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Abstract. Neural machine translation has become a benchmark method
in machine translation. Many novel structures and methods have been
proposed to improve the translation quality. However, it is difficult to
train and turn parameters. In this paper, we focus on decoding tech-
niques that boost translation performance by utilizing existing models.
We address the problem from three aspects — parameter, word and sen-
tence level, corresponding to checkpoint averaging, model ensembling
and candidates reranking which all do not need to retrain the model.
Experimental results have shown that the proposed decoding approaches
can significantly improve the performance over baseline model.

1 Introduction

Neural machine translation(NMT) has significantly improved the quality of ma-
chine translation in recent years, which has shown promising results on multiple
language pairs [1, 3, 6, 16, 19]. It builds upon a single and large neural network
directly mapping source sentence to associated target sentence. Recently rely-
ing entirely on an attention mechanism, the transformer model introduced by
Vaswani et al. [19] achieved state-of-the-art results for machine translation.

However, designing a novel and good translation model is a tough work.
Training model is also time-consuming and occupies massive computing re-
sources. For example, despite its remarkable success, transformer requires 3.5
days with 8 GPUs on training for a big model. Thus instead of modifying model
structure, how to make effective use of the existing models to improve the trans-
lation performance is well worth considering.

In this paper, we investigate and practice decoding approaches to boost trans-
lation performance without training model again. As shown in Figure 1, we ad-
dress the problem from three aspects — parameter, word and sentence level.
First, we adapt the checkpoint averaging to get a more robust set of parameters,
which can utilize multiple checkpoints saved at different timesteps in a single
model. For word level, we introduce three ensembling strategies to boost word
prediction, including checkpoint ensemble, independent ensemble and different
ensemble. Finally, we observe that in validation set if each translation candidate



2

Parameters
 level

Word
 level

Sentence
 level

Model average Model ensmeble Model rerank

Enhance 
parameters 
robustness 

Boost
 word 

prediction 

improve
 sentence
selection

Fig. 1. Our framework for decoding approaches from three aspects: parameters, word
and sentence level.

with top sentence-level BLEU score is selected, we can obtain over 18 BLEU
points improvement compared with outputs by beam search algorithm. Inspired
by this observation, we attempt to select better candidates by reranking tech-
niques, which includes linear regression, pairwise-rank method and minimum
bayes risk(MBR) decoding.

We conducted massive experiments on large-scale English-to-Chinese trans-
lation. Experimental results have shown that decoding approaches can obtain
significant BLEU score improvements over state-of-the-art NMT baseline.

2 Neural Machine Translation

The decoding approaches we discuss can be applied to any neural machine trans-
lation model. Here we choose Transformer [19] as baseline model for later exper-
iments. In this section, we will give a brief introduction of Transformer encoder-
decoder framework.

Given a set of bilingual data D = {(X(i), Y i))}Ni=1 where both X and Y are
a sequence of tokens, the encoder maps a input sequence X = (x1, x2, · · · , xn) to
a sequence of continuous representations z = (z1, z2, · · · , zn) whose size varies
with respect to the source sentence length. The decoder generates an output
sequence Y = (y1, y2, · · · , ym) from the continuous representations. The encoder
and decoder are trained jointly to maximize the conditional probability of target
sequence given a source sequence:

P (Y |X; θ) =

N∏
j=1

P (yj |y<j , x; θ) (1)

Transformer consists of N stacked encoder and decoder layers. Encoder layer
consists of two blocks, which is self-attention block followed by a position-wise
feed-forward block. Decoder layer has the same architecture as encoder layer
except an extra encoder-decoder attention block. Residual connection and layer
normalization are used around each block.
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Fig. 2. Model averaging with the number of three

For self-attention and encoder-decoder attention, a multi-head attention block
is used to obtain information from different representation subspaces at differ-
ent positions. Each head corresponds to a scaled dot-product attention, which
operates on a query Q, key K and a value V:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where dk is the dimension of the key.
For the sake of brevity, we refer readers to Vaswani et al. [19] for additional

details regarding the architecture.

3 Methods Description

Many approaches have been proposed to generate better translation results in
decoding [11, 10, 17, 9, 15]. In this section, we introduce three decoding techniques
that boost translation performance by utilizing existing models, which includes
checkpoint averaging, ensembling strategies and different methods of reranking.

3.1 Checkpoint Averaging

Checkpoint averaging is to average trainable parameters which are saved at
last timesteps in a single model, when the model is near convergence. Since
we use Stochastic Gradient Descent algorithm to optimize model, only a mini-
batch of data are used during each step, causing that the parameters may over
adapt to one mini-batch. We can get more robust parameters by checkpoint
averaging. As illustrated in Figure 2, for example, the value in the red circle
of second checkpoint is 0.30, distinct from the corresponding values of other
two checkpoints, which means that it may be a noise value. After checkpoint
averaging it turns to 0.40, thus a more proper value can be obtained. Vaswani [19]
suggested to average the last 20 checkpoints saved every 10 minutes. Here we
will make experiments on how many checkpoints to be chosen can obtain the
best result.

3.2 Different Ensembling Strategies

Model ensembling is a method to integrate the probability distributions of mul-
tiple models before predicting next target word. It has been proved effective
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in neural machine translation [11, 10, 22]. We apply three different ensembling
strategies as following:

- checkpoint ensemble We use the checkpoints saved at different times
in a single training model, which do not need to train several models from
scratch. It is a cheap way to obtain an ensemble model.

- independent ensemble This strategy needs to train N models indepen-
dently with the same architecture but different initialization ways. Combin-
ing N models in different initialization ways as an ensemble model can help
to avoid local optimization and obtain better results.

- different ensemble Different ensemble trains N models with both differ-
ent architectures and initialization ways, which is expensive but can yield
better and more diverse result.

3.3 Different Reranking Strategies

Reranking is a long-term study in machine translation [13, 9, 17, 15]. In this
paper, we apply three reranking strategies to investigate how to better select
candidates, which includes linear regression, pairwise-rank method and MBR
decoding.

Linear Regression

Linear regression is usually used to model the relationship between a dependent
variable and one or more explanatory variables. We denotes sentence-level BLEU
score as dependent variable, sentence-level features as explanatory variables.
More specifically, we use beam search algorithm to obtain a list of candidate
translations. Since validation set has reference, the sentence-level BLEU score
of each sentence can be calculated. We then use target side right-to-left model,
target-to-source model, n-gram language model, neural language model and SMT
model trained by Moses1 to calculate each sentence’s feature scores. We first
fit a linear regression model for validation set, then adapt it to test set. For
test sentences we estimate the BLEU scores of each candidate, then select the
sentence with top score as final output.

Pairwise Rank

In fact, we do not need to know the exact BLEU score of each sentence. The
only thing we concern is the order of translation candidates. One of approaches
is to reduce the ranking problem as a classification problem by using pairwise
sampling [5]. However, ranks may be unreliable for machine translation where
candidates sometimes can not be strongly distinguished between each other.
To alleviate this problem, we assume the difference among top r translation
candidates is not obvious. Thus, we regard the top r of the n-best candidates

1 http://www.statmt.org/moses/
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as good translations and the bottom k as bad translations, where r + k ≥ n.
Then a classification model is trained to split the good translations from the bad
translations for each sentence. Besides, the following criteria are proposed:

- We assign a larger margin for the candidates whose ranks are far and a
smaller margin for closer pairs. For example,margin(e1, e20) > margin(e1, e10)

- For the same rank gap, the margin between a high rank and a low rank is
larger than that between two low ranks. For example, margin(e1, e10) >
margin(e21, e30). The reason is that the scoring function will be penalized
if it can not separate former case, but not for the latter.

MBR Decoding

MBR decoding is a method to find a candidate with the least expected loss [17].
It measures the similarity of each candidate translation instead of the quality
against reference. The Bayes risk of each candidate y is computed by:

R(y) =
∑
y′∈E

∆(y, y′)p(y′|x) (3)

The term ∆(y, y′) is calculated by 1−BLEU(y, y′), which denotes the discrep-
ancy between candidate y and candidate y′. The term p(y′|x) is the generating
probability of each candidate given by a NMT model. The candidate with lowest
Bayes risk means that it is similar to the most candidates in the evidence space.

4 Experiments

4.1 Dataset

We perform our experiments on corpus provided by AI Challenger — the English-
Chinese Machine Translation track 2. This corpus contains about 10 million par-
allel English-Chinese sentences which are collected from English learning web-
sites and movie subtitles. In our experiments, we first filter the bilingual corpus
according to the following criteria:

– Sentences which contain less than 3 words or more than 100 words are re-
moved.

– We use fast align toolkit to learn a word alignment of sentences pairs. Sen-
tence pairs whose alignment ratio is lower than 0.3 are removed.

– We sort sentence pairs by perplexities and remove the bottom 5 percent
sentence pairs.

After filtering we retain about 9 million pairs of training data. We also use
monolingual sentences to train n-gram and neural language model for later use in
reranking. The English side is preprocessed by tokenizer and lowercaser scripts

2 https://challenger.ai/competition/translation
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in Moses. The Chinese side is segmented by our in-house toolkit. We learn a
BPE [12] model with 80k merge operations for both English side and Chinese
side, and extract 83k and 78k subwords as source and target vocabularies. The
evaluation metric is BLEU as calculated by the multi-blue.perl script.

4.2 Training Details

We adopt the Transformer model as our baseline model3. All hyper parameter
settings are set the same as transformer big single gpu if not specifically men-
tioned. The dimension of word embedding is set to 1024. The size of attention
block is 1024 with 16 heads and the size of feed forward block is set to 4096.

We train the baseline model for a total of 300K steps with Adam optimizer [7]
on three GPUs. We set the initial learning rate to 0.1 and apply decay method
described in Vaswani et al. [19]. Dropout was applied on residual layer to avoid
over-fitting, which is 0.1. At test time, we employ beam search with beam size
4. As for reranking, we set beam size as 50 to generate a list of candidates.

4.3 Results and Comparison on Different Approaches

In this section, we first separately compare different strategies in each approach.
Then we report the final results by combining all these approaches. All of the
first lines in every table are the baseline model without using any decoding
approaches.

Effects on the number of checkpoints for averaging We first test how
many checkpoints to be used can get better results. Figure 3 shows the effect
on the number of checkpoints for averaging. We obverse that the BLEU scores
by applying checkpoint averaging are all above baseline model. As the num-
ber of checkpoints increases, the set of parameters becomes more robust which
brings more BLEU scores improvement. However too many checkpoints may
contaminate parameters with scores decreasing. In our experiments, averaging
40 checkpoints saved in ten-minute interval obtains the best results. Compared
with the time needed for training the whole model from scratch, checkpoint
averaging only takes a few minutes before decoding, so it is a free way to boost.

Comparison of different ensembling strategies Table 1 shows the BLEU
scores with different ensembling strategies. To be fair, all the three ensembling
strategies use five models for ensembling. Specifically, checkpoint ensemble uses
checkpoints saved at five different time during a single model training pro-
cess; independent ensemble uses two models initialized by uniform algorithm,
two by normal algorithm and one by orthogonal; different ensemble uses two
6-layer encoder-decoder structures with uniform and normal initializer, two 8-
layer structures with 24 heads, 960 hidden size and 32 heads, 1024 hidden size

3 https://github.com/tensorflow/tensor2tensor
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Fig. 3. Translation results (BLEU score) on checkpoint averaging.

respectively, and one 10-layer encoder with 6-layer decoder structure. Model en-
sembling can indeed boost translation result, while the improvements by three
ensembling strategies are different. Among these strategies, different ensemble
outperforms the other two strategies by about 1.2 and 0.6 points respectively.
This strategy is expensive for training but more likely to yield better and more
diverse results. This is consistent with the wisdom that there is no free lunch.

Table 1. Translation results (BLEU score) on different ensembling strategies.

System BLEU

baseline 29.40

checkpoint ensemble 29.55(+0.15)
independent ensemble 30.18(+0.78)
different ensemble 30.76(+1.36)

Comparison of different reranking strategies In our experiment, we first
generate 50-list of translation candidates by beam search algorithm, then calcu-
late sentence-level BLEU for each candidate on validation set. To our surprise,
we observe a remarkable gap between the output generated by beam search
algorithm and the candidate selected by sentence-level BLEU. As illustrated
in Figure 4, if we select each candidate with top 1 sentence-level BLEU, the
corpus-level BLEU can reach 47.50; even if we select all the candidates with
20th sentence-level BLEU, we can also get a final BLEU of 29.77. However, the
BLEU score of the output generated by beam search algorithm is only 29.40.
Thus we think reranking has a great potential to further improve translation per-
formance. We then attempt three reranking strategies. From Table 2, we observe
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Fig. 4. Translation results (BLEU score) based on sentence-level BLEU.

that linear regression and MBR decoding can significantly improve the BLEU
scores, while pairwise rank cannot well distinguish between the good translation
candidate with the bad one. One possible reason is that the selected sentence-
level features may not linearly separable. Though reranking by linear regression
obtains an improvement, it heavily relies on the selected features which are ex-
pensive to extract. From this perspective, MBR decoding is the best strategy
since all it needs is just a list of translation candidates. Although these strategies
can improve the BLEU scores, it is still far away from the best result. We will
further investigate this challenge in the future.

Table 2. Translation results (BLEU score) on different reranking strategies.

System BLEU

baseline 29.40

linear regression 30.10(+0.70)
pairwise rank 29.88(+0.44)
MBR decoding 30.13(+0.73)

Results combining three approaches We choose the best strategy in each
approach mentioned above, which are the averaging of 40 checkpoints, different
ensemble and MBR decoding respectively. Combining all these approaches, we
can obtain significant BLEU score improvements over baseline model. We list
the BLEU scores of our proposed model in Table 3. Specifically, after checkpoints
averaging, we can get an improvement of 0.54 BLEU points over baseline. We
further obtain 0.99 BLEU points improvement with different ensembling strate-
gies. By applying reranking method, another improvement of 0.69 BLEU scores
can be achieved. It confirms the effectiveness of these decoding techniques.
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Table 3. Translation results (BLEU score) for English-to-Chinese translation.

System BLEU

baseline 29.40

+checkpoint averaging 29.94(+0.54)
+model ensembling 30.93(+1.53)
+reranking 31.62(+2.22)

5 Related Work

Recently many novel structures and methods have been proposed to improve the
translation quality in neural machine translation. Most of the existing approaches
focus on designing better models [18, 8, 19], augmenting data with large-scale
monolingual corpus [2, 21], integrating SMT techniques [14, 4, 20]. In spite of
modifying the model structure, our work mainly focuses on improving translation
quality by using decoding techniques, which is somehow easier to implement.

Vaswani et al. [19] proposed to use checkpoint averaging method to obtain
lower variance and more stable translation results. However, they did not explain
how to choose checkpoints and how many checkpoints to be used can obtain bet-
ter results. Sennrich et al. [11] first applied the method of checkpoint ensembling
in WMT16, then they further tried independent ensembling in WMT17 [10],
which achieved a significant improvement compared to the former strategy.

To get better final output, various reranking methods have been explored.
Shen et al. [13] introduced two novel perceptron-inspired reranking algorithms
that improve on the quality of machine translation. Kumar [17] presented MBR
decoding for statistical machine translation aiming to minimize expected loss
of translation errors under loss functions that measure translation performance.
However, these methods are mainly applied to statistical machine translation.
Here, we apply them to neural machine translation to explore how good the
selected candidate can be by each reranking strategy.

6 Conclusion

In this work, we boost translation performance by making effective use of the
existing models with three decoding techniques. Experiments have shown that
these decoding techniques can obtain significant improvement over baseline. We
point out that reranking has a great potential for improving translation per-
formance, however, a wide gap between the oracle selection still exists. In the
future, we will further investigate a better way to shrink this gap.
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