius norm.

The uPIT solves the label ambiguity problem by choosing
the minimal cost among all permutations (P).

p̃ = argmin
p∈P

Jmask (6)

where Jmask is the Jiam.

3.2. Discriminative learning

For uPIT, minimizing Eq.6 is to make the predictions and the
targets more similar. However, the high SIR can improve the
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intelligibility of speech separation. Therefore, we explore dis-
criminative objective function that not only increase the simi-
larity between the prediction and its target, but also decrease
the similarity between the prediction and the targets of other
sources.

The discriminative learning maximizes the dissimilarity be-
tween the chosen permutation and the other permutations by
adding a regularization at the cost function. The cost function
of the proposed model is defined as

J = p̃−
∑

pi �=p̃,pi∈P

λipi (7)

where pi is a permutation from P but not p̃, λi ≥ 0 is the
regularization parameter of pi. When λi = 0, the proposed
uPIT-DL is same as the uPIT.

For two-talker speech separation, we assume that p1 is the
permutation with the lowest MSE. Therefore, when the IAM is
used, the cost function becomes as follow:

J = p1 − λp2

=
1

TF

∑
(||Y � M̃1 −X1||2F − λ||Y � M̃1 −X2||2F

+ ||Y � M̃2 −X2||2F − λ||Y � M̃2 −X1||2F )
(8)

From Eq.8 we can know that the discriminative learning
enlarges the distance of the target source with the other sources.
It means that it maximizes the differences between the target
speakers with the others.

Therefore, the proposed model with discriminative learning
minimizes the difference between the outputs of model and their
corresponding reference signals. Simultaneously, it maximizes
the dissimilarity between the target source and the others. So
the discriminative learning decreases the possibility of remixing
the separated sources and also achieves better separation.

4. Experiments and Results
4.1. Datasets

We evaluate the methods on the WSJ0-2mix dataset [14], which
is derived from WSJ corpus [24]. From the WSJ0 training set
si tr s, the 30h training set (20,000 utterances) and the 10h val-
idation set (5,000 utterances) consisting of two-speaker mix-
tures are generated by randomly selecting utterances by dif-
ferent speakers (50 male and 51 female speakers), and mixing
them at various signal-to-noise ratios (SNR) between 0dB and
5dB. From the WSJ0 development set si dt 05 and evaluation
set si et 05, the five hours test set (3,000 utterances) is gen-
erated similarly using utterances from 10 male and 8 female
speakers.

Speakers in the validation set are the same as those in the
training set, so we use the validation set to select the best model
from all epochs and to evaluate the source separation perfor-
mance in closed conditions (CC). Moreover, because the speak-
ers in the test set are different from those in the training set and
validation set, the test set is considered as open condition (OC)
evaluation.

4.2. Experimental setup

The sampling rate of all generated data is 8 kHz before process-
ing to reduce computational and memory costs. The 129-dim
log spectral magnitudes of the mixed speech are used as the

input features, which are computed using a short-time Fourier
transform (STFT) with 32 ms length hamming window and 16
ms window shift. The magnitudes of two targets are generated
in the same way.

In this paper, to train the model more quickly and reduce
the memory costs, 3 BLSTM layers with 128 units in each layer
are deployed. However, there is 896 units in [18]. The mask
estimation layer uses sigmoid as the activation function. All
models contain random dropouts with a dropout rate 0.5. Each
minibatch contains 20 randomly selected utterances. The num-
ber of epoch is set to 50. Our models are optimized with Adam
algorithm [25] and implemented using Tensorflow deep learn-
ing framework [26]. The learning rate is adjusted adaptively by
Adam algorithm.

4.3. Evaluation metric

In this work, in order to quantitatively evaluation speech sepa-
ration results, the models are evaluated on signal-to-distortion
ratio (SDR) and signal-to-interference ratio (SIR) which are the
BBS-eval [27] score. And they are widely used to evaluate
speech separation performance. The SDR is defined as follow:

SDR = 10log10
||starget||2

||einterf + enoise + eartif ||2 (9)

where starget = f(sj) is a version of the source sj modified
by an allowed distortion f ∈ F , and where einterf , enoise

and eartif are respectively the interferences, noise and artifacts
error terms.

The SIR is defined as follow:

SIR = 10log10
||starget||2
||einterf ||2 (10)

The normalized SDR (NSDR) is defined as:

NSDR(x̃, x, y) = SDR(x̃, x)− SDR(y, x) (11)

where x̃ is the separated speech, x is the original clean speech,
and y is the mixture.

The same as the NSDR, the normalized SIR (NSIR) is de-
fined as:

NSIR(x̃, x, y) = SIR(x̃, x)− SIR(y, x) (12)

We report the overall performance via global NSDR
(GNSR) and global NSIR (GNSIR) which are the weighted
means of the NSDRs and NSIRs (NSIR) respectively, over all
test clips weighted by their length. The higher values of SDR
and SIR represent the better separation performance.

4.4. Experimental results

4.4.1. uPIT-DL vs. conventional uPIT

Table 1 shows the result of GNSDR (same as ”SDR improve-
ment” in [17, 18]) and GNSIR (dB) improvement comparisons
between our proposed method and the uPIT approach on the
WSJ0-2mix database.

From table 1 we can make several observations. First,
when λ is 0.1, as for GNSDR, our proposed method uPIT-DL
achieves a better performance than conventional uPIT(λ = 0).
To be specific, the GNSDR of our proposed method uPIT-DL
(λ = 0.1) is 6.6 dB on closed condition and 6.7 dB on open
condition. However, as for the conventional uPIT(λ = 0), the
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GNSDR is 6.4 dB on both closed and open condition. This
indicates that our proposed method uPIT-DL can obtains a bet-
ter performance for speech separation. Since the discriminative
learning separates the target speaker with others, it provides a
constraint to ensure that the output frames of the same speaker
do not remix to the other speakers.

Second, from the GNSIR scores we can know that the dis-
criminative learning can significantly improve the performance
of speech separation compared with conventional uPIT. Both
the λ 0.1 and 0.3, the proposed method all perform better than
uPIT. Especially, when λ = 0.3, the proposed method achieves
12.2 dB and 12.5 dB GNSIR in closed and open condition. But
as for uPIT, it is only 10.0 dB and 10.1 dB. Compared with
uPIT, a further 22.0% and 24.8% relative improvement is ob-
tained under both closed and open condition. It shows the ef-
fectiveness of the proposed method.

Table 1: The result of GNSDR and GNSIR (dB) for different
separation methods on the WSJ0-2mix dataset with optimal as-
signment on closed (CC) and open (OC) condition. λ is the
regularization parameter of the proposed method

Method Mask λ
GNSDR GNSIR

CC OC CC OC

uPIT IAM 0 6.4 6.4 10.0 10.1
uPIT-DL IAM 0.1 6.6 6.7 11.4 11.5
uPIT-DL IAM 0.3 6.1 6.3 12.2 12.5

As an example, Figure 2 shows the spectrogram for a single
two-speaker test case along with spectrograms of clean speech
signal, uPIT model as well as the proposed model with differ-
ent λ. Notice that, compared with the spectrograms of clean
speech signals, the harmonics of the proposed model are pre-
served well, and the formant structures are seen to be effectively
preserved in the reconstructed speech. Those indicate that the
mixed signal is effectively separated by the proposed model. On
the other hand, uPIT can separate different speech stream from
mixed speech, but the formant structure is not clear compared
with the proposed method. For example, compared with (c)(d)
in Figure 2, we can see that in (b) some formant structures are
not reconstructed and some mixed speech is not separated very
well (marked in the black boxes).

4.4.2. uPIT-DL with different λ

From table 1 we can know that when λ gets larger, the value
of GSIR increases. This indicates that the proposed method can
improve the value of SIR for speech separation. However, when
λ is 0.3, the uPIT-DL achieves worse performance than uPIT for
GNSDR. The reason is that after several epochs, the value of p̃
in Eq.9 is very small and closes to zero so that the cost function
becomes as follow:

J ≈ −
∑

pi �=p̃,pi∈P

λipi (13)

There is no information about the target sources. If the value
of λ is too large, the model would maximize the dissimilarity
between the target source and the others only. Therefore, it will
lead to over-fitting.

5. Conclusions
In this paper, we propose a discriminative objective function
in uPIT for single channel speaker independent multi-talker

Figure 2: An example of target, conventional uPIT, the proposed
system with λ 0.1 and 0.3 spectrogram for a speech segment
from the test set. (a):spectrogram of the target speech signal;
(b):uPIT(λ = 0); (c):uPIT-DL0.1 (λ = 0.1); (d):uPIT-DL0.3
(λ = 0.3).

speech separation. Different from the conventional uPIT model,
our proposed model not only minimizes the chosen permutation
with the lowest MSE, but also discriminates it with the other
permutations. In other words, we minimize the difference be-
tween the outputs of model and their corresponding reference
signals. Simultaneously, we maximize the dissimilarity be-
tween the prediction and the targets of other sources. The exper-
imental results show that our proposed model achieves 22.0%
and 24.8% relative improvements under both closed and open
conditions comparing with the uPIT baseline. This demon-
strates that the discriminative learning can improve the per-
formance of speech separation. In the future, we will explore
the combination of pitch with the proposed method for multi-
channel speech separation.
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