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Abstract—Robotic grasping in unstructured dense clutter 

remains a challenging task and has always been a key research 
direction in the field of robotics. In this paper, we propose a novel 
robotic grasping system that could use the synergies between 
pushing and grasping actions to automatically grasp the objects in 
dense clutter. Our method involves using fully convolutional 
action-value functions (FCAVF) to map from visual observations 
to two action-value tables in a Q-learning framework. These two 
value tables infer the utility of pushing and grasping actions, and 
the highest value with the corresponding location and orientation 
means the best place to execute action for the end effector. For 
better grasping, we introduce an active pushing mechanism based 
on a new metric, called Dispersion Degree, which describes how 
spread out the objects are in the environment. Then we design a 
coordination mechanism to apply the synergies of different actions 
based on the action-values and dispersion degree of the objects and 
make the grasps more effective. Experimental results show that 
our proposed robotic grasping system can greatly improve the 
robotic grasping success rate in dense clutter and also has the 
capability to be generalized to the new scenarios. 

Keywords—robotic grasp; active push; synergies; deep 
reinforcement learning 

I. INTRODUCTION 
Robotic grasping research has always been a key research 

direction in the field of robotics. And the related achievements 
have been widely used in industry, exploration, service, military, 
etc. [1]. While, as the complexity of environments increases, 
grasping different targets in a cluttered or even dense 
environment is more and more challenging. 

A lot of initial work focuses on planning to grasp a known 
object and assume knowledge of object contact points, dynamics, 
poses and shapes [2][3] or maximizing the affordance metrics 
through the data-driven method to find the grasp locations [4][5]. 
However, in the unstructured environment, information is rarely 
known for novel objects, and clutter also poses great difficulty 
for reaching the planned grasps because of the occlusion 
between objects. 

For human grasping objects in dense clutter, the list of 
primitive actions used is not limited to grasp, but also includes 
non-prehensile actions, such as pushing, pulling, and dumping. 
We pick up, push, slide and swipe with our hands and arms to 
reorganize the clutter surrounding our grasping tasks. Inspired 
by this, a branch of recent grasping research has been trying to 
change or explore the environment through other auxiliary 
actions, such as poking or pushing, so as to facilitate grasping 
objects in the environment [6][7][8][9]. These methods show 
great promise for improving the grasp success rate with the help 
of other actions. While there are still some problems when  

 
Fig. 1. Robotic grasping system. The system could automatically grasp the 
objects in dense clutter with the synergies between pushing and grasping actions. 
 
applying the synergies of different actions, such as useless 
pushing action in the area with no objects [9] or low efficiency 
of grasping [8] et al.  

In this work, we propose a novel robotic grasping system (as 
shown in Fig. 1) that could automatically grasp the objects in 
dense clutter with the synergies between pushing and grasping 
actions. The main contributions of our work are summarized as 
follows: 

1) We propose an active pushing mechanism based on a 
new metric, named Dispersion Degree (DD). DD is designed to 
describe how spread out the objects are in the scene and is used 
to calculate the rewards for the pushing network. With the new 
metric, the pushing network could be trained to guide the robot 
to push the objects apart actively and purposefully and reduce 
the rate of useless pushes. 

2) We introduce a grasping system framework for the robot 
to perform the synergies between grasping and pushing actions 
with deep reinforcement learning method. Based on designed 
coordination mechanism, the robot could properly select 
pushes or grasps and avoid the influence between the different 
kinds of actions. That greatly improves the grasp efficiency, and 
experiments also show the excellent performance of the 
developed system when grasping objects in dense clutter. 

The rest of the article is organized as follows. Section II 
introduces related work. Section III briefly presents the 
preliminaries relative to our work. Section IV overviews our 
robotic grasping system. Section V addresses the proposed 
method in detail. Section VI describes the training process and 
extensive experiments, which prove the excellent performance 
of our method. Section VII summarizes conclusions and future 
work. 

Corresponding author: Tao Lu{tao.lu@ia.ac.cn} 
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II. RELATED WORK 
Grasping is an important research direction in robotics. Most 

of the initial work in this field focused on 3D reasoning and 
analytical methods to predict grasp configurations and locations 
[10][11]. Ponce et al. [12] present a set of linear inequalities 
based on grasp contact positions and convert the finding force-
closure grasps problem to the projecting polyhedron problem on 
linear subspace. Mirtich et al. [13] simplify the 3D object grasp 
to a 2D one through the calculation of position relationship 
between the three contact points of three fingers and the object. 
Zeng et al. [14] present a 3D-Match model. It can learn a local 
volumetric patch descriptor to establish the correspondences 
between partial 3D data. Zeng et al. [15] segment and label 
objects with a fully convolutional neural network in multiple 
views of the scene. In order to get the 6D object pose for 
grasping, they fit the segmentation results to the pre-scanned 3D 
object model. The analytical methods make grasping feasible, 
while it requires physical modeling of the grasping objects, 
which has high computational complexity and is difficult to be 
applied in unstructured real-world environments. 

More recent data-driven methods make it possible to train 
model-agnostic grasping policies [16][17]. These methods 
utilize learned visual features to detect grasps and do not use 
object-specific knowledge (i.e., pose, shape, contact points).  
Jiang et al. [16] design the convolutional neural network for 
learning 6D grasping positions of objects and also give out of a 
series of object dataset and label methods which could be reused 
for other researchers. Pinto et al. [17] present a self-supervised 
algorithm instead of using manually labeled grasp datasets. And 
the network is trained to predict grasp locations with a large-
scale datasets of 50K tries over 700 robot hours. Jang et al. [18] 
combine spatial and semantic reasoning into a single neural 
network policy and propose a learning-based system for visual 
robotic grasping to complete the task of semantic robotic 
grasping. Gualtieri et al. [19] abstract the robotic pick and place 
task as a deep RL problem, in which the target reach poses for 
the hand are actions and the history of such reaches are states. 
The authors show that this method can solve a class of 
challenging pick-place and regrasping problems of the objects 
to be processed, which are unknown in geometry. Compared 
with the analytical methods, the data-driven methods can be 
applied in unstructured environments without the consideration 
of physical modeling of the objects. This kind of methods 
commonly needs large datasets or trial-and-error for satisfied 
grasping. 

Combining prehensile and non-prehensile manipulation 
policies is a new way to effectively grasp the objects in a 
cluttered environment. Dogar et al. [20] present a robust 
planning framework to reduce grasp uncertainty with the help of 
an additional motion primitive, which is  defined to sweep 
around obstacles in dense clutter. Gupta et al.[21] used the 
Euclidean clustering algorithm to divide the scene into different 
regions, and assigned states to the regions to select appropriate 
manipulation primitives to sort Duplo bricks accurately. 
Boularias et al. [6] first extract hand-crafted features of pushing 
and grasping actions from the images and then use 
reinforcement learning to train control strategies to select among 
the feature proposals. Kalashnikov et al. [7] introduce an 
extensible vision-based reinforcement learning framework 
called QT-Opt to learn to pick up objects and execute non-

prehensile pre-grasp actions. Deng et al. [9] utilize 
reinforcement learning to train the action pushing motions to 
explore and change the environment actively on the basis of the 
affordance map [1]. 

More closely related to our work is that of Zeng et al. [8], 
which propose deep end-to-end networks to learn synergies 
between pushing and grasping actions with self-supervised deep 
reinforcement learning. They train the networks of pushing and 
grasping in a mutually supportive way and then execute the 
action with the highest Q value. While their method only 
considers the changes of environment to define the success of 
pushes and this results in the useless pushes. And the synergies 
between pushes and grasps in a mutual way also sometimes low 
the grasp efficiency. Inspired by them, we introduce a new 
metric to describe the physical properties of the scene and guide 
the robot to perform pushes actively and purposefully and 
achieve better grasps. Compared with the previous work [21], 
our new metric is continuous and used as a reward for training 
pushing network. We also propose a grasping framework with 
deep Q learning method that after the objects in the environment 
are properly pushed apart, the robot begins to grasp. This further 
improves the grasp efficiency. We demonstrate that our system 
increases the success rate of grasping and also can be quickly 
generalized to novel objects and scenarios. 

III. PRELIMINARIES 
In this section, we introduce the preliminaries, which include 

the basic concepts for reinforcement learning, deep Q network 
and fully convolutional action-value function. 

A. Reinforcement Learning 
We consider the standard Markov Decision Process (MDP) 

represented as <S, A, P, R, >, consisting of a set of states S, a 
set of actions A, a transition function ,P s s a , a reward 

function ,R s a  and a discount factor . At each time step t , 
the agent is in the state ts S  and performs an action ta A  
according to the current policy ( )ts , then transitions to a new 
state 1ts  according to the state transition probability 

1( | , )t t tp s s a P  and receives a corresponding reward 
( , )t t tr r s a R . The goal in reinforcement learning is to learn 

an optimal policy *  to maximize the future rewards 
T

i t
t t

i t

R r  over time horizon T  and with the discount factor

0,1 .  

One way to find the optimal policy *  is not to directly 
calculate the policy, but to first calculate the state-action value 
function ( , )Q s a ,called Q-Learning[22]. According to the 
Bellman Equation, the state-action value function ( , )Q s a  is 
defined as: 

And the optimal action to be executed by the agent in the 

 ( , ) ( | , ) max ( , )t t t t t a A
s S

Q s a r p s s a Q s a  (1) 
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Fig. 2. System Pipeline. The system first obtains an RGB-D image and generate a heightmap. And then the heightmap is rotated with 16 different orientations and fed 
into two DenseNet tower structures and convolutional network to get pixel-wise Q value tables, corresponding to the pushing and grasping actions respectively. The 
system will select the grasp or push action according to the coordination mechanism. If push action is selected, the system will initiate an active pushing mechanism 
to execute the push actions with the highest Q value in the Q value table of pushing. Otherwise, the system will perform  the grasp action with the highest Q value in 
the grasp action-value table. 

state ts  is  

 ( , )a At targmax Q s aa  (2)

B. Deep Q-Network 
When the states and action space are discrete and the 

dimension is not high, table-based reinforcement learning 
algorithms such as Q-learning can use Q-Table to store the Q 
value of each state-action pair, but when the states and action 
space are high-dimensional like robot manipulation, using Q-
Table is not practical. The usual practice is to turn the Q-Table 
update problem into a function fitting problem. 

Deep Q-Network (DQN) [23] is one of the deep 
reinforcement learning methods, which combines 
Convolutional Neural Network (CNN) and Q-Learning to 
generate Q value by fitting a function ( , ; )Q s a  instead of a 
Q-Table. DQN can use end-to-end reinforcement learning to 
learn successful policies directly from high-dimensional sensory 
inputs. In this method, it modifies standard online Q-learning in 
two key ways to make it suitable for training large networks. 
First, it introduces experience replay, which stores the agent’s 
experiences at each time-step. This technique allows for higher 
data efficiency and breaks the correlations of samples to reduce 
the variance of the updates. Second, it uses a separate network 
to generate the targets in the update. This further improves the 
stability of the method. At each iteration i , the Q network is 
trained using the loss function  

where 1max , ;i ia
y r Q s a  is the q-target value 

calculated by target network.  

C. Fully Convolutional Action-Value Function 

Fully convolutional networks (FCN) [24] revolutionizes 
pixel-level classification of images and solves the problem of 
image segmentation at the semantic level. Zeng et al. [8] 
introduced FCN into DQN by modeling the Q function as a 
feedforward full convolutional network, which is referred to as 
Fully Convolutional Action-Value Functions (FCAVF). First, 
the action space is discretized into pixel-level motion primitives 
corresponding to the pixels of the scene image. Then the robot 
manipulation task is described as a pixel-wise segmentation 
problem. FCN is trained to take images of the workspace as 
input and infer pixel-wise expected Q values for actions. The 
action with the highest Q value would be executed at the 
corresponding pixel location. Compared with training end-to-
end policies with deep reinforcement learning, this method has 
lower complexity and is more conducive to training. 

IV. SYSTEM OVERVIEW 
The pipeline of our proposed system is shown in Fig. 2. First, 

the RGB image and the depth image of the cluttered scene are 
obtained from a fixed-mounted camera. Then the images are re-
projected onto an orthographic RGB-D heightmap as a 
representation of the current state. And the heightmaps are 
rotated with 16 different orientations and then fed into two 
DenseNet tower structures and convolutional networks to get 
pixel-wise Q value tables, corresponding to the grasping and 
pushing actions respectively. Finally, the system will select the 
grasp or push action according to the coordination mechanism. 
If push action is selected, the system will initiate an active 
pushing mechanism to perform push action with the highest Q 
value in the pixel-wise predictions of push actions. Otherwise, 
the system will perform grasp action with the highest Q value of 
the grasp action-value table. The above process will be repeated 
until all objects in the workspace are successfully caught. 

V. METHOD 
This section introduces the method of our proposed system 

 
2

, ;i i i iL E y Q s a  (3)

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on June 01,2021 at 08:27:17 UTC from IEEE Xplore.  Restrictions apply. 



1660

in detail. 

A. State and Action Representation 
The state is represented as an RGB-D heightmap image of 

the environment. The RGB-D heightmap is obtained by 
transferring the RGB-D image observed by a fixed-mounted 
camera to a style which is orthographically back-project 
upwards in the gravity direction (same as in [8]). The workspace 
of the robot is a 448 448mm mm  surface, which is divided into 
224 224  action grids on average. Therefore, the resolution of 
the heightmap in the workspace is 22mm . 

We define two actions (e.g., push and grasp) in our system. 
The action { , }a grasp push  is parameterized as a vector 
( , , , )x y z , where ( , , )x y z  denotes the middle position of the 
gripper, and [0,2 ]  denotes the rotation of the gripper in 
the table plane. When the robot chooses to execute the grasp 
action, the gripper moves to the coordinate point ( , , )x y z  and 
rotates , then closes the fingers to grasp. When the agent 
chooses to execute the push action, the gripper will first close 
the fingers, then move to the coordinate point ( , , )x y z  and 
make a linear movement of 10cm  in length along the direction 

. 

B. Model Structure 
We adopt FCAVF to get pixel-wise predictions of future 

expected Q values for the pushing and grasping actions, just like 
in [8]. We use two FCN to approximate the Q map of the 
pushing and grasping actions respectively. We first rotate the 
input heightmap into 16 orientations and consider only 
horizontal pushes (to the right) and grasps after the 
corresponding rotation. And then the color channel (RGB) and 
the channel-wise cloned depth channel (DDD) of the heightmap 
are separately as the inputs of the two DenseNet towers [25], 
followed by channel-wise concatenation and 2 additional 
convolutional layers with bilinear interpolation (as shown in Fig. 
2). Finally, the total output is 32 pixel-wise maps of Q values 
(16 for pushes in different rotations, and 16 for grasps at 
different rotations). Q value in the 32 pixel-wise maps represents 
the future expected return for performing the push action or 
grasp action at the corresponding position and rotation angle. 
The action which has the highest Q value in the pixel-wise maps 
of one motion primitive behavior would be chosen. 

C. Dispersion Degree 
For push action, it is not an effective way to only consider 

the changes of the environment after pushing as the positive 
rewards [8]. This cannot guarantee to spread out the objects from 
dense to sparse and sometimes even makes the objects closer to 
each other. Taking into account this condition, we introduce the 
metric of Dispersion Degree, which is designed to calculate the 
spread-out degree of objects in the scene. With this metric, the 
pushing network could be trained to guide the robot to push the 
objects apart purposefully. 

We first calculate the distance between the center 
coordinates of the objects which could be segmented out from 
the scene using the semantic segmentation methods (FCN [24], 
SegNet [26] et al.) or object detection methods (Yolo [27], SSD 
[28] et al.). When the distance between two objects is greater 
than the finger-opening distance of the gripper , it means that 

the objects do not affect each other when being grasped. 
Therefore, the dispersion distance between objects is defined as 
follows: 

Here ,i jp p  means the center coordinate of the object i  and j  
respectively;  means the finger-opening distance of the gripper. 
Taking k  as the number of all objects in the scene, the 
Dispersion Degree t  of the state ts  is defined: 

According to the formula defined above, the larger t  is, the 
greater the dispersion of objects in the scene. If the sum of 
dispersion distance of the object i  with others is  

Then this object is set to be independent and could be grasped 
freely. When all objects in the scene are independent, the objects 
have no influence on each other and there is no need to push.  

D. Reward 
We specify the rewards for grasping and pushing actions 

respectively. We assign 1, 1g t tR s s  if a grasp is successful 
(the object is grasped to a specified position) and 

1, 1p t tR s s  when 1t t . In other conditions, we 
think the actions are failed and the rewards are set to be zero. In 
order to reduce noise interference, we set 0.005 .  

E. Coordination mechanism 
In cluttered scenes, low action efficiency is usually caused 

by two situations. The first situation is when objects are too close 
to each other. The occlusion between objects brings great 
difficulties to reach the planned grasps. The second situation is 
when there are excessive pushes. When there is a good grasping 
point in the scene while the robot still chooses the push action to 
completely disperse the objects (sometimes even pushes the 
objects out of scene ), that makes the action efficiency low. 

Considering the above mentioned cases, we introduce the 
coordination mechanism into our proposed system. Instead of  
selecting actions with only the highest Q value, we take DD, the 
highest Q value for grasps gQ  and the highest Q value for 
pushes pQ  into consideration. So the final metric  is defined 
as a weighted sum of the above three metrics: 

where ( )S x  is a sigmoid function defined by ( ) 1 1 xS x e  
and + + =1d g p . So 0 1 . The objects in the scene are 
considered suitable for grasping when the metric of current 
scene 0.5i . 
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TABLE I. CURRICULUM DESIGN FOR TRAINING 

 Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Number 2 3 4 5 7 10 10 

Shape Square Square Square Square Square Square Random 

Color Random Random Random Random Random Random Random 

Fig. 3. Example configuration of curriculum scenarios. The blocks are set in a 
limited area to simulate the dense clutter. 

VI. EXPERIMENT AND RESULT 
We implemented a series of experiments to evaluate our 

proposed system. The goals of our experiments are to answer the 
following research questions: (1) Does our formulation make the 
robot learn to disperse objects? (2) Does our proposed method 
effectively reduce the situation of useless push? (3) Does our 
approach improve task performance compared to the baseline 
method? 

A. Training 
We place a UR5 robot arm and a statically mounted camera 

in V-REP [29] with bullet 2.83 as the simulation setup. And we 
add 10  blocks with different shapes and colors in a limited 
workspace to simulate the dense cluttered environment. In order 
to get satisfied policies, we separately train the robot to learn the 
pushing and grasping policies. 

Pushing Policy Training with Curriculum Learning: In 
dense clutter, the objects are so close that the spread-out states 
have little changes explicitly after one push action. This induces 
that the system would take a long time to converge to a 
satisfactory solution. In order to solve this problem, we use the 
curriculum learning method [30]. Curriculum learning is similar 
to the human learning mechanism: learning simple skills first, 
and then learning difficult ones. In our system, we can control 
the curriculum difficulty level by changing the number and 
shape of objects added to the scene. During training in the scene, 
we add 2 ~ 10  blocks to the scene to design curricula (Class 0~6), 
as shown in TABLE I. The blocks are set in a limited area to 
simulate the dense clutter. Some curriculum scenarios are shown 
in Fig. 3. In all curriculum learning, we reset the scene only 
when the objects in the scene are all independent as defined in 
Section V.C. Fig. 4 illustrates the training process of curriculum 
learning. Pushing performance in training is measured by the 
success rate percentage of the last 300i  push attempts. From 
the curve of the training results, we can see that the curriculum 
learning can increase the generation speed and accelerate the 
convergence speed.  

Grasping Policy Training: In the scene where the grasp policy 
is trained, we added 10  blocks to the scene under the condition 

Fig. 4. Performance of our policies trained in 7 classes. Different color lines 
indicate the push success rate of different classes. From the curve of the training 
results, we can see that the learning efficiency of later courses is greater than the 
previous courses. 

Fig. 5. Performance comparison of curricula between our method and VPG at 
testing. Our proposed method shows higher performance in all metrics. 

with enough dispersion degree. These 10  blocks include not 
only graspable objects with random colors and shapes but also 
objects that are too large for the gripper to grasp. This design 
would make the robot to learn not to grasp in the dense locations, 
which could improve the grasp success rate of the robotic 
grasping system. 

We train all of our models in PyTorch with version 0.3. Our 
proposed method is optimized by Stochastic Gradient Descent 
(SGD) with the momentum of 0.9  and 52 10  weight decay. 
The learning rate is set to 510 . The network uses a prioritized 
experience replay [31] with stochastic rank-based prioritization 
when training. The method uses the future discount factor 

0.5 . The weight parameters  in coordination 
mechanism are set to 0.33.  

B. Evaluation results 
1) Push Experiment Results 
We compare the push model with that in VPG [8]. For each 

test, we execute 30 test runs every class and use two metrics to 
evaluate its performance: 1) the average dispersion degree of 
state after a fixed number of pushes, 2) the average percentage 
of pushes with detectable changes to the environment after a 
certain amount of pushes. Here we set the number  to be 10. Note 
that the higher these two metrics, the better the model. 

The evaluation results of our model in 7 classes are 
summarized in Fig. 5. The results show that our push model 
performs better than the baseline in all classes. Compared with 
the push model trained in VPG, our method reduces the 
probability of useless pushing action in the area with no objects 
and increases the ability to disperse objects in dense clutter. 
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Fig. 6. Examples of Visualized predicted Q function under testing case in simulation. Each pixel in the heightmap represents a different execution position of the 
motion primitive. And there are 16 heightmaps that repeat 16 different rotations to explain the different pushing angles. The red circle indicates the highest Q value 
in each prediction. Fig. 6a is the prediction from our model, where all high Q values are concentrated around the objects. Though Fig. 6b is a successful prediction 
by the baseline method, but there are also high predictions above the object or in the area with no objects nearby. This indifferent prediction about the dense area 
and sparse area causes typical failures for the baseline method as is in Fig. 6c.

TABLE II. RESULTS ON RANDOM ARRANGEMENTS(MEAN %) 

 Completion Grasp Success Action Efficiency 

VPG 100.0 67.7 60.9 

Ours 100.0 77.5 76.8 
 

 
Fig. 7. Example configuration of challenging scenes. The blocks are set side by 
side.  

TABLE III. RESULTS ON CHALLENGING ARRANGEMENTS 
(MEAN %) 

 Completion Grasp Success Action Efficiency 

VPG 82.7 77.2 60.1 

Ours  100.0 88.7 68.6 

Fig. 6 illustrates the visualized Q predictions of our method 
and that in VPG while executing the task of Class 4. From Fig. 
6a, we can see that our method can successfully identify the 
locations of clustered objects, and the predicted high Q values 
are around the objects. However, the baseline method cannot 
guarantee the exact push locations. Fig. 6b shows an example of 
a successful baseline method prediction in a test scene, there are 
high Q values in the area of the objects and also in the area with 
no objects nearby. Fig. 6c shows the failure of the baseline 
method, where the highest Q value point is directly in the area 
with no objects nearby. 

2) Grasping System Experimental Results 
We test our proposed grasping system by evaluating the 

performance of the method in different test runs. In these test 
runs, the system needs to successfully grasp objects from the 
desktop in different scene settings. 

We compare the proposed system with VPG. For each test, 
we execute n  test runs 10,30n

y
10,30 every scene and use three 

metrics to evaluate the performance: 1) The average percentage 
of completion in n  test runs, which measures the ability of a 
strategy to complete a task by picking up all objects in the scene 
without failures of more than 10 consecutive attempts, 2) the 
average success rate of grasp per completion, 3) the action 

efficiency which is defined as object

action

n
n  (where objectn  is the 

number of blocks in test and actionn  is the number of actions per 
completion) to describe the policy succinctness to complete the 
task. 

We first test the methods with 30 randomly placed objects in 
cluttered environments. The experimental results are 
summarized in TABLE II, which shows that our proposed 
system is better than VPG in all metrics. And we can also see 
that for our system, the grasp success and action efficiency are 
similar. That means our method select more grasps to complete 
the tasks and the grasp actions are more effective. The reason is 
that we place large objects to the environment when training the 
grasp policy and this makes robot to learn not to grasp the 
objects in dense area. 

We then test the methods in 11 challenging environments 
with tightly packed blocks (some scenes are shown in Fig. 7). 
These configurations mainly include objects that are set side by 
side, which is hard to grasp if no synergies of actions. This 
setting is to verify that the system has generalization capabilities 
to handle multiple situations. The comparison results are 
summarized in TABLE III. Our method can still greatly improve 
the completion rate and the grasp success rate. This is mainly 
due to the active pushing and coordination mechanism. 
Compared with TABLE II, we can see that the action efficiency 
of our method is lower in challenging environment than that in 
the environment with randomly placed objects. It means our 
method could use more pushes to better grasp the objects. 

VII. CONCLUSIONS 
In this work, we present a novel robotic grasping system for 

better grasping in dense clutter with deep reinforcement learning. 
We introduce an active pushing mechanism with a new metric 
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of dispersion degree to describe the physical properties of the 
scene. And we also build a grasping framework with the 
synergies between pushing and grasping actions. Empirical 
results demonstrate our proposed method can effectively reduce 
the useless pushes and improve the grasp success rate. And also, 
the trained policies could be generalized to more challenging test 
environments. The next step for us is to apply our method in 
real-world conditions to further test the performance under the 
influence of environmental noises. Also we would train our 
method to test in more dense and cluttered environments with 
large varieties of objects except for blocks. 
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