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Abstract
Recurrent neural networks (RNNs) have shown significant im-
provements in recent years for speech enhancement. However,
the model complexity and inference time cost of RNNs are
much higher than deep feed-forward neural networks (DNNs).
Therefore, these limit the applications of speech enhancement.
This paper proposes a deep time delay neural network (TDNN)
for speech enhancement with full data learning. The TDNN has
excellent potential for capturing long range temporal contexts,
which utilizes a modular and incremental design. Besides, the
TDNN preserves the feed-forward structure so that its inference
cost is comparable to standard DNN. To make full use of the
training data, we propose a full data learning method for speech
enhancement. More specifically, we not only use the noisy-
to-clean (input-to-target) to train the enhanced model, but also
the clean-to-clean and noise-to-silence data. Therefore, all of
the training data can be used to train the enhanced model. Our
experiments are conducted on TIMIT dataset. Experimental re-
sults show that our proposed method could achieve a better per-
formance than DNN and comparable even better performance
than BLSTM. Meanwhile, compared with the BLSTM, the pro-
posed method drastically reduce the inference time.
Index Terms: TDNN, speech enhancement, full data learning,
DNN, BLSTM

1. Introduction
The performance of speech processing applications in domains
such as automatic speech and speaker recognition, speech cod-
ing and hearing aids degrades significantly when the test data is
noisy [1]. Therefore, speech enhancement is extremely essen-
tial for speech processing applications.

Over the years, motivated by the success of deep learn-
ing, researchers have developed many deep learning techniques
for speech enhancement, such as deep feed-forward neural net-
works (DNNs) [2, 3], deep denoising auto-encoders [4], recur-
rent neural networks (RNNs) [5, 6] and convolutional neural
networks (CNNs) [7]. RNNs [8] can make full use of histori-
cal information and capture long-term dependencies in sequen-
tial data by means of a dynamically changing context window
over all of the sequence, especially for long short-term memory
(LSTM) [9] and bidirectional LSTM (BLSTM) [10]. However,
because of the recurrent connections in the RNNs, compared
with DNNs, the model complexity of RNNs is much higher. In
addition, the training and inference time cost are exceedingly
longer than DNNs.

Different from DNNs that only use a fixed and small context
window as the input, the time delay neural network (TDNN)

has an effective ability in capturing long range temporal con-
texts [11, 12, 13]. The architecture of TDNN applies a modular
and incremental design in order to create a larger network from
sub-components [14]. What’s more, the training and inference
time of TDNN are comparable with DNNs because the TDNN
preserves the feed-forward structure [12].

Usually, speech enhancement is a part of the front-end for
speech processing applications. Therefore, the model of speech
enhancement should be low latency. However, it is very difficult
to reduce the model complexity while ensuring performance. In
order to address this issue, in this paper, we propose a full data
learning method for speech enhancement based on the TDNN.
To improve the performance of speech enhancement, we inves-
tigate the influences of different temporal context windows in
each TDNN layer. Most of the speech enhancement methods
only use the noisy-to-clean (input-to-target) data to train their
model but the clean-to-clean data and noise-to-silence data are
not used. In order to make full use of the training data, the full
data learning is proposed. More specifically, we not only use
the noisy data, but also the clean and noise data. The target of
speech enhancement is to remove noise from noisy speech. If
the input of the system is clean data, the output should be same
as the input. Conversely, if the input of the system is noise data,
the output should be the silence. Therefore, we use this trick to
improve the performance of speech enhancement. To our best
knowledge, it is the first time to use this trick for speech en-
hancement.

The rest of this paper is organized as follows. In section 2,
our baseline DNN/BLSTM based speech enhancement system
is introduced. Section 3 describes the proposed deep TDNN
speech enhancement system. Section 4 shows detailed experi-
ments and results. Section 5 draws conclusions.

2. DNN/BLSTM based speech enhancement
system

The aim of speech enhancement is to remove the additive noise
signal from the noisy speech. The noisy speech can be repre-
sented as:

y(t) = x(t) + n(t) (1)

where y(t), x(t) and n(t) note the noisy, clean and noise sig-
nals, respectively. The corresponding short-time Fourier trans-
formation (STFT) of those signals are Y (t, f), X(t, f) and
N(t, f). The following relationship is still satisfied after STFT

Y (t, f) = X(t, f) +N(t, f) (2)

As for speech separation task, it is well known that mask
based speech separation method can obtain a better result
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Figure 1: The architecture of DNN, BLSTM or TDNN based speech enhancement system.

[15, 16, 17, 18, 19]. Similarly, we apply the mask M(t, f) for
speech enhancement.

According to the commonly used masking method, the es-

timated magnitude |X̃(t, f)| of clean speech can be estimated
by

|X̃(t, f)| = |Y (t, f)| �M(t, f) (3)

where � indicates element-wise multiplication, M(t, f) is the
mask estimated by DNN or BLSTM. In this study, both DNN
and BLSTM are employed as the baseline systems. Finally, the

estimated magnitude |X̃(t, f)| and the phase of noisy speech is
used to reconstruct enhanced signal by inverse STFT (ISTFT).

Fig.1 shows the overview of the streaming speech enhance-
ment architecture using DNN or BLSTM. The noisy wave
is first transformed into time-frequency domain by short-time
Fourier transformation (STFT). Then the amplitude spectrum
is used as the input feature of DNN or BLSTM. A DNN or
BLSTM is applied to model the mapping between the input am-
plitude features and the output target masks. Next, the target
output can be acquired by masks and the input. Finally, the
enhanced output and the phase of noisy signal are used to re-
construct the signal by inverse STFT (ISTFT).

3. The proposed speech enhancement
system

The proposed deep TDNN based speech enhancement system
is similar to DNN or BLSTM that is described in Section2, ex-
cept we replace the DNN/BLSTM with deep TDNN. Besides,
in order to make full use of training data, we propose the full
data learning method, which applies the clean and noise data to
fine-tuning the enhanced model. In this section, we will firstly
review the basic architecture of TDNN, and then demonstrate
how to make full use of the clean and noise data to fine-tune the
model. Finally, the training procedure of the proposed model is
introduced.

3.1. Deep TDNN architecture

As for the basic unit in DNN, it computes the weighted sum of
its inputs and then passes them through a nonlinear function,
such as sigmoid or tanh function. However, in the TDNN [14],
this basic unit is modified by introducing delays DL through
DR as shown in Figure 2. The j-th inputs of such a unit now
will be multiplied by several weights. In this way, a TDNN
unit has the ability to relate and compare current input to the
past history of events. Therefore, the TDNN can acquire more

Figure 2: A time delay neural network (TDNN) unit.

effective information from the noisy speech so that it can help
improve the performance of speech enhancement. The activa-
tion function for node i at time t in such a network is given
by:

oti = g(

i−1∑
j=1

DR∑
k=DL

ot−k
j wijk) (4)

where oti is the output of node i at time t, wijk is the connection
strength to node i from output of node j at time t− k, and g(∗)
is the activation function.

3.2. Full data learning method and loss function

Most of the speech enhancement systems only use the noisy fea-
tures as the input, and clean features are as the output. However,
the clean-clean and noise-silence are not used, which does not
make full use of the training data. In order to address this prob-
lem and improve the performance of speech enhancement, we
propose a full data learning method. It not only uses the noisy
features as the input, but also clean and noise features. The
target of speech enhancement is to remove the noise from an
observed signal recorded in noisy environment. However, if the
input of the enhanced model is clean signals, the output should
be same as the input. Conversely, if noise is the input of the en-
hanced model, the output should be silence. In other words, we
make full use of the noisy-to-clean, clean-to-clean and noise-to-
silence (input-to-target) to train the enhanced model as shown
in Fig. 3.
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Figure 3: The overview of our proposed full data learning. Us-
ing noisy-to-clean, clean-to-clean and noise-to-silence (input-
to-target) to train the speech enhancement system.

The ideal amplitude mask (IAM) M iam(t, f) [19] which is
a widely-accepted mask for speech enhancement is utilized in
this paper.

Miam(t, f) =
|X(t, f)|
|Y (t, f)| (5)

The loss function is the mean square error (MSE) between the
estimated magnitude and true magnitude:

J =
1

TF

∑
|||Y (t, f)| � M̃iam(t, f)− |X(t, f)|||2F (6)

where M̃iam(t, f) is the estimated mask, � indicates element-
wise multiplication.

The training procedure for our proposed speech enhance-
ment system is as follows:

• Use the noisy-clean training data to train a deep TDNN
based speech enhancement model.

• Fine tuning the enhanced model with clean-clean train-
ing data.

• Fine tuning the enhanced model with noise-silence train-
ing datas.

• Use the noisy-clean training data to optimize the model,
again.

4. Experiments and results
4.1. Dataset

The experiments are conducted using the TIMIT database [20].
We create the training, validation and test sets in the same man-
ner. The noises use in the training and validation sets include
100 different noise types, which can be download from the web-
site1. The training and validation sets are generated by ran-
domly selecting speakers and utterances from the TIMIT train-
ing set. They are mixed with this noise database at 6 signal-
to-noise ratio (SNR) (-5, 0, 5, 10, 15 and 20 dB). The training
and validation sets have about 21726 and 6006 utterances, re-
spectively. As for the test set, besides the 100 different noise
types, twelve unseen noises are used, which are from NISEX-
92 dataset [21]. Same to the training set, they are mixed with
the utterances from TIMIT test set at 6 SNR (-5, 0, 5, 10, 15
and 20 dB). The test set contains 10086 utterances. We use the
validation set to select the best model from all epochs.

1http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html

Table 1: The configuration of layerwise temporal context win-
dows for different speech enhancement methods.

Methods
Network Layerwise Context
Context 1 2 3 4 5

DNN [-8,8] [-8,8] 0 0 0 0

TDNN-A [-11,11] [-4,4] [-3,3] [-2,2] [-2,2] 0
TDNN-B [-10,10] [-2,2] [-2,2] [-2,2] [-4,4] 0
TDNN-C [-9,9] [-2,2] [-1,1] [-2,2] [-4,4] 0
TDNN-D [-8,8] [-2,2] [-2,2] [-2,2] [-2,2] 0
TDNN-E [-7,7] [-1,1] [-2,2] [-2,2] [-2,2] 0
TDNN-F [-6,6] [-1,1] [-1,1] [-2,2] [-2,2] 0

4.2. Experimental setups

The sampling rate of all generated data is 8 kHz. The 129-dim
spectral magnitudes of the noisy speech are used as the input
features, which are computed using a STFT with 32 ms length
hamming window and 16 ms window shift. ReLU function is
employed as the activation function for deep TDNN training.
All the TDNN based systems have four hidden layers with 256
nodes each layer in this work. When we only use the noisy-to-
clean data to train the model, there is 30 epochs. The clean-
to-clean and noise-to-silence are all used to fine tuning the en-
hanced model with 5 epochs.

In this paper, the learning rate of all models are initialized
as 0.0005 and scaled down by 0.7 when the training objective
function value increased on the development set. Our models
are optimized with the Adam algorithm. All models are trained
by one Tesla K80.

4.3. Baseline models

For comparison purposes, two types of systems (described in
Section 2), which are DNN and BLSTM respectively, are built.
These two systems serve as two baselines in this paper.

• DNN: As for the DNN based system, there are four hid-
den layers and each layer has 256 nodes, which is same
as the TDNN method.

• BLSTM: For BLSTM based system, we use three
BLSTM layers with 256 memory blocks for each layer.
It contains random dropouts with a dropout rate 0.5.

4.4. Evaluation metrics

In order to evaluate the quality of the enhanced speech, we
compute the following objective measures: the perceptual eval-
uation of speech quality (PESQ) [22] measure, the short-time
objective intelligibility (STOI) measure [23] and the signal-to-
distortion ratio (SDR) measure [24].

4.5. Experimental results

Table 2 shows the performance of different systems with vari-
ous layerwise temporal context windows on unseen, seen and
average (AVG.) condition. To our best knowledge, there is no
TDNN-based speech enhancement system. Therefore, we start
exploration from a deep TDNN system. Table 3 shows the
performance of different systems for different SNRs. Table 1
shows the configuration of layerwise temporal context windows
for different speech enhancement methods. (+clean+noise)
means the proposed full data learning method that uses the
clean-to-clean and noise-to-silence to fine tuning the enhanced
model.
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Table 2: The performance of different systems on unseen, seen and average (AVG.) condition. (+clean+noise) means the proposed full
data learning method that uses the clean-to-clean and noise-to-silence to fine tuning the enhanced model.

Methods
unseen seen AVG. Inference

PESQ STOI(%) SDR PESQ STOI(%) SDR PESQ STOI(%) SDR time(ms)

noisy 2.46 75.88 7.7 2.37 83.16 7.7 2.38 82.40 7.7 -

DNN(baseline) 2.76 78.77 13.7 2.84 86.66 14.4 2.83 85.83 14.3 13.7
BLSTM(baseline) 2.90 79.29 15.4 2.99 87.67 15.8 2.98 86.79 15.8 429.8

TDNN-A(proposed) 2.81 78.85 14.1 2.88 86.89 14.7 2.87 86.05 14.6 14.5
TDNN-B(proposed) 2.81 78.98 14.3 2.88 86.95 14.9 2.87 86.12 14.8 14.6
TDNN-C(proposed) 2.80 79.14 14.1 2.88 86.98 14.9 2.87 86.16 14.8 15.3
TDNN-D(proposed) 2.82 79.55 14.2 2.92 87.34 14.9 2.91 86.52 14.8 14.2
TDNN-E(proposed) 2.83 79.42 14.2 2.91 87.31 14.9 2.90 86.48 14.8 12.9
TDNN-F(proposed) 2.82 79.76 14.1 2.92 87.42 14.9 2.91 86.62 14.8 14.5

TDNN-F
2.81 79.78 14.2 2.92 87.61 15.0 2.91 86.79 14.9 14.5

(+clean+noise)(proposed)

Table 3: The performance of different systems for different SNRs.

PESQ STOI(%) SDR

SNR(dB) -5 0 5 10 15 20 -5 0 5 10 15 20 -5 0 5 10 15 20

DNN 2.21 2.50 2.75 2.96 3.17 3.41 74.18 80.43 85.22 89.05 92.01 94.12 7.2 10.1 12.8 15.6 18.6 21.7
BLSTM 2.26 2.61 2.90 3.16 3.37 3.56 76.03 81.60 86.04 89.69 92.58 94.82 8.4 11.2 14.0 17.0 20.2 23.6

TDNN-A 2.21 2.53 2.79 3.02 3.23 3.44 74.29 80.63 85.45 89.26 92.22 94.43 7.2 10.2 13.1 16.0 19.1 22.3
TDNN-B 2.18 2.51 2.79 3.03 3.25 3.47 74.54 80.80 85.54 89.25 92.19 94.37 7.4 10.4 13.2 16.1 19.3 22.5
TDNN-C 2.19 2.51 2.79 3.03 3.25 3.47 74.62 80.87 85.60 89.31 92.20 94.37 7.4 10.3 13.2 16.1 19.2 22.5
TDNN-D 2.24 2.56 2.83 3.06 3.28 3.48 75.12 81.33 86.01 89.64 92.45 94.56 7.4 10.4 13.3 16.2 19.3 22.5
TDNN-E 2.22 2.55 2.82 3.05 3.27 3.48 75.11 81.29 85.95 89.61 92.43 94.51 7.5 10.4 13.2 16.2 19.3 22.5
TDNN-F 2.22 2.55 2.83 3.06 3.28 3.50 75.23 81.44 86.12 89.76 92.55 94.62 7.4 10.4 13.3 16.2 19.3 22.5
TDNN-F

2.22 2.55 2.83 3.07 3.28 3.50 75.44 81.64 86.29 89.89 92.69 94.79 7.5 10.5 13.3 16.3 19.3 22.5
(+noise+clean)

4.5.1. The effectiveness of the proposed TDNN method

From Table 2, we can find that no matter unseen or seen case,
our proposed TDNN-based methods all achieve better perfor-
mance than the DNN-based method in PESQ, STOI and SDR
measures. Besides, system TDNN-D, TDNN-E and TDNN-F
achieves comparable performance to BLSTM, even better than
BLSTM (STOI measure for unseen case). In addition, we also
show the inference time of different speech enhancement meth-
ods in the last column in Table 2. The proposed TDNN-based
methods use extremely less inference time than BLSTM and is
comparable to DNN. These results suggest that our proposed
TDNN-based speech enhancement models are very fast and the
proposed method can reduce the model complexity while ensur-
ing the performance.

4.5.2. Evaluation of TDNN with full data learning method

In order to make full use of the training data, the full data learn-
ing is proposed, which not only uses the noisy features as the
input, but also clean and noise features. The results of full
data learning are shown in the last row of Table 2 and Table 3.
From these results, we can know that when the enhanced model
is optimized by clean-to-clean and noise-to-silence data, the
performance of speech enhancement can be improved in most
of cases, especially for the STOI measure. More specifically,
besides the PESQ measure in unseen condition, the other re-
sults are all improved. In addition, form Table 3, we can find
that the proposed fine tuning method can improve the enhance-
ment performance in objective measures no matter what SNRs.
These results indicate the effectiveness of the proposed full data

learning method. Therefore, using clean-to-clean and noise-to-
silence to fine tuning the enhanced model can improve the per-
formance of speech enhancement.

5. Conclusions
In this work, we propose a deep TDNN based method for speech
enhancement, which requires low distortion and latency. The
TDNN has an excellent potential for capturing long range tem-
poral contexts, and its inference cost comparable to standard
DNN. In order to make full use of training data, the full data
learning is proposed, which uses clean-to-clean and noise-to-
silence to fine tuning the enhanced model. It means that if the
input of the enhanced model is clean signals, the output should
be same as the input. Conversely, if noise is the input of the
enhanced model, the output should be silence. Our experimen-
tal results show that the proposed speech enhancement method
could achieve a better performance than DNN and compara-
ble even better performance to BLSTM. In addition, compared
with the BLSTM, the proposed method drastically reduce the
enhanced generation time.
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