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Abstract—Current robotic studies are focused on the
performance of specific tasks. However, such tasks cannot be gen-
eralized, and some special tasks, such as compliant and precise
manipulation, fast and flexible response, and deep collaboration
between humans and robots, cannot be realized. Brain-inspired
intelligent robots imitate humans and animals, from inner mech-
anisms to external structures, through an integration of visual
cognition, decision making, motion control, and musculoskeletal
systems. This kind of robot is more likely to realize the functions
that current robots cannot realize and become human friends.
With the focus on the development of brain-inspired intelligent
robots, this article reviews cutting-edge research in the areas of
brain-inspired visual cognition, decision making, musculoskeletal
robots, motion control, and their integration. It aims to provide
greater insight into brain-inspired intelligent robots and attracts
more attention to this field from the global research community.

Index Terms—Brain-inspired intelligent robots, decision mak-
ing, muscle control, musculoskeletal robots, visual cognition.

I. INTRODUCTION

W ITH THE ongoing progress in robotic research, robots
are playing an increasingly important role in industry,

the service sector, and national defense. The efficient integra-
tion of vision, decision making, motion control, and hardware
systems ensures robotic intelligence. Accurate and robust
visual cognition help robots perceive and understand their
environment. Based on environmental knowledge, accurate
and fast decisions in complex environments are the corner-
stone for robotic movements and dexterous manipulations.
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Furthermore, flexible and compliant robotic body, as well as
motion control enable robots to realize manipulations with
high precision. However, the current studies in these areas have
mainly focused on the performance of particular tasks, and cer-
tain bottlenecks still exist, restricting the wider application of
robots in many areas.

For visual cognition, deep-learning-based and broad-
learning-based methods have been widely used in tasks, such
as image classification [1]–[3] and object recognition [4]–[7],
and have achieved much better performance than traditional
visual models. However, such methods still have certain draw-
backs. First, these methods consume a significant amount
of data, but in some cases, the available data are limited.
Second, they are vulnerable to disturbances, and even slight
noise in the input images may cause a significant deviation in
the results [8]. Third, the deep-learning-based visual model
is a black box, and how the model works is unclear [9].
Furthermore, a visual model is mainly designed for specific
tasks and cannot adapt to new tasks quickly.

For the decision making of robots, the key issues are acquir-
ing environmental knowledge through autonomous learning,
and making accurate and fast decisions in complex envi-
ronments. The breakthrough of this technology will greatly
improve the efficiency and accuracy of robotic movements
and dexterous manipulations, which has a significant and pro-
found impact on intelligent manufacturing and national life.
In recent years, with the development of artificial intelligence,
robotics, and neuroscience, many learning-based decision-
making methods have achieved an outstanding performance
in the autonomous learning of robotic knowledge and
skills [10]–[14]. However, there are still some common prob-
lems in this regard, such as a low learning efficiency, poor abil-
ity to generalize, inability to develop goal-oriented strategies,
and the lack of a quick adaptation to dynamic environments.

In terms of robotic body and motion control, existing
joint-link robots mainly imitate the appearance and functions
of humans. However, they still have limitations in realizing
human-like manipulations and interactions. Compared with
existing joint-link robots, musculoskeletal robots imitate the
human skeletons, joints, muscles, and driving mode between
muscles and joints. As these robots provide better flexibil-
ity, compliance, robustness, safety, and adaptation, they have
greater potential for realizing human-like manipulations and
interactions. However, the strong redundancy, coupling, and
nonlinearity of musculoskeletal robots also cause difficulties in
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Fig. 1. Brain-inspired intelligent robot with integrated vision, decision,
motion control, and musculoskeletal systems. V1, primary visual cortex; V2,
V4, extrastriate cortex; AIT, anterior inferior temporal cortex; PIT, poste-
rior inferior temporal cortex; mPFC, medial prefrontal cortex; MT, middle
temporal gyrus; MST, superior medial temporal cortex; PPC, posterior pari-
etal cortex; FEF, frontal eye fields; ACC, anterior cingulate cortex; Amy,
amygdala; OFC, orbitofrontal cortex; SS, Subcortical System; PFC, prefrontal
cortex; MC, motor cortex; CB, cerebellum; and SC, spinal cord.

motion control. To solve the control problem of musculoskele-
tal robots, many methods based on control theory and artificial
intelligence have been proposed [15]–[34]. Nevertheless, the
performance of musculoskeletal robots is still limited in
terms of movement precision, motion generalization, and rapid
response.

Humans can achieve better performance than robots in
terms of their current visual cognition, decision making,
robotic body, and motion control. For example, humans are
particularly good at dealing with difficult object recognition
tasks from a variety of viewpoints and scales and under
conditions involving deformation and ambiguity [35]. Humans
are typically able to quickly infer the causal relationship
between perceived states and actions, and rapidly adapt
to a dynamic environment. Humans can also control their
musculoskeletal system to achieve complex movements and
manipulations with high precision and flexibility. Inspired
by human intelligence, imitating the neural mechanisms of
humans and animals may be a possible way to improve
robotic intelligence. Therefore, a brain-inspired intelligent
robot has been proposed to imitate the inner mechanisms
and external structures of humans from an integration of
brain-inspired vision, decision making, motion control, and
musculoskeletal systems, as shown in Fig. 1, which may lead
to a significant advancement in robotics.

In recent years, brain-inspired intelligent robots have made
progress in terms of visual cognition, decision making, motion
control, musculoskeletal systems, and their integration. For
visual cognition, brain-inspired visual models have shown
significant potential [36]–[38]. These models have become
an important source of many recent studies on computer
vision tasks [39], [40]. Brain-inspired models have numerous

advantages, and the working mechanism of such models clearly
improves the robustness of the cognitive process. Moreover,
these models perform well on few-shot classification and
transfer-learning tasks. For decision making, various factors,
such as emotion [41], memory [42], and cognitive control [43],
have been introduced to modulate model-based and model-free
decision-making systems working together to achieve intelli-
gent behaviors. A significant increase in emotion research is
underway in a new interdisciplinary field, spanning cognitive,
neuron, and computer sciences and engineering. Most of this
research has simplified the complex generation of emotions
and the regulation mechanisms of the biological brain, and
has attempted to improve decision making by building simple
mathematical models. For the motion control of musculoskele-
tal robots, some novel methods have been designed with the
inspiration of neural mechanisms of motor systems, such as
habitual planning and muscle synergy [40], [44]–[46]. These
methods have improved the movements and manipulation tasks
of musculoskeletal robots for rapid response and motion gen-
eralization. Furthermore, the human-like characteristics and
biological plausibility of such systems have also been shown.

This article reviews the bottlenecks of existing robotic
systems and summarizes the progress in brain-inspired intel-
ligent robots. The remainder of this article is organized
as follows. Sections II–V introduce the neural mecha-
nisms and brain-inspired algorithms of visual cognition,
emotion-modulated decision making, musculoskeletal robots
and motion control, and their integration. Finally, some con-
cluding remarks are given in Section VI. Some illustrations
are placed in the Appendix.

II. BRAIN-INSPIRED VISUAL MODELS

A. Conventional Visual Models

An image is stored and presented in the form of a numer-
ical matrix. For this high-dimensional numerical matrix, the
computer cannot directly distinguish the content, and it must
use low-dimensional feature descriptors to represent the visual
information in the image to allow the computer to recog-
nize such information. Feature descriptors can be divided
into two categories: 1) global and 2) local. Global feature
descriptors include a principal component analysis (PCA)
and a linear discriminant analysis (LDA). Classic local fea-
ture descriptors are mainly divided into four categories [47]:
1) filter-based; 2) distribution-based; 3) texture-based; and
4) other types of descriptors. Other descriptor types include
color-based descriptors [48], phase-based descriptors [49], and
derivative-based filters [50]. Local feature descriptors usually
do not require preprocessing, such as image segmentation
or contour extraction, and are robust to occlusions, complex
backgrounds, geometric changes, and lighting changes. Local
feature descriptors are widely used in various computer vision
tasks, such as image retrieval, object recognition, object posi-
tioning, image matching, and image tracking. This section
focuses on the first three types of local feature descriptors.

Filter-based descriptors use filtered images. Common filters
for such descriptors mainly include directional adjustable fil-
ters [51], Gabor filters [52], and complex filters [53]. Studies
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in cognitive neuroscience have found that Gabor filters have
response characteristics similar to the simple cells found in the
mammalian cerebral cortex [54]. Subsequently, Daugman [52]
proposed a 2-D Gabor filter, which consists of a set of local
spatial band-pass functions with good spatial positioning and
direction and frequency selection characteristics. In addition,
Lee [55] introduced a Gabor filter into an image representation
and defined it as the product of an elliptic Gaussian envelope
and a complex plane wave.

Traditional image descriptors are based on the experiences
of researchers, and their representation capabilities can be
limited. Due to the development of deep learning theories
and growing GPU computational capabilities, the use of deep
learning methods in visual tasks has grown in popularity.
Deep convolutional neural networks (DCNNs) are classical
deep learning models, and have recently found significant suc-
cess in large-scale image and video recognition. Fig. A.11

in the supplementary material, shows a typical DCNN archi-
tecture, consisting of convolutional and pooling layers, fully
connected layers, and a classification layer. A convolutional
layer is primarily a layer that conducts a convolution operation.
The pooling layer is used to reduce the size of the activation
maps. After several convolutional and max pooling layers, the
activation maps are processed by fully connected layers for
classification.

Krizhevsky et al. [56] proposed the AlexNet model, which
consists of five convolutional layers, three maximum conver-
gence layers, three fully connected layers, and one softmax
layer. The model was the winner at the ImageNet ILSVRC-
2012 image classification challenge. This model has shown an
unprecedented application performance as a DCNN. Szegedy
applied kernels of different scales in the same convolu-
tional layer to produce the GoogleNet model [57], which
significantly reduces the number of parameters. In addition,
Simonyan and Zisserman introduced the VGG model [1],
proving that the addition of more layers can promote a better
performance. He et al. [2] applied a residual connection to
produce ResNet and solved the overfitting problem in deeper
models. In addition, Lin designed a 1×1 convolutional kernel
to reduce the number of parameters [58]. Hu et al. [59]
introduced SENet, which considers the relationship between
convolutional channels.

B. Neural Mechanisms of the Visual Cortex

The human visual cortex consists of eyes (including the
retina), optic nerves, optic chiasma, optical cartridge, lateral
geniculate nucleus (LGN), and visual cortex. When the light
reflected by an external object enters the eyes of a human, it
will be projected onto the central area behind the retina. The
information is then intersected in the optic chiasm and arrives
in the LGN through the optic nerves. Finally, the information
is processed by the visual cortex. Ungerleider and Mishkin
proposed a detailed dual-pathway visual model [60]. There
are two parallel pathways in the visual cortex: 1) ventral and

1Fig. A.1 and Fig. A.12 in the supplementary material, are placed in the
Appendix.

2) dorsal. These pathways solve the two basic visual questions
of what and where, respectively.

In the ventral pathway, visual information starts from V1,
goes through V2 and V4, and finally arrives at the inferior
temporal (IT). The IT goes through the posterior IT (PIT),
central IT (CIT), and anterior IT (AIT). This pathway is related
to shape information perception, object recognition, and long-
term memory storage.

Visual information in the dorsal pathway starts from V1,
goes through V2, V3, the middle temporal gyrus (MT),
and the superior medial temporal cortex (MST), and finally
reaches the posterior parietal cortex (PPC). This pathway is
related to object location, spatial information decoding, motion
perception, and interactive motion guidance.

As shown in Fig. A.2 in the supplementary material, due
to the extensive divergence and convergence in the visual cor-
tex, the two visual pathways are not isolated. Instead, there
are many connections for achieving visual information shar-
ing. Studies have shown that each visual cortex region has
a specific function in processing visual information. By con-
necting multiple visual cortex regions, a balance of the visual
information representation between classes and the invariance
within classes is achieved.

The receptive field of the visual neuron increases layer by
layer. The receptive field of the higher layer is 2.5-times larger
than that of the lower layer. V1 complex cells respond to an
oriented bar independent of their brightness [61]; in addition,
V4 neurons maintain their selectivity for a curvature over a
range of spatial positions [62]. A subset of IT cortex neu-
rons maintains their sensitivity for objects independent of their
position and size [63], [64], and another remarkable feature
of such neurons is the invariance of the shape selectivity [65].
In the visual cortex, some states of an object (e.g., orientation
and occlusion) can be encoded within IT. For example, cells in
the IT are tuned to a certain object view or lighting condition,
where their firing activities are robust to stimulus transfor-
mations, such as changes in scale and position [66], [67].
Neurons in each region can respond to and learn from visual
stimuli of a specific complexity with a small number of sam-
ples, and the learned features can be shared among multiple
visual tasks, ensuring a particular visual-recognition speed and
generalization.

C. Biologically Inspired Visual Models

Brain-inspired models can be divided into two aspects:
1) cellular-level inspired models and 2) neural pathway
inspired models, which are classified and listed in Table I.

Cellular-level inspired models simulate the coding mech-
anism of visual neurons. McIntosh et al. [68] used a CNN
to construct a well-performed retina coding model, McInosh-
Net, which simulated the discharge mechanism in the retina.
Klindt et al. [69] proposed a CNN model with a sparse readout
layer, Klindt-Net, from the perspective of a space-time separa-
tion. Poggio proposed the HMAX V1 cell model [70], which
simulates the information mapping mechanism of simple cells
and complex cells in the V1 region through a feedforward
method, and initially expresses the static feature perception
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capability of V1. In addition, Azzopardi et al. [71] proposed
a texture suppression and contour enhancement model based
on the antagonistic and inverse suppression properties of sim-
ple cells in the visual cortex V1. Moreover, Dura-Bernal used
the loopy belief propagation to approximate the selectivity and
invariance in the IT cortex [72].

Neural pathway-inspired models are based on the structure
of the visual pathway. Rolls [73] proposed the Visnet model,
which uses a self-organizing algorithm that can establish
an invariant representation through statistical self-organized
learning based on visual input. Riesenhuber and Poggio [70]
Serre et al. [74] proposed the HMAX model for the struc-
ture of the ventral pathway of the primate cortex, which has
the capability of learning from only a few training examples
and competes with state-of-the-art systems, and suggested a
plausibility proof for a class of feedforward models of object
recognition in cortex. Dura-Bernal developed a Bayesian
network similar to an HMAX structure [72]. The HMAX
model has been further developed and improved in various
ways [75], [76].

Despite such progress, some drawbacks to brain-inspired
algorithms still exist. First, algorithms usually only focus on
a part of the visual mechanism and lack the modeling of the
integrity of the visual pathway. Second, because algorithms
only model low-level neural mechanisms such as episodic fea-
tures, this project intends to model the visual cortex from a
low level. However, the modeling of a high-level visual cor-
tex, such as semantics, memories, and conception, can reduce
the redundancy of the features. Third, these algorithms are
designed for specific tasks, causing it to fail to work well
with approximate problems.

The following mechanisms found in human visual pro-
cessing are inspired: 1) semantic extraction through interac-
tions between the hippocampus and medial prefrontal cortex
(mPFC) [77]–[79]; 2) structural learning, for example, neurons
in V4 tuned for a contour fragment orientation with a specific
relative object position [62]; and 3) selective attention involv-
ing the frontal eye fields (FEF), anterior cingulate, frontal
cortex, etc. Yin et al. [35] and Green et al. [80] proposed
a new integrated and dynamic visual cognition model consist-
ing of six blocks, as is shown in Fig. A.3 in the supplementary
material. The experimental results on four datasets show that
compared with other methods, the new proposed model is
more robust and achieves higher precision for visual recog-
nition, especially when the input samples are semantically
ambiguous.

Inspired by the biological evidence indicating that the
memory of an object includes both episodic and semantic
memories [81], that recognition memory includes familiarity
and recollection components [82], [83], and that familiarity
recognition is rapid and accurate and only requires a small
number of neurons [84], Qiao et al. [85] introduced biologi-
cally inspired memory and association into the HMAX model,
which is shown in Fig. A.4 in the supplementary material.
Recognition is achieved through two stages of recognition
memory, namely: 1) similarity discrimination and 2) recall
matching. Recognition can also be achieved through cluster
coding of the semantic features and the situational features of

TABLE I
OVERVIEW OF VARIOUS VISUAL MODELS

multiple feature parts. Compared with the HMAX model, the
new model can output semantic descriptors for object recog-
nition tasks with a higher recognition accuracy. This model
provides a basic framework for modeling-related mechanisms.

Based on the working memory and association in [85],
Qiao et al. [86] introduced an active attention adjustment in
this model. During the recognition stage, multiple local fine-
coded occlusion information of a cognitive object is used. The
classification step is actively adjusted based on the initial cog-
nitive information. The semantic and situational features of the
occlusion parts are filtered out before the classification task.
The experiments of this model prove the robustness of the
classification task, particularly, when the samples are partly
occluded.

There are several differences between brain-inspired visual
models and conventional visual models. First, brain-inspired
visual models are designed to imitate specific visual cortex
areas. Thus, the working principle is much clearer. These mod-
els can be adjusted according to the different tasks. Second,
brain-inspired visual models introduce semantic features and
concept formulation. Traditional visual features only focus on
extracting numerical features. Semantic and concept features
are important for models to understand the samples, making
the recognition result robust. Finally, conventional visual mod-
els adopt a forward structure, lacking lateral and feedback
connections. With lateral and feedback connections, visual-
inspired models can associate with primitive memories and
make adjustments to discover more discriminative features.

III. EMOTION-MODULATED DECISION MAKING

Based on the psychological and neural mechanisms of emo-
tion and decision-making system in the human brain, some
computational models of emotion in decision making are
reviewed in this section, which are classified and listed in
Table II.

A. General Models of Emotion in Decision Making

Based on the functional roles of emotion, the potential
roles of emotion in artificial systems have been discussed
in many literature [93], [94]. For example, Scheutz [93]
proposed 12 potential roles for emotions in artificial agents:
1) action selection; 2) adaptation; 3) social regulation; 4) sen-
sory integration; 5) alarm mechanisms; 6) motivation; 7) goal
management; 8) learning; 9) attentional focus; 10) memory
control; 11) strategic processing; and 12) self-model. While
Moerland et al. [94] investigated various methods of affec-
tive modeling for improving the learning efficiency of the
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agent, and compared different evaluation methods from the
aspects of emotion elicitation, emotion type, emotion func-
tion, and test scenario. Specifically, emotion elicitation is
divided into four categories: 1) extrinsic motivation; 2) intrin-
sic motivation; 3) reward; and 4) hard-wired process. Extrinsic
motivation mainly derives from homeostatic dynamics that
reflect the balance of the organism’s internal environment,
such as “energy,” “sugar,” and “water level” [95]. For exam-
ple, a motivation of replenishing energy would come into
being when resource consumption increases, or thirst leads
to a motivation of searching for water [96], [97]. Intrinsic
motivation is based on the appraisal theory, where different
combinations of appraisal dimensions correspond to different
emotions. Appraisal dimensions are often some psychological
concepts, such as novelty, valence, control, motivational rele-
vance [98], [99], and curiosity/surprise [100]. Several social
dimensions, such as social fairness [101] and social coop-
eration [102], are also associated with intrinsic motivation.
In addition, emotion elicitation is also considered as func-
tions of value and reward. A part of works suggests that
positive and negative emotions can be coded by the value func-
tion directly [99], [103], or be computed from the temporal
change of reward sequence [104]. While some work con-
nects emotion with the temporal difference error following the
relationship between the dopamine and emotion [103], [105].
Hard-wired process directly maps the sensory input to some
specific emotions [106], [107].

On the emotion-function basis, emotion modulates decision-
making process through reward modification, state modifi-
cation, metalearning, and action selection [94], as shown in
Fig. A.5 in the supplementary material. Reward modification,
also known as reward shaping [108], is usually formed as the
sum of external reward and internally emotional reward. The
internal reward is dependent on homeostatic variables [109]
or appraisal variables [99]. Recently, reward modification is
involved in deep reinforcement learning, which can effectively
improve the ability to explore and learn in the dynamic and
unpredictable environments. For example, Tang et al. [110]
proposed a count-based exploration algorithm, where intrin-
sic motivation is computed by counting the occurrences of
states and actions with a hash table. Some research formu-
lates intrinsic motivation as the self-prediction error of states
and actions, where the generated curiosity or surprise moti-
vates the agent to explore more efficiently even if the external
rewards are very sparse [111]–[114]. Savinov et al. [115]
proposed a new curiosity module that uses episodic memory
to form the novelty bonus. Specifically, the current state is
compared with episodic memory via a comparator network,
where the reachability from memory to the current state is
measured for generating the intrinsic curiosity. This intrinsic
motivation incorporates rich information about environment
dynamics, which makes it possible for the agent to learn from
the sparse external rewards.

Some work uses artificial emotion to modify the cur-
rent state for impacting action selection [107], [116], where
emotional variables are assigned into a part of the state
space. Meanwhile, inspired by neuromodulatory effects, some
research suggests that emotional systems can influence

decision making by modulating the mate parameter during
learning, including the learning rate, temporal difference error,
discount factor, and other factors [32], [117]–[119]. Finally,
emotion is also involved in the exploration/exploitation trade-
off by adjusting the exploration parameter directly [117], [120]
or switching different sets of value functions [106], [121].

Excepting reinforcement learning, many other machine-
learning implementations incorporate emotion mechanisms to
improve the performance. For instance, emotion is formulated
as mathematical representations in the Bayesian framework,
which models affect control during an interaction between two
persons [107]. An affect control theory allows the system to
generate an affective interaction by learning optimal behav-
iors or identities based on past interactions. In addition, the
free-energy principle has recently been proposed as a unified
Bayesian theory of perception, learning, and action, where
emotion is a major consideration. Because the core of the free
energy principle is to preclude surprise/novelty and decrease
complexity so that biological systems, like ourselves, maintain
their homeostasis [122]. In this theory, agents actively infer a
policy by minimizing the free energy so that they can not
only pursue the goal state with highest expected utility but
also predict the environment with the minimum uncertainty.
Decision making is drawn in a variational Bayesian frame-
work, where perception, learning, and action are governed by
an expected utility of future states and relative entropy between
likely and desired outcomes. When minimizing surprise, more
different goal states are visited, which leads naturally to con-
cepts such as novelty seeking and satisfying curiosity [123].
Based on this theory, emotional valence [124] is recently
proposed as the negative rate of change of free energy over
time. The dynamics of basic forms of emotion, such as happi-
ness, unhappiness, hope, and fear are explained as a result of
conjunctive adjusting and control between the first and second
time derivative of free-energy.

B. Biologically Inspired Models of Emotion in
Decision Making

Biologically inspired approaches focus on simulating the
neural information processing, where neurodynamic methods
are usually used to model the generation and regulation of
emotion and the interaction between emotion and cognition. In
the 1970s and 1980s, Professor Grossberg built a great deal of
biologically inspired neural networks to simulate conditional
and unconditional stimulus experiments, and later developed
a series of computational models of cognitive-emotional inter-
actions [125]–[129]. Levine [125] reviewed a range of neural-
network modeling approaches and development history of
emotion-modulated cognitive and decision-making processing,
including computational models of emotional influences on
attention, models of emotionally influenced decision making,
and models of specific emotions. Therein, many algorithms are
based on neural-network models proposed by Grossberg. For
example, Grossberg and Gutowski [128] proposed an opponent
processing network called a gated dipole to model the neural
dynamics of decision making under risk, which can also sim-
ulate the emotional processing, motivation, and reinforcement
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learning well. After that, Leven and Levine [129] extended
this gated dipole model further to implement multiattribute
decision making. Taylor and Fragopanagos [130] integrated
functions of emotionally related brain regions to the model of
attentional control, which achieved a selective attention with
emotion modulation. In addition, some research focuses on
the influence of emotions on long-term social behavior and
emotional disorders [131]–[133].

Another prevalent framework is the brain emotional learn-
ing (BEL) model proposed by Balkenius and Moren [134],
which is based on the mammalian emotional learning dur-
ing the amygdala-orbitofrontal cortex (OFC) interaction. The
flow of information is shown in Fig. A.6 in the supplemen-
tary material. The conditional sensory stimuli first enter the
amygdala to generate primary emotional response through the
thalamus part, which is a rough and fast representation of
conditional response. In another pathway, the sensory stim-
uli are processed finely by the amygdala and OFC through
the sensory cortex, where the high-level cognitive information
from the OFC inhibits the primary emotion. The learning
of the amygdala and OFC is dependent on the mismatches
between the actual activations and received reinforcer. Based
on BEL, a range of new models has been developed. For exam-
ple, the brain-emotional-learning-based intelligent controller
(BELBIC) is applied for intelligent robotic control [135],
intelligent power system [136], and motor control [137].
This model can improve the adaptive ability and robust-
ness of the control system. Lotfi and Akbarzadeht [138]
proposed a supervised BEL-based pattern recognizer (BELPR)
for addressing multi-input and multioutput classification prob-
lems. Milad et al. [139] proposed a neo-fuzzy-integrated adap-
tive decayed BEL network for online time-series prediction.

In recent years, Huang et al. [32], [140], [141] have also
proposed some brain-inspired models of emotion-modulated
decision making. Inspired by the fact that emotion can modulate
the process of decision making by adjusting the metaparameters
of learning [117], a novel emotion-modulated Oja learning
rule has been proposed [32]. Therein, the Oja reinforcement
learning rule is used to update the weights of a multilayer
dynamic recurrent neural network. The information entropy of
reward signals is used to generate the emotional valence for
adjusting the decision parameters online. The proposed method
is able to control some complex robotic systems to perform
the goal-directed and delayed-reinforcement tasks with higher
accuracy and a faster learning rate.

Inspired by the neural mechanism of emotion modulation on
the goal-directed and habitual behaviors [41], [142]–[145], a
new approach to connect model-based and model-free control
with emotion modulation has been proposed [140], as shown in
Fig. A.7 in the supplementary material. This decision-making
framework bridges a gap between model-based and model-
free control processes by only adjusting the planning horizon.
If the planning horizon decreases to zero, the model-based
control will transform into the model-free control smoothly.
Meanwhile, that work built a biologically plausible computa-
tional model of emotion processing. This model can generate
an uncertainty-related emotional response on the basis of the
state prediction error and reward prediction error, and then
dynamically modulate the planning horizon in the tasks. The

TABLE II
OVERVIEW OF EMOTION IN DIFFERENT DECISION ARCHITECTURES

proposed decision-making framework can not only improve
the learning efficiency and the accuracy of decision making but
also gradually accelerate the decision-making with continuous
learning.

In addition, emotional reactions are usually incorporated into
the computation of subjective value during decision making
in humans [41]. Based on it, an emotion-motivated decision-
making framework has been proposed [141]. In that work, a
brain-inspired computational model of amygdala-hippocampus
interaction was first built to generate emotional reactions. The
intrinsic emotion derives from the external reward and episodic
memory, and represents three psychological states: 1) valence;
2) novelty; and 3) motivational relevance. Then, a model-based
decision-making approach with emotional intrinsic rewards was
proposed to solve the continuous control problem of mobile
robots. This method executes an online model-based planning
based on a learned environmental model and a model-free
guiding policy. The proposed approach has higher learning
efficiency and maintains a higher level of exploration, especially
in some very sparse-reward environments.

IV. BRAIN-INSPIRED MOTION CONTROL OF

MUSCULOSKELETAL ROBOTS

Although existing joint-link robots have imitated the partial
functions of humans, they still have certain limitations. First,
the precision of a movement and manipulation depends exces-
sively on the precision of the sensors and robotic body. Second,
these robots are relatively rigid and are not conducive to real-
izing a safe interaction with people. Moreover, the breakdown
of a single actuator will affect the overall performance of
the robots. In contrast, humans can utilize a flexible body
to achieve a safe interaction, robust movement, and high-
precision manipulation tasks. Therefore, a musculoskeletal
robot with a human-like skeleton, joints, and muscles has been
proposed as a new generation of robot.

One of the bottlenecks slowing down musculoskeletal robot
research is the control of such robots. Current studies on the
control of musculoskeletal robots have mainly been based on
control theory and artificial intelligence. However, human-
like movements with both a high level of performance and
biological plausibility have not been achieved. In order to
break the bottleneck, some brain-inspired control algorithms
have been proposed from imitating how humans control a
musculoskeletal system and achieved some great results.

A. Musculoskeletal Robots

Some musculoskeletal robots have been established to
imitate the skeletons, joints, muscles, and tendons of
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humans [15], [148]–[166]. Traditional industrial robots mainly
use motors to drive the joints directly. Musculoskeletal robots
use muscular modules to imitate the manner in which mus-
cles contract and drive the joints. The skeletons and joints of
musculoskeletal robots are mainly made of light resin, car-
bon fiber, and mental materials. Muscular modules mainly
use a DC motor, a pneumatic actuator, or an intelligent mate-
rial as the power source. Some muscular actuators use a DC
motor as a power source and are fabricated through a com-
bination of DC motors, pulleys, chemical fibers, springs, and
numerous sensors [15], [148]–[154]. In these muscular mod-
ules, a motor drives the skeleton indirectly using kite lines
or wires. These muscular modules have better controllability
but fewer characteristics similar to those of actual biolog-
ical muscles. Furthermore, pneumatic actuators [155]–[162]
and new materials [163]–[166] have also been adopted as
power sources in musculoskeletal robots. Muscular modules
with pneumatic actuators and intelligent materials have better
characteristics of biological muscles but less controllability.
These musculoskeletal robots have preliminarily demonstrated
human-like free motion, climbing, walking, jumping, and
running capabilities. They also show the characteristics of flex-
ibility, robustness, and variable stiffness to a certain extent. A
typical musculoskeletal robot with pneumatic actuators [167]
is shown in Fig. A.8 in the supplementary material.

Compared with joint-link robots, musculoskeletal robots
have several advantages. First, musculoskeletal robots are
more flexible with more degrees of freedom (DOF) and can
realize a specific task with more postures. Second, muscu-
loskeletal robots have better compliance and variable stiffness
through regulating the co-activation patterns of many agonist
and antagonist muscles. Furthermore, musculoskeletal robots
have better robustness. Because muscular actuators are redun-
dant and arranged in parallel, the fatigue or failure of a muscle
can be compensated by other muscles with similar functions.

However, the sophisticated structure of a musculoskeletal
robot also brings about numerous control challenges. First,
because a musculoskeletal robot has strong redundancy in
the joints and muscles, the muscle activations of a specific
movement have infinite solutions. Second, musculoskeletal
robots also exhibit a strong coupling. Each muscle will actu-
ate numerous joints, and each joint is also affected by many
different muscles, which increases the complexity of the solu-
tions to muscle activations. In addition, muscular modular
dynamics have a strong nonlinearity, and the arrangement of
muscles is complex. Therefore, constructing an explicit math-
ematical model of a sophisticated musculoskeletal system is
almost impossible, which further enhances the difficulty of
control.

B. Algorithms Based on Control Theory and Artificial
Intelligence

To solve the control problem of musculoskeletal robots,
many approaches have been proposed in this area, which
are classified and listed in Table III. Some control meth-
ods have been applied in physical musculoskeletal robots and
can accomplish simple and imprecise movements [15]–[20].
Other methods can realize more human-like and complex

movements. However, they have only been realized in simu-
lated musculoskeletal systems as a proof-of-principle and may
be further applied to physical musculoskeletal robots in the
future [21]–[34].

Because musculoskeletal robots have a complex relation-
ship between muscles and joints, many control methods
have been proposed for the utilization of explicit muscle-
joint state mapping [15]–[27]. With these methods, muscle-
joint state mapping is first established, and the controller
is then designed. On the one hand, muscle-joint state map-
ping can be derived based on the geometric relationship
between the muscles and joints [15]–[17], [21]–[27]. On the
other hand, it can also be approximated using data collected
from musculoskeletal robots [18]–[20]. A feedback con-
troller [16], [17], [19], [21], iterative learning controller [22],
adaptive controller [23], neuro-fuzzy controller [24], sliding-
mode controller [25], antagonist inhibition controller [20], and
static optimization [26], [27] can then be applied to com-
pute the force, length, or excitation of the muscles. However,
the above methods are not applicable for musculoskeletal
robots with a sophisticated relationship between muscles and
joints. These robots have complex skeleton structures, winding
muscular paths, and strongly nonlinear muscular dynamics.
Therefore, it is difficult to derive a mapping based on a
geometric relationship. Furthermore, a mapping approximated
using collected data also has modeling errors and cannot be
applied to realize precise movements and manipulation.

To control sophisticated musculoskeletal robots, some
model-free methods have been proposed to control
robots directly without establishing muscle-joint map-
ping [28]–[34], [168]. Using these methods, deep neural
networks (DNNs) are trained to compute muscle excitations
based on movement targets and robotic states directly with
supervised [28], [29] and reinforcement [30]–[34] learning.
Based on these methods, human-like reaching and running
tasks can be realized with sophisticated musculoskeletal
systems during a simulation. Nevertheless, they still have cer-
tain limitations. First, supervised learning methods [28], [29]
require a large number of training data for muscle excitations
in the workspace. Because musculoskeletal robots have many
redundant muscles and joints, each movement has numerous
redundant solutions to muscle excitations. Therefore, it is
difficult to collect training data in simulated and physical
environments. Second, some reinforcement learning methods
have been proposed to realize muscle control in reaching
tasks [32], [33]. However, the precision and generalization of
motion learning still need to be improved. Furthermore, deep
reinforcement learning based on algorithms, such as a deep
deterministic policy gradient, proximal policy optimization,
and trust region policy optimization, are proposed to allow the
musculoskeletal system to be controlled as quickly as possible
and avoid obstacles [30], [31], [34]. Although these methods
are effective while running and avoiding obstacles, the
effectiveness is mainly a benefit from the huge computational
power and are still lacking in biological plausibility.

C. Neural Mechanisms of Muscle Control

In the field of motor neuroscience, how to control the mus-
culoskeletal system to achieve a movement and manipulation
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is a long-term and open problem. It was found that the
movements of people and animals can be achieved through
a combination of motion primitives [169]–[171]. As Mussa-
Ivaldi et al. [169] found, when two different parts of a spinal
cord of a frog are stimulated concurrently, the force field gen-
erated at the end of the limb is the vector superposition of the
force fields generated by stimulating the two parts separately.

Based on an analysis of electromyographic signals, it was
found that muscles with strong structural and functional corre-
lations are always co-activated. These groups of co-activated
muscles are defined as muscle synergies [172]–[174], which
can be regarded as a specific movement primitive.

Furthermore, muscles are regulated by motoneurons and
interneurons in the spinal cord and are primarily affected
by the response of neurons in the motor cortex. However,
how the motor cortex encodes the movement information
and muscle excitations is controversial. Some neuroscien-
tists have proposed that the motor cortex encodes muscle-like
commands and controls the muscles directly [175], [176].
Other neuroscientists believe that the motor cortex mainly
encodes abstract movement information, such as direc-
tion and speed [177]–[179]. Based on the above study,
Churchland et al. [180], [181] and Russo et al. [182] fur-
ther proposed that the motor cortex is a dynamic system, and
that the major response of neurons reflects the fundamental
dynamic characteristics of the system. Muscle-like commands
are regulated based on movements and are embedded in such
an untangled population response.

D. Brain-Inspired Muscle Control Algorithms

Based on the above neural mechanisms of muscle control,
some inspirations to the control of musculoskeletal robots
can be obtained and some brain-inspired algorithms have
been proposed. With these inspirations, the performance of
control and biological plausibility is improved. First, better
performance on motion precision, generalization, and mul-
titask learning is obtained. Furthermore, the generation of
muscle commands and how muscle commands are affected
by movements can be better explained.

Inspired by the hypothesis of motor primitives, redun-
dant muscles can be controlled by the combination of motor
primitives. Qiao et al. [40] proposed a new control method
for musculoskeletal robots. With this method, the muscle
excitations of a new target are computed through a linear com-
bination of movement patterns, as shown in Fig. A.9 in the
supplementary material. The movement patterns are selected
as the muscle excitations of certain targets. These targets are
near the new target and can form a convex polygon surround-
ing the new target. With this method, the computation of
muscle excitations is reduced, and a fast response and a certain
generalization are achieved.

Inspired by the hypothesis of muscle synergy, co-activation
muscle patterns can be used as specific motor primitives to
characterize the intrinsic features of muscles. Rückert and
d’Avella [44] introduced time-varying muscle synergies to
realize the motion learning of a musculoskeletal system. Using
this method, time-varying muscle synergies are constructed

TABLE III
OVERVIEW OF MOTION CONTROL AND LEARNING METHODS OF

MUSCULOSKELETAL ROBOTS

and can be modulated with different targets in terms of ampli-
tude and time shift. For new targets, muscle synergies learned
on training targets are shared but the amplitude and time shifts
of muscle synergies should still be relearned. This method
realizes a certain generalization and accelerates the motion
learning of new targets. Furthermore, Chen and Qiao [45]
proposed a novel muscle-synergy-based neuromuscular con-
trol method. With this method, a new computational model
of time-varying muscle synergies is constructed. This model
utilizes both phasic and tonic muscle synergies to charac-
terize the coupling relationship among muscles in terms of
their structure and function. Muscle excitations are computed
using the combination of phasic and tonic muscle synergies,
which is illustrated in Fig. A.10 in the supplementary mate-
rial. With a neural modulation between movement targets and
muscle synergies, the acquired knowledge from the training
targets can be directly transferred to new targets. Based on this
method, better precision and generalization of motion learn-
ing are realized. For manipulation tasks, Chen et al. [46] also
proposed a muscle-synergy-based control scheme. In this con-
trol scheme, the strategy based on the attractive region of the
environment is applied to motion planning in the task space.
A learning controller is then designed to compute muscle
excitations based on motion planning. With the introduction
of time-invariant muscle synergies, muscle excitations can be
computed through a combination of low-dimensional muscle
synergies, which is shown in Fig. A.11 in the supplemen-
tary material. The control problem is effectively simplified by
transforming high-dimensional muscle excitations into a rela-
tively low-dimensional space. Based on this control scheme,
the musculoskeletal system can realize manipulations with
robustness, flexibility, and high precision under relatively
low-precision sensor information and control.

Inspired by the hypothesis of dynamic encoding in motor
cortex, the dynamic system like RNN can be used to realize
implicit motor primitives with the motor-cortex-like dynamic
characteristics. Sussillo et al. [181] realized the computation
of muscle activations with a regularized RNN and supervised
learning, and demonstrated the motor-cortex-like consistent
population response. Chen and Qiao [183] further defined a
specific pattern of consistent population response in RNN and
derived the condition based on the Lyapunov analysis. With
the combination of reinforcement learning, the motion learn-
ing and multitask learning of a musculoskeletal system was
realized. With the motor-cortex-like RNN, the performance of
motion precision and multitask learning was improved.
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V. INTEGRATION OF BRAIN-INSPIRED

INTELLIGENT ROBOT

The above sections discuss the visual cognition, emotion-
modulated decision making, motion control, and muscu-
loskeletal system of a brain-inspired intelligent robot individ-
ually. For a complete robotic system, the integration of these
parts is necessary to realize great performance.

A. Integration of Vision, Decision, and Motion Control

In this section, we focus on the integration of visual cog-
nition, decision making, and motion control. For biological
creatures, the coordination of multiple brain regions and func-
tions is essential to realize intelligent behaviors and deal
with various sophisticated situations, which is also critical
for intelligent robots. Sensorimotor coordination is a classi-
cal coordination of multiple brain regions and is the coupling
between sensing and acting [184]. For example, when trying
to catch a baseball, the eyes focus on the moving direction of
the target, the future location of the ball is predicted, and the
hand moves to that location.

1) Neural Mechanisms in Sensorimotor Coordination: The
generation and consolidation of sensorimotor commands and
skills in animals depend on the cortex, basal ganglia, and
cerebellum, which contribute to different learning processes
of sensorimotor coordination. Here, we only discuss the PPC
and cerebellum.

The PPC has long been studied due to its essential con-
tributions to spatial attention and multisensory integration for
generating a unified perceptual representation, which plays an
important role in behavior guidance [185], [186]. Researchers
have also reported that PPC contributes to movement plan-
ning in different contexts [187], [188], which might be
related to different types of movement for a particular body
part [189], [190]. It has recently been reported that such indi-
vidual movement-related regions are organized hierarchically
among different subareas for the same effector, which might
indicate that the PPC contributes to sensorimotor integration
at different levels [191], [192].

The cerebellum also plays an important role in sensorimotor
coordination tasks in animals. For example, when rodents pro-
cess sensory information from their vibrissae and control the
whisker movement, the cerebellum receives the information
from the trigeminal nucleus and sensory cortex through the
pontine nucleus [193], [194] and synchronization of the neu-
ronal firing activities with the sensory cortex during whisker
movements [195]. It has also been reported that the olivo-
cerebellar system contributes to the modulation of vibrissal
movements [196].

2) Computational models of Sensorimotor Coordination:
Humans can solve sensorimotor coordination during vari-
ous tasks. For example, a basketball player can control his
or her entire body to throw a ball into a basket, which
requires visual information to meet the required movements.
However, it is still difficult for a robot to finish such tasks
because it needs to collect all sensory information, carry
out motion planning, make the corresponding movements,
evaluate the effects, and tune the entire process accordingly.

Meanwhile, the information flow between vision and motion
is not straightforward, and how to create a proper plan from
visual information under many DOF of the actuators under
various situations is a challenge.

However, some basic principles observed in biological crea-
tures can be applied to robotics. First, sensory information
is combined and processed for motion planning. Second,
motor commands satisfy the requirements of coordination of
multiple DOF actuators. Third, the sensory monitoring and
movement adjustment work together to ensure the accuracy of
the movements [197]. These three principles are essential in
sensorimotor coordination in biological systems, which partly
ensures the learning abilities [197]–[202].

In recent years, researchers have made some progress
in the development of sensorimotor coordination in robots.
For example, Xiong et al. [203] proposed a neuromechan-
ical control and sensorimotor learning in a hexapod robot,
where the feedforward and feedback pathways are imple-
mented. The sensorimotor learning in this hexapod robot
aims to predict the force on the feet and tune the stiff
parameters accordingly. Some studies have focused on mod-
els of sensorimotor coordination of reaching-and-grasping
tasks [204]–[207], where the main concern lies in the learning
architecture inspired by the cerebral cortex and its connectiv-
ity. For instance, Zollo et al. [208] proposed a robotic platform
for reaching-and-grasping tasks with adaptive sensorimotor
learning. Training and offline learning were implemented
in a multinetwork control regime in the simulation, which
produced the inputs for low-level position control.

B. Integration of Brain-Inspired Algorithms and
Musculoskeletal Robots

The above section discusses the integration of brain-inspired
vision, decision, and motion control. However, realizing tasks,
such as compliant and precise manipulation, a fast and flex-
ible response, and deep collaboration between humans and
robots, requires not only efficient vision, decision making, and
motion control but also a flexible and compliant robotic body.
Therefore, brain-inspired intelligent robots imitating humans
from inner mechanisms to external structures should integrate
both efficient brain-inspired algorithms and musculoskeletal
robots with the advantages of flexibility, compliance, and
robustness. As shown in Fig. A.12 in the supplementary mate-
rial, brain-inspired intelligent robots can realize accurate and
robust visual cognition, make fast and accurate decisions, and
compute motion commands with brain-inspired algorithms in
the master chip. A flexible, compliant, and robust muscu-
loskeletal robot is then driven by the master chip to realize
tasks, such as assembling, grasping, and catching objects. With
the feedback of the task performance, brain-inspired algo-
rithms can be further adjusted to improve the performance.
With the integration of visual cognition, emotion-modulated
decision making, motion control, and musculoskeletal systems,
the brain-inspired intelligent robot has potential to achieve
high speed (e.g., different circuits of vision, decision, and con-
trol can be formed to deal with normal or urgent situations),
high robustness (e.g., the failure of part muscular actuators
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can be compensated by appropriate modulation of other mus-
cles), and high precision in manipulation (e.g., higher precision
can be achieved using compliant musculoskeletal robots and
environmental constraints).

VI. CONCLUSION

Cutting-edge research into brain-inspired intelligent robots
was reviewed herein in terms of vision cognition, decision
making, musculoskeletal robots and control, and integration.
Although brain-inspired intelligent robots are still at the labo-
ratory stage, significant progress has been made in recent years
in the mimicking of both biological structures and functions.
In the future, we think this direction also has great develop-
ment potential. First, with a new understanding of biological
creatures, particularly, their brain mechanisms and functional
circuits, new brain-inspired computational models closer to
human intelligence will be proposed. Second, tighter inte-
gration of the vision, decision making, and motion control
will significantly improve the entire performance of robots.
Furthermore, with the development of material and mechan-
ical sciences, better stability, flexibility, and controllability
of musculoskeletal robots will be achieved. We believe that
brain-inspired intelligent robots can shed light on the devel-
opment of novel types of robots with human-like intelligence
and behavioral characteristics and lead to a significant leap in
robotics.
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