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Abstract—The musculoskeletal robot is a promising direction
of the next-generation robots. However, current control meth-
ods of musculoskeletal robots lack multi-tasks learning ability,
great generalization, and biological plausibility. In this article,
a motor-cortex-like recurrent neural network (RNN) and a
reward modulated multi-tasks learning method are proposed.
First, inspired by dynamic system hypothesis of motor cortex,
the RNN is introduced to transform movement targets into
muscle excitations. The condition that makes a RNN generate
motor-cortex-like consistent population response is investigated.
Second, a reward modulated multi-tasks learning method of
such a RNN is proposed. In the experiments, the control of
a musculoskeletal system is realized with multi-tasks learning
ability, great generalization, and robustness for noises. Fur-
thermore, the RNN and muscle excitations demonstrate motor-
cortex-like consistent population response and human-like muscle
synergies respectively. Therefore, the proposed method has better
performance and biological plausibility, and verifies the neural
mechanisms in the robotic research.

Index Terms—Biologically inspired, Musculoskeletal system,
Neuromuscular control, Motor cortex, Muscle synergy, Recurrent
neural network

I. INTRODUCTION

Compared with existing joint-link robots, musculoskeletal
robots have many superiorities of flexibility, compliance, and
robustness. First, redundancy of muscles and joints can realize
movements with more flexibility and deal with the failure
of actuators. Moreover, the robot can behave compliantly or
rigidly with the modulation of muscular co-activation to adapt
to different situations. Therefore, many musculoskeletal robots
have been established with the imitation of human-like skele-
ton, bone, joint and muscle [1–21]. For musculoskeletal robots,
the muscular modular is the most important component. Most
muscular modulars take DC (direct current) motors as power
source for their controllability and stability [1–8]. The DC
motor drives the lines to contract to generate the movements
of skeletons. Furthermore, pneumatic actuators and intelligent
materials are also adopted [9–21]. These materials are softer
and more similar to the characteristics of biological muscles
but have less controllability and stability.
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Although the musculoskeletal robot has many superiorities,
it also brings many challenges of control. The redundancy of
robots results in the infinite solutions of muscle excitations.
The coupling between muscles and joints makes the individual
control of each muscles impossible. In addition, the strong
non-linearity of muscular characteristics and sophisticated
muscular arrangements make the establishment of explicit
mathematic model impossible.

To realize the control of musculoskeletal robots, many
methods have been proposed and applied in the hardware
platform of musculoskeletal robots [1, 10, 13, 22–27]. With
these methods, some simple and imprecise movements can be
achieved. Narioka et al. and Ogawa et al. realize the walking
task of musculoskeletal robots by the feedforward control
with preset activation pattern [10] and feedback intermittent
control [13] respectively. Niiyama et al. proposes a motor
learning method based on human electromyographic (EMG)
to realize running task [22]. Furthermore, some researchers
collect robotic data and establish the approximate muscle-
joint state mapping with machine learning methods [1, 23–
27]. In these methods, the relationship between muscle lengths
and joint angles or muscle forces and joint torques is derived
and utilized. Then, the robot is controlled by computing the
muscle states according to joint states of expected move-
ments. Based on these methods, some human-like free motion,
walking, jumping and running tasks with low precision of
musculoskeletal robots can be accomplished preliminarily.

To realize more precise movements with the musculoskele-
tal robot, many novel control methods have been proposed
and realized in simulated musculoskeletal systems as proof-
of-principle [28–44]. These methods may be further applied
to physical musculoskeletal robots in the future. First, some
model-based methods have been proposed with establishing
explicit mathematical model between the joint space and
muscle space of musculoskeletal systems. Based on the model,
feedback controller [28], iterative learning controller [29],
adaptive controller [30], neuro-fuzzy controller [31], and
static optimization [32, 33] are designed to compute mus-
cle excitations or forces. However, the relationship between
muscles and joints of sophisticated musculoskeletal robots is
complex and difficult to be established explicitly. Therefore,
the model-based methods are impossible for the control of
sophisticated musculoskeletal robots. Besides, many model-
free methods have also been proposed to compute muscle
excitations according to movement targets directly. Khan et al.
and Nakada et al. train the deep neural network (DNN) through
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supervised learning to control the musculoskeletal systems
[35, 36]. Furthermore, recurrent neural network (RNN) and
DNN are also trained to control the musculoskeletal robots
through reinforcement learning methods like reward-based
hebbian learning [39], Q learning [40], deep deterministic
policy gradient, proximal policy optimization, and trust region
policy optimization [37, 38, 41]. In addition, motion primitives
are widely used in robotic control [45] and the muscle syn-
ergy is a typical primitive in muscle activations. Therefore,
some muscle-synergies-based learning have been proposed to
compute muscle excitations in reaching task and manipulation
task [42–44]. Although these model-free learning methods can
be applied to control of sophisticated musculoskeletal robots
without establishment of explicit model, the performance of
motion generalization is limited and the multi-tasks learning
has not been realized.

Human and animals can control musculoskeletal systems
to achieve various movement and manipulation tasks with
high precision, great generalization and continuous learning
ability. Therefore, many scientists focus on understanding how
human and animals control the musculoskeletal systems [46–
57], which can also stimulate solving the control problem of
musculoskeletal robots. Based on the observation of human
and animal electromyographic signals, neuroscientists find that
muscles are always activated in groups rather than individ-
ually. Correspondingly, the hypothesis of muscle synergy is
proposed [46–48]. Based on this hypothesis, each group of
muscles activated in a time-varying or time-invariant pattern
can be regarded as a muscle synergy. Each muscle synergy
is modulated with the direction and speed of the movements.
Then, muscle excitations are constructed with the combination
of multiple modulated muscle synergies. As muscles are
stimulated directly by the interneurons and motoneurons in
the spinal cord and the neurons in the spinal cord mainly
receive the projection from motor cortex, the muscle patterns
may be strongly affected by the activities of motor cortex
neurons. According to the research of motor cortex, different
hypotheses have been proposed to explain the relationship
between the neuron activities of motor cortex and movements.
Some neuroscientists proposes that the neural states in motor
cortex may encode muscle-like commands and control muscles
directly [49, 50]. An alternative hypothesis holds that the
activities of neurons in motor cortex may encodes kinematic
parameters of movements such as direction and speed [51–53].
However, these hypotheses can not explain the neural popula-
tion dynamics of motor cortex observed in recent physiological
investigation. Therefore, Churchland et al. propose a novel
assumption that the motor cortex is a dynamic system and the
neural states obey smooth dynamics [54–56]. Based on this
assumption, the neural states of motor cortex encode both non-
muscle-like and muscle-like patterns. Non-muscle-like signals
are dominant and muscle-like commands are embedded in an
untangled population response.

Inspired by muscle synergy hypothesis and dynamic en-
coding hypothesis, a novel neuromuscular control method is
proposed. The contributions are listed as follows:

1) A pattern of consistent population response of recurrent
neural network (RNN) is proposed and the condition

that makes RNN generate such consistent population
response is investigated with Lyapunov analysis.

2) Furthermore, a reward modulated multi-tasks learning
method of such a RNN is proposed with the combination
and improvement of orthogonal weight modification and
node-perturbation learning.

3) This article also promotes the integration of neuro-
science and robotics through validating the dynamic
system hypothesis of motor cortex and muscle synergy
hypothesis in the control of a musculoskeletal system.

In the experiments, the neuromuscular control of a sophis-
ticated musculoskeletal system is realized through continuous
reward modulated learning. The motion learning demonstrates
great generalization and robustness for noises. The learned
RNN demonstrates motor-cortex-like consistent population
response and the muscle excitations generated by RNN shows
human-like muscle synergies, which demonstrates the biolog-
ical plausibility.

The rest of this paper is organized as follows: Section
III introduces the proposed method in details. Section IV
introduces the experiments and validates the effectiveness of
the proposed method. Section V discusses the comparison
with relevant work and the improvement of this paper. The
conclusion is given in Section VI.

II. MUSCULOSKELETAL SYSTEM

In this section, the dynamics of a musculoskeletal system
and the generation of muscle forces are introduced. First, the
movement of a musculoskeletal system is driven by muscles
as follows:

q̈ = M−1(q)[C(q, q̇)q̇ +G(q) + τ ] (1)

τ = W (q)F (2)

where q, q̇, q̈ are joint angles, velocities, and accelerations
respectively. M is the mass matrix, C(q, q̇)q̇ denote the
centripetal and coriolis forces, and G(q) is the gravitational
force. τ and F denote joint torques and muscle forces. W (q)
records the redundant and coupling relationship between mus-
cles and joints. Vectors and matrices are denoted by bold
symbols in this paper.

Each muscle consists of muscle fibers and tendons. The
muscle fibers can contract to generate active forces under neu-
ral excitations and also be stretched to generate passive forces.
The forces of muscle fibers are exerted to skeletons through
muscle tendons, which connect muscle fibers and skeletons.
According to the Hill-type equilibrium muscle model [58, 59],
the generation of muscle forces can be represented as follows:

F = Ft(lt)

= Ff (a, lf , l̇f , )⊗ cosα
= [a⊗ Ffl(lf )⊗ Ffv(l̇f ) + Ffp(lf )]⊗ cosα

(3)

where Ft and Ff are forces of muscle tendons and fibers.
α denotes the pennation angles between tendons and fibers.
a⊗Fl(lf )⊗Fv(l̇f ) and Fp(lf ) denote the active forces and
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Fig. 1: Framework of multi-tasks learning for the control of musculoskeletal systems

passive forces of muscle fibers. lt, lf , l̇f are tendon lengths,
fiber lengths, and fiber velocities. a is the activations of muscle
fibers. ⊗ denotes elementwise multiplication. The concrete
representations of Fl(lf ), Fv(l̇f ), Fp(lf ), and Ft(lt) are
strongly non-linear and can refer to the work in [58].

Each muscle is activated under neural excitations and can
be described as follows:

ȧ =
u− a
τa(a, u)

(4)

τa(a, u) =

{
τact(0.5 + 1.5a) u > a

τdeact
0.5+1.5a u ≤ a (5)

where a denotes the activation level of all fibers in a muscle
and ȧ is the derivate of a. u is the neural excitation of a muscle.
τact and τdeact are constants of activation and deactivation
respectively.

III. METHOD

In this section, a motor-cortex-like recurrent neural network
(RNN) and a reward modulated multi-tasks learning method
are proposed, whose framework is shown in the Fig. 1. First, a
pattern of consistent population response of RNN is proposed
and the condition is investigated with the Lyapunov analysis.
Second, the reward-modulated learning is applied to train
the RNN in each task. Furthermore, a multi-tasks learning
method of such RNN is proposed with the improvement of
the orthogonal weight modification.

A. RNN with Consistent Population Response

1) Consistent Population Response of Motor Cortex: Neu-
rons in motor cortex have strong synaptic connections with the
motoneurons in spinal cord and the firing rate of neurons in
motor cortex will affect the the contraction of muscles. Based
on many investigations [54–56], the motor cortex constitutes a
dynamic system and generates motor commands, which can be

expressed with a simple deterministic form roughly as follows:

ṙ = f(r) + x (6)

where r is a vector recording firing rates of all neurons in
motor cortex, ṙ is the derivate, x is the external input, and
f is a function describing the dynamic characteristics. In
this conception, the neural responses are modulated by the
external input but should reflect underlying dynamic charac-
teristics in population level. Through the analysis of neural
population during reaching task, the single-neuron responses
are disordered but the population response indeed demonstrate
consistent population response under different movements.
Specifically, with the principal component analysis (PCA) or
jPCA method, neural firing rates can be projected into two-
dimensional space. The reduced neural states under different
movements demonstrate rotational tendency in the same direc-
tion.

Fig. 2: Architecture of the recurrent neural network

2) Design of RNN: To imitate the neural encoding of motor
cortex, recurrent neural network (RNN) is implemented as a
classical dynamic system in this paper. The architecture of the
RNN is shown in the Fig. 2. The hidden neurons of the RNN
adopt leaky neurons and they are fully connected to each other.
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The states of leaky neurons follow the dynamic equations as
follows:

τ ṙ = −r +Ux+Wh+ b (7)

where h = tanh(r), r ∈ RN is the vector of membrane
potentials of hidden neurons and ṙ is the derivate of r.
h ∈ RN is the vector of firing rates of hidden neurons,
x ∈ Rd is the vector of external inputs, b ∈ RN is the
vector of bias values, U ∈ RN×d is the matrix of input
weights from input neurons to hidden neurons, W ∈ RN×N
is the matrix of recurrent weights among hidden neurons,
and tanh(a) = ea−e−a

ea+e−a is the activation function of hidden
neurons.

Then, the output of the RNN is computed as follows:

o = ReLU(V h) (8)

where o ∈ RM is the vector of outputs, V ∈ RM×N is
the matrix of output weights from hidden neurons to output
neurons, and ReLU(a) = max(0, a) is the activation function
of output neurons.

In order to realize motor-cortex-like consistent population
response in the RNN, a pattern of consistent population
response, the change rates of all neural states converging to
zeros uniformly, is proposed. Then, a Lyapunov function V (ṙ)
is designed to analyze how to realize this pattern as follows:

V (ṙ) = ṙT ṙ (9)

where V (ṙ) > 0 for ∀ṙ 6= 0, and ṙ = 1
τ [−r + Ux +

W tanh(r) + b].
Then, the derivate of the Lyapunov function V (ṙ) with

regard to time is derived as follows:

V̇ (ṙ) = ( ∂ṙ
∂t

)T ṙ + ṙT ( ∂ṙ
∂t

)

= ( ∂ṙ
∂r

ṙ)T ṙ + ṙT ( ∂ṙ
∂r

ṙ)

= ṙT [( ∂ṙ
∂r

)T + ( ∂ṙ
∂r

)]ṙ

= 1
τ
ṙT [(W ∂ tanh(r)

∂r
− I)T + (W ∂ tanh(r)

∂r
− I)]ṙ

(10)

As 0 ≤ ∂ tanh(ri)
∂ri

≤ 1 for ∀ri in r, it can be obtained that
w ∂ tanh(ri)

∂ri
≤ |w|. Therefore, it can be derived as follows:

W
∂ tanh(r)

∂r
≤W+ (11)

where ∂ tanh(r)
∂r = diag(∂ tanh(r1)

∂r1
, ..., ∂ tanh(rN )

∂rN
) ∈ RN×N is

a diagonal matrix, each element w+
ij in W+ is the absolute

value of the corresponding wij in W .
Then, substituting Eq.11 into Eq.10, it can be obtained that,

V̇ (ṙ) ≤ 1
τ ṙ

T (W T
+ +W+ − 2I)ṙ

= 1
τ ṙ

T (PDP T − 2PP T )ṙ

= 1
τ ṙ

T [P (D − 2I)P T ]ṙ

= 1
τ

∑
i (λi − 2)(ṙTP:,i)

2

(12)

where W T
+ +W+ is a real and symmetrical matrix and it can

be decomposed into PDP T . P ∈ RN×N is an orthogonal
matrix and PP T = I . D = diag(λ1, ..., λN ) ∈ RN×N is a
diagonal matrix and λ1, ..., λN are eigenvalues of W T

+ +W+.
Based on the Eq. 12, V̇ (ṙ) < 0 holds for ∀ṙ if λi < 2 for
∀i. As W T

+ + W+ is an non-negative matrix, the constraint

of λi < 2 for ∀i equals to ρ(W T
+ + W+) < 2. When

ρ(W T
+ + W+) < 2 is satisfied strictly, the change rates ṙ

of neural states converge to zero uniformly under any time-
invariant external inputs and the RNN has the consistent
population response. However, the ||W ||F is very small under
this condition. The RNN with very small ||W ||F has poor
representation ability and cannot characterize the complex
relationship between movement targets and muscle commands.
Therefore, a contradiction between the consistent population
response and representation ability of RNN exists. In order
to guarantee both of the consistent population response and
enough representation ability, the parameter b should also
be designed appropriately. Taking the one-dimensional RNN
(τ ṙ = −r+ux+wh+b) with time-invariant external input as
an example, the design of parameter b is analyzed. The corre-
sponding Lyapunov function and its derivative are V (ṙ) = ṙ2

and V̇ (ṙ) = [2w d tanh(r)
dr −2]ṙ2 respectively. When w < 1, the

above constraint is satisfied and V̇ (ṙ) < 0 always holds. Under
this condition, the RNN has global consistent population
response. When w > 1, the above constraint is violated and
V̇ (ṙ) < 0 does not hold at the neighborhood of the origin
(r = 0) but still holds when r is far away from the origin for
0 ≤ d tanh(r)

dr ≤ 1 and d tanh(r)
dr |r=0 = 1. Under this condition,

the RNN only has local consistent population response. As
enough big b or ux + b can confine the r to the local region
far away from the origin, RNN can always operates in this
local area and has consistent population response. Generalizing
the analysis to the high dimensional RNN, improving ||b||F
can alleviate the instability caused by the improvement of
||W ||F . Based on above proof and analysis, W is designed
based on the constraint of ρ(W T

+ +W+) < 2 and can violate
this strict constraint to obtain enough representation ability.
Correspondingly, the b should also be designed with enough
big ||b||F to guarantee the consistent population response.

B. Reward Modulated Learning

In order to realize neuromuscular control, the RNN should
transform movement targets into muscle excitations. In this
section, the RNN is trained with the reward modulated learn-
ing.

Although the RNN is introduced as continuous form in the
Section III-A, the RNN is performed with the discrete form
in practice as follows:

rt = (1− α)rt−1 + α(Ux+Wht−1 + b) (13)

where rt ∈ RN , ht ∈ RN are the vectors of membrane
potentials and firing rates of hidden neurons respectively, α
is a decay factor of membrane potentials.

During the training phase, some perturbations are applied
to improve the randomness of outputs and the exploration of
learning. For example, the membrane potentials are perturbed
with gaussian noises εt as follows:

rεt = rt + εt
= (1− α)rt−1 + α(Ux+Wht−1 + b) + εt

(14)

where rεt is the vector of perturbed membrane potentials
and εt ∼ N(0,Σ) ∈ RN is the vector of noises, Σ =
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diag(σ2, ..., σ2) ∈ RN×N is the diagonal covariance matrix of
the normal distribution, and σ2 is the variance of noise. Then,
the membrane potential of a hidden neuron at each time step
can be regarded as a random variable drawn from a Gaussian
distribution as follows:

rεi (t) ∼ N(ri(t), σ
2) (15)

Therefore, the probability density function gi(t) of each
hidden neuron at each time step is represented as follows:

gi(t) = P (rεi (t)|ri(t), σ)

= 1√
2πσ

e−
[rεi (t)−ri(t)]

2

2σ2
(16)

Based on REINFORCE algorithm, each weight can be
updated after an episode, namely a movement, as follows:

∆wij = β(R− R̄)
∑Tt
t=1 eij(t)

= β(R− R̄)
∑Tt
t=1

∂ln gi(t)
∂wij

= β(R− R̄)
∑Tt
t=1

∂ln gi(t)
∂ri(t)

∂ri(t)
∂wij

= β(R− R̄)
∑Tt
t=1

(rεi (t)−ri(t))
σ2 αhj(t− 1)

= βα
σ2 (R− R̄)

∑Tt
t=1 εi(t)hj(t− 1)

= η(R− R̄)
∑Tt
t=1 εi(t)hj(t− 1)

(17)

where ∆wij is the increment of wij , eij = ∂ln gi(t)
∂wij

is the
characteristic eligibility of wij , 0 < η < 1 is the learning rate,
R is the reward at each episode, and each episode has Tt time
steps. R̄ is the baseline of rewards and can be regarded as the
expectation of future reward, which is computed as follows:

R̄n+1 = αRR̄n + (1− αR)Rn (18)

where n represents the nth episode and 0 < αR < 1 is the
filter factor.

Therefore, all recurrent weights can be updated after each
episode as follows:

∆W = η(R− R̄)
∑Tt
t=1 εth

T
t−1 (19)

Similarly, the input weights and bias can be updated after
each episode as follows:

∆U = η(R− R̄)

Tt∑
t=1

εtx
T
t (20)

∆b = η(R− R̄)

Tt∑
t=1

εt (21)

During the training, the RNN should also maintain the
aforementioned consistent population response. Therefore, the
RNN is initialized to have consistent population response first.
Then, each update of recurrent weights is constrained in a
small neighborhood to maintain the expected dynamics of as
follows:

∆W =

{ g
||∆W ||F ∆W ||∆W ||F > g

∆W ||∆W ||F ≤ g
(22)

where g > 0 is a constant value to constrain the norm of
weight update, || · ||F is the Frobenius norm of matrix.

In order to improve the efficiency of learning process, some
hyper-parameters like η, αR, and σ2 are modulated during
learning phase adaptively as follows:

ηn = γη exp(−φnτp )

αRn = γαR exp(−φnτp )

σ2
n = γσ2 exp(−φnτp )

(23)

where n represents the nth episode during training, τp is
a decay coefficient. γη , γαR , and γσ2 are the initial values
of η, αR, and σ2 respectively. φn is a factor designed to
measure the performance of learning in the nth episode. φn is
computed based on [39] and increases with the improvement
of performance gradually.

C. Reward Modulated Multi-Tasks Learning

Human can learn multiple tasks continuously without for-
getting previously learned knowledge. To realize continuous
multi-tasks learning with RNN, Orthogonal Weight Modifica-
tion (OWM) method [60] is introduced and improved in this
section.

In order to protect the previously learned knowledge, the
OWM method updates weights only in the direction orthogonal
to the space of previously trained inputs as follows:

∆W ′
l = κ∆WBP

l Pl (24)

where ∆W ′
l is the increment of weights in the lth layer

based on the OWM method, ∆Wl is the increment of weights
computed by backpropagation method in supervised learning,
Pl is the projection matrix. Specifically, Pl is designed as
projecting any vectors into the subspace orthogonal to the
one spanned by all previously trained input vectors of Wl as
follows:

Pl = I −Al(A
T
l Al + ρI)−1AT

l (25)

where Al is the input matrix of the lth layer and each column
is the previously trained input vector of the weights W , I is
the unit matrix, and ρ is a small constant to make the AT

l Al+
ρI invertible.

According to the OWM method, the capacity of continuous
learning of each layer is related to the rank of matrixAl. When
the matrix Al becomes full rank, the lth layer runs out the
capacity to learn new tasks. For the recurrent weights of RNN,
the input matrix consists of previously trained time-varying
firing rates. When the dimension of time is much larger than
the dimension of neurons, the input matrix will become full
rank rapidly. Therefore, constructing the input matrix with
time-varying firing rates directly is not applicable. For the
RNN with consistent population response, time-varying firing
rates have certain pattern and are highly correlated among
different time steps. Therefore, reducing the time dimension
with PCA and constructing the input matrix with reduced firing
rates is a possible solution to solve the problem.

For continuous learning of RNN in multiple tasks, the OWM
method is improved as follows. First, the input matrix of
recurrent weights W of RNN in the vth task is constructed
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with all previously trained firing rates of hidden neurons as
follows:

Av
H = [Hv

1 , ...,H
v
K ] (26)

where Hv
i ∈ RN×Tt records the time-varying firing rates of

N hidden neurons during Tt time steps for the ith movement
targets after training in the vth task and Av

H ∈ RN×NA
collects all firing rates for K trained movement targets in the
vth task, NA = K × Tt.

Then, the low-dimensional input matrix in the vth task is
computed through PCA without normalization as follows:

Ãv
H = Av

HQv (27)

where Ãv
H ∈ RN×q is the reduced matrix of Av

H . Qv ∈
RNA×q is the transformed matrix. Each column of Qv is an
eigenvector of (AvH)TAv

H and Qv selects q eigenvectors with
maximal eigenvalues. It is noted that the Ãv

H is reduced from
the original input matrix Av

H without normalization.
Correspondingly, the low-dimensional input matrices of all

v learned tasks are collected in ÃH as follows:

ÃH = [Ã1
H , ..., Ã

v
H ] (28)

With the reduced input matrix, the orthogonal projection
matrix of recurrent weights in the (v+1)th task is constructed
as follows:

PW = I − ÃH(ÃT
HÃH + αP I)−1ÃT

H

PwÃH = 0
(29)

where PW ∈ RN×N is the orthogonal projection matrix for
W and orthogonal to input spaces of W in all learned tasks
approximately.

Therefore, the increment of recurrent weights in a new task
can be computed as follows:

∆WC = ∆WPW (30)

where ∆WC is the increment of ∆W after orthogonal
projection, ∆W is the weights adjustment computed based
on reward modulated learning method in Section III-B.

As PW ÃH = 0, PW Ã1
H = ... = PW Ã

v
H = 0 holds.

Therefore, the update of recurrent weights has little influence
on previously learned knowledge as follows:

(W + ∆WC)AH

= WAH + ∆WPWAH

= WAH + [∆WPWA
1
H , ...,∆WPWA

v
H ]

≈WAH + [∆WPwÃ1
HQ

†
1, ...,∆WPwÃv

HQ
†
v, ]

= WAH

(31)

where AH collects input matrices of all learned v tasks, Q†v
is the pseudo-inverse of Qv .

IV. EXPERIMENT

In this section, the effectiveness of proposed method is
verified. In the experiments, the RNN is trained to control a
sophisticated musculoskeletal system in multiple tasks. With
the proposed method, the RNN can learn motor skills in mul-
tiple tasks without catastrophic forgetting. The RNN learned
from training targets also demonstrates great generalization

Parameters Symbol Value
Number of input units d 2
Number of hidden neurons N 200
Number of output units M 9
Time step ∆t 1ms
Decay of potential membranes α 0.1
Probability of weights p 0.7
Normal distribution of initial W N(0, 0.01)
Uniform distribution of initial U U(−0.1, 0.1)
Uniform distribution of initial b U(−0.6, 0.6)
Uniform distribution of initial V U(−0.1, 0.1)

TABLE I: Parameters of the RNN.

Parameters Symbol Value
Initial learning rate γη 0.4
Initial filter factor γαR 0.3
Initial noise variance γσ2 2
Decay coefficient τp 120
Maximum norm of gradients in 1st task g1 0.001
Maximum norm of gradients in 2nd task g2 0.005
Maximum norm of gradients in 3rd task g3 0.005
Reduced dimensions q 20
Factor of the cost function ι1 1
Factor of the cost function ι2 0.005
Factor of the cost function ι3 0.25

TABLE II: Learning parameters.

to unlearned targets. Furthermore, the RNN has robustness
and can maintain the pattern of neuron activities under the
perturbation of noises. In addition, the biological plausibility
of the RNN is analyzed and verified in terms of neural
population dynamics and muscle synergies.

Fig. 3: Experimental setup. (a) shows the musculoskeletal
system applied in the experiment and its muscle arrangment.
(b) shows the isometric center-out reaching task. The muscu-
loskeletal system is expected to move the end-effector P from
the starting position S to the peripheral targets.
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A. Experimental Setup

A musculoskeletal system with nine muscles and two de-
grees of freedom is applied in the experiments, which is shown
in Fig. 3. The upper extremity of this musculoskeletal system
can move in the sagittal plane. The degrees of freedom in-
clude shoulder flexion/extension and elbow flexion/extension.
DELT1, DELT3, PECM2, TMIN, TRIlong, TRIlat, BIClong,
BRA, and BRD are muscles utilized in the system with human-
like muscular arrangements. The dynamics of muscle and
musculoskeletal system are introduced in details in [44]. The
establishment and modification of the musculoskeletal system
are based on an open-source platform called OpenSim [61].

The center-out reaching task is applied in the experiments
to verify the effectiveness of the proposed method, which is
an ordinary paradigm in the research of motor neuroscience.
As shown in the (b) of Fig. 3, the musculoskeletal system is
expected to move the end-effector P from the starting position
S to peripheral targets.

In order to realize the neuromuscular control of the muscu-
loskeletal system, a RNN is designed to transform movement
targets into muscle excitations. The structure and parameters
of the RNN are listed in Table I. The two input units of
the RNN receive the position coordinates of each movement
target in x and y axes. The nine output units corresponds
to the excitations of nine muscles. The duration of each
movement is 0.4s and the time-step of the simulation is 1ms.
The weights are initialized in a range to guarantee efficient
learning and motor-cortex-like neural population dynamics.
The elements in weight matrices W ,U ,b,V are initialized
to zero with the probability of 1 − p. Non-zero elements
of W are sampled from a normal distribution. As talked
in Section III-A, the variance of the normal distribution is
designed to guarantee both consistent population response and
representation ability of RNN. For U , b, and V , non-zero
elements are initialized based on uniform distributions. During
the training period, a cost function is designed to evaluate and
update the performance of RNN as follows:

L = −R = ι1(p− pd)T (p− pd) + ι2ṗ
T ṗ+ ι3|

∑
λ+
j∑
λ−j
| (32)

where p, ṗ, and pd are the position, speed and desired position
of the end-effector at the end of movement respectively.
λ+
j and λ−j are positive and negative eigenvalues of the

(W+ − I)T + (W+ − I) respectively. ι1, ι2, and ι3 are
factors to balance the weights of position error, speed error,
and dynamic characteristics of RNN in the cost function. The
setup of learning parameters is given in Table II.

B. Effectiveness of Continuous Motion Learning with Targets
on Different Circles

In the section, three tasks are designed and movement
targets are distributed on circles with the radii of 0.14m,
0.10m, and 0.05m respectively. Correspondingly, the RNN
is trained by three times. In the first task, the RNN is trained
to control the musculoskeletal system to reach targets on the
circle with the radius of 0.14m. The RNN is updated with
the method described in Section III-B. In the second task, the

Fig. 4: Performance of continuous motion learning with targets
on three different circles. (a)-(c), (e)-(g), and (i)-(k) show the
performance in three tasks after the motion learning of RNN
in the first, second, and third task respectively. The blue dots
are movement targets in different tasks. (d), (h), and (l) are the
cost functions during learning in the first, second, and third
task respectively.

1st task 2nd task 3rd task
(mm) (mm) (mm)

1st learning 2.8± 1.3 22.2± 2.4 33.5± 2.3

2nd learning 5.5± 2.4 4.9± 2.9 8.0± 2.3

3rd learning 5.2± 2.3 3.8± 2.3 4.5± 2.3

TABLE III: Errors of training targets on three different circles
after motion learning.

RNN is trained again with new targets. The weights of RNN
are updated on the basis of the ones learned from the first task
and using the continuous learning method in Section III-C. In
the third task, the RNN is trained again by the same way.

Based on the proposed method, the RNN can learn to trans-
form movement targets into muscle excitations in the center-
out reaching task. Furthermore, the motor skill in three tasks
with different movement targets has been learned sequentially
without catastrophic forgetting, which is shown in Fig. 4.

The performance of RNN is tested with all training targets
in three tasks after each motion learning. Specifically, the (a)-
(c) in Fig. 4 indicate that the RNN after the first motion
learning can only control the musculoskeletal system to reach
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Fig. 5: Performance of motion learning without OWM in three
tasks. (a)-(c), (d)-(f), and (g)-(i) show the performance in three
tasks after the motion learning of RNN in the first, second, and
third task respectively. The blue dots are movement targets in
different tasks.

training targets in the first task precisely. The (e)-(g) in Fig. 4
demonstrate that the RNN learns new targets in the second
task with little influence on the motor skill learned in the
first task. The (i)-(k) in Fig. 4 show that the RNN learns the
motor skill in the third task and maintain the ones learned
from the first and second task without catastrophic forgetting.
Specifically, the training errors of targets on three different
circles is shown in Table III. Therefore, the RNN can control
the musculoskeletal system to reach all training targets in three
tasks. With the observation of (d), (h), and (l) in Fig. 4, the cost
functions in new tasks decrease more rapidly and the learned
motor skills in previous tasks accelerate the learning in new
tasks.

In contrast, the motion learning is also performed without
the improved OWM method, which is shown in Fig. 5. The
RNN can learn the motor skill in three tasks individually.
However, the previously learned knowledge will be forgotten
rapidly, which also proves the effectiveness of the proposed
method on continuous learning from the reverse side.

C. Effectiveness of Continuous Motion Learning with Targets
on Different Lines

In the section, three tasks are designed and movement
targets are distributed on three different lines. Correspondingly,
the RNN is trained by three times with the same way described
in Section IV-B. Comparing with the distribution of targets
on different circles, the difference of targets on three lines is
enhanced. As shown in the Fig. 6, the RNN can also learn

Fig. 6: Performance of continuous motion learning with targets
on three different lines. (a)-(c), (e)-(g), and (i)-(k) show the
performance in three tasks after the motion learning of RNN
in the first, second, and third task respectively. The blue dots
on each line are movement targets in each task. (d), (h), and
(l) are the cost functions during learning in the first, second,
and third task respectively.

the motor skill in three tasks individually without catastroph-
ic forgetting, which further verifies the effectiveness of the
proposed method.

D. Motion Generalization

Furthermore, the learned motor skill of RNN can be not only
applied to training targets but also generalized to unlearned
targets. As shown in Fig. 7, the performance of RNN is tested
at 80 unlearned targets. Based on the motor skill learned from
the three tasks, movements from the origin to peripheral targets
within the circle with the radius of 0.14m can all be realized.
The average errors during movements in (a), (b), (c), and (d)
are 6.4±4.2 mm, 4±1.9 mm, 4.5±2.1 mm, and 3.9±1.6 mm
respectively.

E. Robustness for Noises

Benefiting from the relative smooth dynamics and consis-
tent population response, the RNN also demonstrates great
robustness for noises. As shown in Fig. 8, normal noises with
different magnitudes are applied to neuron activities for a
period of time. After the noises disappear, the firing rate of
each hidden neuron returns to the neighborhood of its expected
state without perturbation. Furthermore, the change rate of
firing rate also converges to zero approximately. Although the
movements controlled by the perturbed RNN deviate from the
expected trajectories, the dynamic system of RNN is still stable
and the tendencies of moving to different targets still exist.
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Fig. 7: Performance of motion generalization on unlearned
movement targets. (a), (b), (c), and (d) demonstrate the per-
formance at 20 unlearned targets respectively. The targets in
(a), (b), and (c) are distributed on the circle with the radius
of 0.14m, 0.10m, and 0.05m. The targets in (d) is randomly
selected within the circle with the radius of 0.14m.

F. Biological Plausibility

In the experiments, the proposed method also demonstrates
great biological plausibility. The activities of neurons and
muscles after motion learning resemble the observations of
the monkey and human. Specifically, the firing rates of hidden
neurons in the RNN demonstrate motor-cortex-like consistent
population response during different movements. Furthermore,
the muscle excitations of different movements show human-
like muscle synergies.

In the experiments, the population activity of RNN is ana-
lyzed. The firing rates of all hidden neurons can be regarded as
the population activity. As shown in the (a)-(d) of Fig. 9, the
firing rates of neurons during different movements are different
but the change rates of most neuronal firing rates converge
to zero uniformly. The firing rates of all neurons is a high
dimensional state trajectory and can be projected into a two-
dimensional state space through the PCA method. As shown
in the (e) of Fig. 9, the low-dimensional population activities
during different movements are consistent and demonstrate
orderly rotation structure like the observation of motor cortex.

Furthermore, the pattern of muscle excitations is also an-
alyzed. As shown in Fig. 10, (a) and (b) demonstrate the
modulation of muscle excitations during movements with the
same speed and different directions respectively. With the com-
parison of (a) and (b), the modulation of muscle excitations
with different movement speeds is also demonstrated, which
can be observed more clearly in (c) and (d). Based on above
observations, muscle excitations of different movements are
constructed by similar patterns and are modulated in terms of
the movement directions and speeds.

Fig. 8: Effectiveness of robustness for noises. (a) demonstrates
the firing rates of 8 hidden neurons of all 200 ones without
noises. (c), (e), and (g) show the situations under normal
noises with the standard deviation of 0.025, 0.05, and 0.75
from 0.05s to 0.1s. (b), (d), (f), and (h) are movements of
a musculoskeletal system controlled by the RNN under the
situations of (a), (c), (e), and (g) respectively.

In order to extract the common patterns, muscle excitations
are decomposed with the Non-negative Matrix Factorization
method. Then, three muscle synergies are extracted from
the muscle excitations of 20 different movements and these
synergies can reconstruct the muscle excitations effectively
with variance account for (VAF) of 93.85%, which is shown
in the (a)-(c) of Fig. 11. As shown in the (d), the amplitudes of
three synergies are modulated with the movement directions,
which can explain the modulation of muscle excitations with
movement directions.

V. DISCUSSION

In this section, the comparison with some relevant work [39,
42, 43, 55] and the improvement in the future are discussed.
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Fig. 9: (a), (b), (c), and (d) show the time-varying activities
(firing rates) of 8 hidden neurons of all 200 ones during four
movements from an origin to targets on a circle with radius
of 0.14m. The targets are distributed on the direction of 0◦,
90◦, 180◦, and 270◦ respectively. (e) shows the projection of
population response of hidden neurons into two-dimensional
PCA space. Each curve corresponds to a movement on the
direction from 0◦ − 360◦. Two PC dimensions are plotted
versus each other.

The work in [55] trains the RNN to produces muscle ac-
tivities with supervised learning and makes the RNN generate
consistent population response with regularization. The work
in [39] trains the RNN using reward-based learning with
emotion modulation. The work in [42, 43] realizes the control
of musculoskeletal system with establishing explicit muscle
synergy models. In this paper, we unifies the muscle-synergies-
based and RNN-based neuromuscular control through realiz-
ing muscle synergies using the RNN with consistent popu-
lation response. The RNN is trained with reward modulated
learning and the condition of consistent population response
is investigated with Lyapunov analysis. Besides, the methods
proposed in [39, 42, 43, 55] only realize motion learning
in single movement task. However, the method in this paper
has continuous learning ability. As shown in the Fig. 12 and
Table IV, three different control methods are compared and
the proposed method in this paper improves the precision of
motion learning and generalization. Furthermore, the continu-
ous learning ability in multiple tasks is also shown in the Fig.

Fig. 10: Modulation of muscle excitations. (a) and (b) show
muscle excitations during eight movements from an origin
to targets on the circles with the radius of of 0.14m and
0.05m respectively. As the time duration of movements is the
same, movements with different distances can be regarded as
movements with different speeds. The targets are distributed at
various directions from 0◦ to 360◦ with the interval of 45◦. (c)
and (d) show muscle excitations during movements from an
origin to targets at the same direction and different distances
of 0.14m and 0.05m respectively.

4 and Fig. 6. In addition, the investigation of neuromuscular
control is not only important for musculoskeletal robots and
may also benefit the control of other non-linear, coupling
robotic systems [62, 63].

In this paper, the states of neurons in the RNN and the
muscle excitations are initialized with zeros for each move-
ment. Therefore, muscles have not been activated to resist
the effect of gravity at the beginning and the movement of
musculoskeletal system will be affected under this condition.
For human and animals, the premotor cortex and primary
motor cortex will prepare the movements and generate an
appropriate initialization for movement execution [64, 65].
Consequently, they can hold on the initial posture and resist
gravity with appropriate muscle excitations. In the future,
we will improve the method with appropriate motor-cortex-
inspired movement preparation. Furthermore, we will also
gradually apply our neuromuscular control method to the
hardware of musculoskeletal robots and promotes the devel-
opment of the musculoskeletal robot. The reward modulated
learning may be further improved with evolutionary algorithms
and other more complicated reinforcement architectures [66–
68]. In addition, the musculoskeletal system with flexibility
and compliance may also be applied to realize human-like
manipulation and collaboration task [69–71].

VI. CONCLUSION

Inspired by how human control the musculoskeletal system,
a novel neuromuscular control method is proposed in this
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Fig. 11: Extracted muscle synergies and their modulation. (a),
(b), and (c) show muscle synergies extracted from muscle
excitations during twenty movements with various directions.
(d) shows the modulation of amplitudes of three muscle
synergies with the movement directions.

Fig. 12: Comparison results of three different control methods
of a musculoskeletal system. (a), (c) and (e) show the perfor-
mance of the method in [39], [43], and this paper on 8 training
targets respectively. (b), (d) and (f) show the performance of
the method in [39], [43], and this paper on 20 unlearned targets
respectively.

paper. This method improves both of the performance of
neuromuscular control and biological plausibility. With the
continuous reward modulated learning, the learning ability
is enhanced and multiple tasks can be learned. With the
consistent population response of the RNN, great generaliza-
tion and robustness for noises are achieved. Furthermore, the

Training Errors Generalization Errors
(mm) (mm)

Method in [39] 16.9± 7.9 19.7± 8.5
Method in [43] 5.1± 1.7 5.6± 2.0

Method in this paper 2.8± 1.3 5.0± 2.7

TABLE IV: Comparison of training errors and generalization
errors of three different methods

method also demonstrates the motor-like consistent population
response and muscle-like synergy, which proves the biological
plausibility and validate the effectiveness of neural mecha-
nisms to some extent.
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