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Abstract

Structural analysis of handwritten characters relies
heavily on robust skeletonization of strokes, which has
not been solved well by previous thinning methods.
This paper presents an effective fully convolutional net-
work (FCN) to extract stroke skeletons for handwrit-
ten Chinese characters. We combine the holistically-
nested architecture with regressive dense upsampling
convolution (rDUC) and recently proposed hybrid di-
lated convolution (HDC) to generate pixel-level predic-
tion for skeleton extraction. We evaluate our method on
character images synthesized from the online handwrit-
ten dataset CASIA-OLHWDB and achieve higher ac-
curacy of skeleton pixel detection than traditional thin-
ning algorithms. We also conduct skeleton based char-
acter recognition experiments using convolutional neu-
ral network (CNN) classifiers on offline/online hand-
written datasets, and obtained comparable accuracies
with recognition on original character images. This im-
plies the skeletonization loses little shape information.

Introduction
Recently, deep neural networks have promoted the handwrit-
ten character recognition performance significantly. Even
the large category set problem, handwritten Chinese char-
acter recognition (HCCR) (Zhang, Bengio, and Liu 2017),
has achieved high accuracies as over 97% by using convo-
lutional neural networks (CNNs). Despite the superior fea-
ture learning and classification capability of CNNs, they do
not offer structural interpretation of characters, say, the com-
position of strokes and radicals and their inter-relationship.
Structural analysis of handwritten characters has been stud-
ied since 1970s (Pritchard and Sondak 1973) but until now,
it is unsolved, partially because of the difficulty of stroke ex-
traction and structural model learning. Structural analysis re-
mains an important issue because in many applications, such
as education (Hsiung et al. 2017), human interaction, and
personalized font generation, the interpretation of strokes
and radicals, and the detection of stroke errors are necessary.

Character skeleton conveys key information for shape
recognition, and is particularly important for extracting the
structure of strokes. So, skeletonization or thinning has been
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studied intensively and many algorithms have been pro-
posed (Zhang and Suen 1984; Arcelli and Di Baja 1985;
Dong, Lin, and Huang 2016).

There are mainly two types of thinning algorithms:
neighbor-based algorithms and distance-based ones. The
former methods execute iteratively to delete pixels on the
boundary strokes until centered lines remain, and the dele-
tion or retention of stroke pixels depends on the connectiv-
ity in the neighborhood, such as the ZhangSuen algorithm
(Zhang and Suen 1984). An improved ZhangSuen algorithm
was designed for Odia characters, combining with stroke
correction (Pujari, Mitra, and Mishra 2014). In (Dong et al.
2017), stroke continuity detection serves as a preprocessing
step for thinning. Recently, (Alghamdi and Teahan 2017)
proposes a novel algorithm based on the boundary deletion
with colour coding. The latter ways yield skeletons straight-
forwardly by using distance transforms to extract the medial
axis of a stroke. Variant methods differ in the distance func-
tions: city block distance (Arcelli and Di Baja 1989), Eu-
clidean distance or constrained Delaunay triangulation tech-
nique (Zou and Yan 2001).

These methods are likely to yield unsatisfactory results
when facing: (1) complex shapes, (2) variable stroke widths
and (3) unsmooth edges. Particularly, the extracted lines
are often distorted at the crosses or intersections of strokes
(Dong et al. 2017). These outcomes make stroke extraction
and structural analysis difficult, while fully convolutional
networks (FCNs) (Long, Shelhamer, and Darrell 2015) pro-
vide an pixel-to-pixel manner to solve these problems. For
example, holistically-nested networks (Xie and Tu 2015)
and scale-associated networks (Shen et al. 2016) success-
fully predict the contour maps and skeleton maps of generic
objects in natural images, respectively. But these models do
not assure that it is one-pixel width in the output contour or
skeleton.

This paper proposes a FCN-based skeleton extraction
method for handwritten Chinese characters, which are typ-
ical of complex structures. The network fuses holistically-
nested features at multiple scales (Xie and Tu 2015), to re-
duce the information loss caused by upsampling operations.
With fewer computational overhead, our method is particu-
larly beneficial for better structure preservation at crossing
areas. For supervised training, it is infeasible to label skele-
ton pixels for large number of offline handwritten samples.



So, we synthesize training samples from online handwritten
data. Experiments show that the model trained with synthe-
sized data work well on real offline data.

The major contributions of this work are as follows: (1)
we propose an effective FCN-based method for skeletoniza-
tion of handwritten characters; (2) we adopt a regressive ver-
sion of dense upsampling convolution (DUC) (Wang et al.
2017) to bridge breakpoints; (3) in the fusion phase, we de-
sign multi-rate dilated convolution to make full use of con-
textual information from different scales, and attain recog-
nizable skeletons for machine recognition.

The rest of this paper is organized as follows: Section 2
briefly reviews the multi-loss FCNs for relative tasks, Sec-
tion 3 details the proposed method, Section 4 presents exper-
imental results of skeleton extraction and character recogni-
tion, and Section 5 offers concluding remarks.

Related Work
Deep Side Outputs
Most existing methods in character skeleton extraction fo-
cus on either local visual rules (Zhang and Suen 1984;
Pujari, Mitra, and Mishra 2014; Dong et al. 2017) or dis-
tance measurements (Zou and Yan 2001). These methods
focus on low-level features in local regions, but when read-
ing, humans turn to concern the skeletons of characters sub-
consciously and ignore the colors or widths of strokes.

Deep side outputs (Xie and Tu 2015) emulate the afore-
mentioned human behavior at multiple scales with different
receptive field (RF) sizes. A standard architecture with layer-
by-layer side outputs in a simple 1-stream network (Shen et
al. 2016) has announced the progress in extracting skeletons
of generic objects, such as quadrupeds or airplanes under
natural scenes. Though fusing scale-specific features from
different stages and producing more sensible results, deep
side outputs generate skeleton lines with nonuniform widths
and bring out quite a number of breakpoints inevitably.

Multi-Loss Learning under Multi-Scale Skeleton
Since the side outputs are attached to different convolution
layers on the identical 1-stream net, (Shen et al. 2016) in-
corporate a weighted-fusion output layer that connects to
all side-output layers. The key characteristic of the standard
multi-loss architecture is that each side-output map should
drive a loss function to optimize the networks.

Here are some reasons why researchers adopt multi-loss
learning in similar tasks: (1) different side outputs trace back
to different receptive field sizes and scales, thus each scale
generates a relevant skeleton map. Furthermore, the fusion
operation of the single-scale skeletons are also designed to
be a learnable convolutional operation; (2) different side out-
puts are learned from features with different levels. Our goal
is learning effective features from which it is easy to cap-
ture skeletons. Low-level features from shallow convolution
layers usually bring out skeletons of smooth strokes with-
out bending segmentations, i.e., the trends of these strokes
change weakly. High-level features from deep convolution
layers work on extracting skeletons at the places where the

trends of strokes change dramatically, such as junctions, in-
tersections and inflections in strokes.

Domain-Relative Initialization
The performances of almost all FCNs are limited by the
lackness of training data (Dai et al. 2016). So, researchers
cast pre-trained deep classifiers into FCNs (Long, Shel-
hamer, and Darrell 2015) and fine-tune them. Due to the us-
age of the fully connected layers, deep classifiers only accept
input samples with fixed-sizes and calculate confidences for
each category. Thus, casting CNNs into FCNs by remov-
ing fully connected layers provides a effective method for
fine-tuning networks without the limit of input size (Long,
Shelhamer, and Darrell 2015).

Domain-relative initialization indicates that the FCN-
based tasks share the same feature spaces with their homol-
ogous CNNs. For segmenting generic objects out of natu-
ral images, (Long, Shelhamer, and Darrell 2015) initializes
FCNs with VGG net (Simonyan and Zisserman 2014) which
was previously trained on large-scale generic object images.
Pre-trained VGG net also works well in extracting contours
(Xie and Tu 2015) or skeletons (Shen et al. 2016) of generic
objects. Similarly, we pre-train deep character recognition
models for our character skeleton extraction task.

Methodology
The proposed character skeleton extraction method dia-
grammed in Fig. 1 consists of 4 major parts: the 1-stream
convolutional layers act as feature extractor; regressive
dense upsampling convolution (rDUC) extends feature maps
without interpolation; scale-associated side outputs con-
tribute to predicting skeletons at multiple scales; and multi-
rate dilated fusion (MDF) fuse all candidate skeleton maps
into a final results. Besides, we design a concise and effec-
tive postprocessing method to obtain pure skeletons.

Network Architecture
The training and testing stages of the proposed network are
detailed in Fig. 1, where the convolutional feature extractor
are initialized by the pre-trained model in Fig. 7. The fea-
ture extractor stretches into 4 groups of side outputs (in the
solid box, derived from conv2, conv3, conv4, and conv5)
connected to subsequent layers. Side outputs go through
two branches: (1) rDUC applies convolutional operations
directly on each side output to get a pixel-wise prediction
at the corresponding scale. (2) Regular upsampling expands
the size of side-output feature maps to the same as input im-
ages.

Then the slicing and concatenating operations divide all
available feature maps into 5 groups. When features at dif-
ferent scales contribute to the final performance all alone
like (Xie and Tu 2015), the skeletonization performance is
relatively poor. Therefore all groups should have concate-
nated features from all scales and generate candidate skele-
ton maps respectively (Shen et al. 2016). Dilated convolu-
tion plays a key role in fusing candidate skeleton maps and
predictions of rDUC. In order to drive the side outputs to
capture better features at all scales, as the dashed box shows
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Figure 1: Overview of the proposed character skeleton extraction
method. The main structure are similar to the standard network
in (Shen et al. 2016). We propose regressive dense upsampling
method and design multi-rate dilated convolution for sparse fore-
ground points.

Network Architecture
The training and testing stages of the proposed character
skeleton extraction are diagrammed in Fig. 1, where the con-
volutional feature extractor are initialized by the pre-trained
model in Fig. 7. The 1-stream feature extractor stretches in-
to 4 groups of side outputs (in the solid box, derived from
conv2, conv3, conv4, and conv5) connected to subsequen-
t layers. Side outputs have gone through two branches: (1)
rDUC applies convolutional operations directly on each side
output to get a pixel-wise prediction at the corresponding
scale, and the predicted results are being optimized by the
ground truth skeletons. (2) Regular upsampling expands the
size of side-output feature maps to the same as input im-
ages. Then the slicing and concatenating operations divide
all available feature maps after enlargement into 5 group-
s, and features at different scales contribute differently to
the final performance, therefore all groups have concatenat-
ed features from all scales and generate candidate skeleton
maps respectively. Dilated convolution plays a key role in
fusing candidate skeleton maps and predictions of rDUC. In
order to drive the side outputs to capture better features at all
scales, as the dashed box shows in Fig. 1, the results of regu-
lar upsampling are also exploited to generate the predictions
of character skeletons.

Regressive Dense Upsampling Convolution DUC has
been described firstly in (Wang et al. 2017) for semantic seg-
mentation. In short, suppose that the size of a input image is
C ×H ×W (channels × height ×width), and we have the
feature maps FM with size c× h× w from the final convo-

lution layer, where the downsampling factor r = H
h = W

w .
In semantic segmentation, FM is used to draw a label map
with size H ×W where each pixel is predicted with a cat-
egory label. Here, we set Nc as the total number of differ-
ent categories. DUC performs convolution on FM to get a
feature map FD

M with size ((r2 × Nc) × h × w). Finally,
FD
M is reshaped to predicted map with size (Nc ×H ×W ).

Thus the number of parameters in DUC depends linearly
on Nc. Our final goal is classifying pixels into 2 categories
(skeleton/non-skeleton points), thus we propose the regres-
sive dense upsampling convolution as shown in Fig. 2.

Figure 2: The computation of regressive dense upsampling convo-
lution (rDUC).

The left-most feature maps Fl with the size (2 × 2 × 2)
in Fig. 2 are the outputs of the final layer of a convolution
feature extractor, and they are used to generate a (1× 4× 4)
prediction. In FCNs, this process is done by bilinear upsam-
pling (Long, Shelhamer, and Darrell 2015). But in rDUC,
we directly conduct convolution operation on Fl to attain the
middle feature maps Fm with size (4 × 2 × 2). Following
the rules indicated by different colors in Fig. 2, we reshape
Fm to the final prediction Pr with size (1× 4× 4).

Due to the unlearnable and insufficient parameters, tra-
ditional bilinear upsampling loses lots of valuable informa-
tion. Though named "sampling", rDUC is a learnable pro-
cess without interpolation. Moreover, it is capable of cap-
turing fine-detailed features, which are easily missed in the
bilinear interpolation. In comparison with DUC, rDUC re-
duces the number of parameters greatly and has better gen-
eralization. The reason is that it has no concern with variant
classes. In our task, rDUC contributes a lot to eliminating
the breakpoints in character skeletons.

Multi-Rate Dilated Fusion (MDF) Dilated convolution
is used to maintain high resolution of feature maps in FCNs
through replacing the max-pooling operation or convolution
layer and it can also extend the receptive field. But single-
rate dilated convolution always cause "gridding" problems
as Fig. 3a shows.

The blue pixels in Fig. 3 mean that they have contribution
to the calculation of the central pixel (marked in red). In Fig.
3a, all kernels are 3 × 3 with single dilate rate, and many
pixels at fixed positions contribute nothing. The pixel-wise
utilization of hybrid dilated convolution (HDC) is shown in
Fig. 3b, where each pixel is in full use because of multiple
dilated rates 1, 2, 3.

In FCNs, large convolutional kernels (≥ 5×5) neglect de-
tails, while the respective fields of 3× 3 kernels are narrow.
Especially when extracting the character skeletons, we need
small kernels to predict detailed skeleton points, and large

Figure 1: The proposed character skeleton extraction network.

in Fig. 1, the results of regular upsampling are also exploited
to generate the predictions of character skeletons.

Regressive Dense Upsampling Convolution (rDUC)
DUC was described in (Wang et al. 2017) for semantic
segmentation. Suppose that the size of a input image is
C ×H ×W (channels × height × width), and we have
the feature maps FM with size c × h × w from the final
convolution layer (the downsampling factor r = H

h = W
w ).

FM is used to draw a label map with size H × W where
each pixel is predicted with a category label. Nc is the total
number of different categories. DUC performs convolution
on FM to get a feature map FD

M with size ((r2 × Nc) ×
h × w). Finally, FD

M is reshaped to predicted map with size
(Nc×H×W ). Our final goal is classifying pixels into 2 cat-
egories (skeleton/non-skeleton points), thus we propose the
regressive dense upsampling convolution as shown in Fig. 2.

Figure 2: The computation of regressive dense upsampling convo-
lution (rDUC).

The left-most feature maps Fl with the size (2 × 2 × 2)
in Fig. 2 are the outputs of a convolutional feature extrac-
tor, and they are used to generate a (1 × 4 × 4) predic-
tion. In FCNs, this process is done by bilinear upsampling
(Long, Shelhamer, and Darrell 2015). Due to the unlearn-
able property and insufficient amount of parameters, bilin-
ear upsampling loses lots of valuable information. In rDUC,

we directly conduct convolution operation on Fl to attain the
middle feature maps Fm with size (4 × 2 × 2). Following
the rules indicated by different colors in Fig. 2, we reshape
Fm to the final prediction Pr with size (1× 4× 4).

Though named "sampling", rDUC is a learnable process
without interpolation. Moreover, it is capable of capturing
fine-detailed features, which are easily missed in the bilin-
ear interpolation. In comparison with DUC, rDUC reduces
the number of parameters and has better generalization. The
reason is that it has no concern with variant classes. In our
task, rDUC contributes a lot to eliminating the breakpoints
in character skeletons.

Multi-Rate Dilated Fusion (MDF) Dilated convolution
is used to maintain high resolution of feature maps in FCNs
through replacing the max-pooling operation or convolution
layer (Wang et al. 2017), and it can also extend the recep-
tive field. But single-rate dilated convolution always cause
"gridding" problems as Fig. 3(a) (Wang et al. 2017) shows.

(a) Single rate fusion. (b) Multi-rate dilated fusion.

Figure 3: Comparison of multi/single-rate dilation.

Fig. 3 displays 2 feature maps: the blue pixels mean that
they have contribution to the calculation of the central pixel
(marked in red). In Fig. 3(a), all kernels are 3 × 3 with sin-
gle dilate rate, and many pixels at fixed positions contribute
nothing. The pixel-wise utilization of HDC is shown in Fig.
3(b), where each pixel is in full use because of multiple di-
lated rates 1, 2, 3.

Figure 4: The role of HDC. HDC covers larger context. In the red
box, 3×3 kernel with single-rate dilation may cover 9 background
points but 0 foreground ones. But the multi-rate kernels concern
much more pixels, and are more likely to connect broken lines.

In our task, large convolutional kernels (≥ 5× 5) neglect
details, while the respective fields of 3×3 kernels are narrow.
Especially when extracting the character skeletons, we need
small kernels to predict detailed skeleton points, and large
kernels to capture the holistic shapes of handwritten strokes.
Dilated convolutions provide respective fields with different
sizes without extra parameters. Furthermore, the foreground
points of predicted skeleton maps are far less than the num-
ber of background points, HDC fully utilizes all foreground



pixels as shown in Fig. 4. The HDC module in our task are
shown in Fig. 5, where dilated convolutions contain multiple
rates from 1 to 4. The summation of 4 feature maps from di-
lated convolution kernels is delivered to a fusing convolution
layer for the final prediction.

(a) (b)

Figure 3: The comparison of multi-rate and single-rate dilation
(Wang et al. 2017).

Figure 4: The role of HDC. HDC covers larger context. In the red
box, 3×3 kernel with single-rate dilation may cover 9 background
points but 0 foreground ones. But the multi-rate kernels concern
much more pixels, and are more likely to connect broken lines.

kernels to capture the holistic shapes of handwritten strokes.
Dilated convolutions provide respective fields with different
sizes without extra parameters. Furthermore, the foreground
points of predicted skeleton maps are far less than the num-
ber of background points, HDC fully utilizes all foreground
pixels as shown in Fig. 4. The HDC module in our task are
shown in Fig. 5, where dilated convolutions contain multiple
rates from 1 to 4. The summation of 4 feature maps from di-
lated convolution kernels is delivered to a fusing convolution
layer for the final prediction.

SUM
fusing conv

Figure 5: The HDC module in our task. Blue points mean the pa-
rameters of one kernel, and we insert blanks between parameters.

Multi-Loss Learning
Here we formulate our approach for character skeleton ex-
traction. D = {(Xi, Yi), i = 1, ..., N} denotes the training
data set, where Xi refers the input sample and Yi express-
es the ground truth skeleton map of Xi. A typical instance

of (Xi, Yi) is (Fig. ??, Fig. ??). All predictions are utilized
to calculate Sigmoid Cross Entropy loss LSCE with ground
truth maps.

Besides fine-tuning the weights WH inherited from the
pre-trained HCCR-CNN9Layer in Fig. 7, we need to learn-
ing following parameters: (1) Side outputs come from K dif-
ferent scales, and the weights for working out k-th side out-
put are denoted as WS

k . (2) Unlike the unlearnable bilinear
kernels in (Long, Shelhamer, and Darrell 2015; Shen et al.
2016), our kernels WU

k of k-th upsampling layer are learn-
able, which we will prove to be superior to the unlearnable
case in Fig. 10. (3) Suppose after the slicing and concatenat-
ing, there are G groups of feature maps. The convolutional
kernel WC

g works out the g-th candidate skeleton map, and
the predictions boxed by dashed lines in Fig. 1 are related
to WO

k . (4) The proposed rDUC also contains convolutional
calculations, and WR

k denotes the weights for the k-th side
output. (5) For convenience, we denote all kernels in multi-
rate dilated convolution by WD.

From the perspective of the final outputs, PU
k , PR

k , and
PF represents the k-th prediction generated by the regu-
lar upsampling results, the k-th prediction generated by the
rDUC results, and the final fused prediction, respectively.
Given the above, we define the fusion loss as

Lf = LSCE (PF , Yi|WH ,WS ,WU ,WC ,WO,WR,WD),
(1)

where WH ∼ WD are the weights which will be updated
by minimizing Lf . As for the k-th prediction generated by
the regular upsampling results, the objective caused by PU

k
is

Ls = LSCE (PU
k , Yi|WH

k ,WS
k ,WU

k ,WO
k ). (2)

Similarly, we consider the loss refers to PR
k as

Lr = LSCE (PR
k , Yi|WH

k ,WS
k ,WR

k ). (3)

Training Data Preparation Supervised deep learning de-
mands plenty of ground-truthed skeletons of offline hand-
written Chinese characters. It is almost impossible to
human-annotate ground truth skeletons for a large number
of offline handwritten samples. Fortunately, the online hand-
written samples (Liu et al. 2011a) record strokes by (x, y)-
coordinate sequences, which can be viewed as skeleton pix-
els in synthesized images by dilating the stroke skeletons.
We thus generate a large number of synthesized character
images from online handwritten characters for training the
deep model.

As shown in Fig. 6a, the online character is plotted by
connecting the sequential (x, y)-points recorded for pen tra-
jectory in writing. The offline image Fig. 6b is generated by
dilating the strokes of plotted online character image with
appropriate control of stroke width1, edge smoothness and
foreground gray scale. Specifically, we obtain verisimilar
gray-scale images by controlling the image qualities2 of the

1http://pillow.readthedocs.io/en/3.1.x/
reference/ImageDraw.html#PIL.ImageDraw.PIL.
ImageDraw.Draw.line

2http://pillow.readthedocs.io/en/3.1.x/
handbook/image-file-formats.html#jpeg

Figure 5: The HDC module in our task. Blue points mean the non-
zero parameters of one kernel, and we insert blanks between them.

Multi-Loss Learning
(Xi, Yi) denotes one training pair, where Xi refers the input
sample and Yi expresses the ground truth skeleton of Xi. A
typical instance of (Xi, Yi) is (Fig. 6(b), Fig. 6(a)). Predic-
tions and ground truth maps are used to calculate Sigmoid
Cross Entropy loss LSCE .

Besides fine-tuning the weights WH inherited from the
pre-trained HCCR-CNN9Layer, we need to learn following
parameters: (1) Side outputs come from K different scales,
and the weights for working out k-th side output are de-
noted as WS

k . (2) Unlike the unlearnable bilinear filters in
(Long, Shelhamer, and Darrell 2015; Shen et al. 2016), our
kernels WU

k of k-th upsampling layer are learnable, which
we will prove to be superior to the unlearnable case in Fig.
10. (3) Suppose after the slicing and concatenating, there
are G groups of feature maps. The convolutional kernel WC

g
works out the g-th candidate skeleton map, and the predic-
tions boxed by dashed lines in Fig. 1 are related to WO

k .
(4) The proposed rDUC also contains convolutional calcula-
tions, and WR

k denotes the weights for the k-th side output.
(5) For convenience, we denote all kernels in multi-rate di-
lated convolution by WD.

From the perspective of the final outputs, PU
k , PR

k , and
PF represents the k-th prediction generated by the regu-
lar upsampling results, the k-th prediction generated by the
rDUC results, and the final fused prediction, respectively.
Given the above, we define the fusion loss as

Lf = LSCE (PF , Yi|WH ,WS ,WU ,WC ,WO,WR,WD),
(1)

where W H ∼WD are the weights which will be updated
by minimizing Lf . As for the k-th prediction generated by
the regular upsampling results, the objective function caused
by PU

k is

Ls = LSCE (PU
k , Yi|WH

k ,WS
k ,WU

k ,WO
k ). (2)

Similarly, we consider the loss refers to PR
k as

Lr = LSCE (PR
k , Yi|WH

k ,WS
k ,WR

k ). (3)

Training Data Preparation Supervised deep learning de-
mands plenty of ground-truthed skeletons of offline hand-
written Chinese characters. It is impossible to human-
annotate ground truth skeletons for a large number of sam-
ples. Fortunately, the online handwritten samples (Liu et al.
2011a) record strokes by (x, y)-coordinate sequences, which
can be viewed as the ideal skeletons of synthesized images
(generated by dilating the stroke skeletons). Thus we gen-
erate a large number of synthesized character images from
online handwritten characters for training.

As shown in Fig. 6(a), the online character is plotted by
connecting the sequential (x, y)-points recorded for pen tra-
jectory in writing. The offline image Fig. 6(b) is generated
by dilating the strokes of plotted online character image with
appropriate control of stroke width, edge smoothness and
foreground gray scale. Specifically, we obtain realistic gray-
scale images by controlling the image qualities of the whole
images in JPG format. It is clear that our synthetic image
is much better than the one which is processed by Gaussian
noises or pseudo-gray means.

(a) Online handwritten character from plot-
ting the (x, y)-points. (b) Synthesized offline character image.

Figure 6: Conversion from online handwritten character to offline
image.

We train deep HCCR model by samples like Fig. 6(b) to
provide foundational parameters for our FCNs, and we will
illustrate the necessity of pre-training in Fig. 12. Obviously,
Fig. 6(a) is quite qualified for serving as the ground truth
skeleton of Fig. 6(b), and provides accurate supervision.

Pre-trained Model As shown in Fig. 7, the HCCR-
CNN9Layer (Xiao et al. 2017) reaches excellent perfor-
mance, and its similar architecture with VGG net (Simonyan
and Zisserman 2014) makes it easy to cast into FCNs.
Therefore we use the convolutional parameters of HCCR-
CNN9Layer to initialize our FCNs and fine-tune all layers.

Because the character skeleton extraction network should
share the same inputs with its corresponding deep domain-
relative HCCR model, we use the universal set of on-
line Handwritten database CASIA-OLHWDB1.1 (Liu et al.
2011a) to synthesize training data (∼1.121 millions) like
Fig. 6(b). We test the pre-trained model on a random sub-
set (∼230 thousands) of the training part of OLHWDB1.0
(Liu et al. 2011a).

As shown in Fig. 8, during the early stages of training,
the model exhibits unstable state. With the periodic drop
of learning rate, there is a significant accuracy improve-
ment for testing set. Therefore we stop training after 15
epochs (94.53% accuracy) instead of running more epochs
to achieve higher performance.



96x96x96 128x48x48 160x24x24
256x12x12 384x6x6

Figure 7: The Architecture of HCCR-CNN9Layer. Different colors
indicate different groups of conv layers. Each convolutional layer
works with 3×3-kernels, 1-stride and 1-pad. We employ SGD with
learning rate 10−1, momentum 0.9, weight decay 2 × 10−4, and
the learning rate is dropped by ×0.1 per 3.5 epochs. Here we omit
the 2 × 2-max-pooling and batch normalization layers after each
convolutional group.

whole images in JPG format3. It is clear that our synthet-
ic image is much better than the one which is processed by
Gaussian noises or pseudo-gray means.

(a) Online handwritten character from
plotting the (x, y)-points.

(b) Synthesized offline character im-
age.

Figure 6: Conversion from online handwritten character into offline
image.

We train deep HCCR model with samples like Fig. 6b to
provide foundational convolution layers of deep side out-
puts. We will illustrate the necessity of pre-training in Fig.
12. Obviously, Fig. 6a is quite qualified for serving as the
ground truth skeleton map of Fig. 6b, and provides accurate
supervision.

Pre-trained Model. As shown in Fig. 7, the HCCR-
CNN9Layer (Xiao et al. 2017) has reported excellent per-
formance, and the similar architecture with VGG net (Si-
monyan and Zisserman 2014) makes it convenient to cast
into FCNs. We use the convolutional parameters of HCCR-
CNN9Layer to initialize our FCNs and fine-tune all layers.

96x96x96 128x48x48 160x24x24
256x12x12 384x6x6

Figure 7: The Architecture of HCCR-CNN9Layer. Different col-
ors indicate different groups of convolutional layers. Here we omit
the 2 × 2-max-pooling and batch normalization layers after each
convolutional group. Each convolutional layer works with 3 × 3-
kernels, 1-stride and 1-pad. We employ the method of SGD with
base learning rate 10−1, momentum 0.9, weight decay 2 × 10−4,
and the learning rate is dropped by ×0.1 per 3.5 epochs.

Because the character skeleton extraction network should
share the same inputs with its corresponding deep domain-
relative HCCR model, we use the universal set of on-
line Handwritten database CASIA-OLHWDB1.1 (Liu et al.
2011a) to synthesize offline data (∼1.121 millions) like Fig.
?? for training. We test the pre-trained model on a random
subset (∼230 thousands) of the training part of CASIA-
OLHWDB1.0 (Liu et al. 2011a).

As shown in Fig. 8, during the early stages of training,
the model exhibits unstable state. With the periodic drop of

3http://pillow.readthedocs.io/en/3.1.x/
reference/Image.html#PIL.Image.Image.save
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Figure 8: The pre-training process of the HCCR-CNN9Layer.

learning rate, there is a significant accuracy improvement for
testing set. Pre-training is a special case of the warming-up
strategy to guarantee the convergence condition, therefore
we stop training after 15 epochs (94.53% accuracy) instead
of running more epochs to achieve higher performance.

Postprocessing

The postprocessing in similar tasks (Xie and Tu 2015;
Shen et al. 2016) is very simple: employing binarization on
sigmoid(PF ) with 1

2 -threshold. However, this method only
captures a coarse result as shown in Fig. 9b. It is clear that
there are lots of breakpoints in Fig. 9b, and most segmenta-
tions are not one-pixel width. From the heatmap of PF in
Fig. 9a, it is easy to distinguish the mainlines of objective
skeletons (in deep red color) from non-skeleton pixels (in
bright color). Therefore we conduct K -Means on Fig. 9a
(obviously set K as 2) and generate a binarized image Fig.
9c. Now, there are no unsatisfactory breakpoints in Fig. 9c.
Finally, rules from (Zhang and Suen 1984) clear the redun-
dant foreground points and generate ideal skeleton as Fig.
9d shows.

(a) (b)

(c) (d)

Figure 9: The results of our postprocessing method.

Figure 8: The pre-training process of HCCR-CNN9Layer.

Postprocessing
The postprocessing in similar tasks (Xie and Tu 2015;
Shen et al. 2016) is very simple: employing 1

2 -thresholded
binarization on sigmoid(PF ). However, this method only
captures a coarse result like Fig. 9(b), where there are lots
of breakpoints, and most segmentations are not one-pixel
width. In the heatmap of PF in Fig. 9(a), it is easy to distin-
guish the mainlines of objective skeletons (in deep red) from
non-skeleton pixels (in bright color). Therefore we conduct
K -Means on Fig. 9(a) (set K as 2) and generate a binary im-
age Fig. 9(c), where there are no unsatisfactory breakpoints.
Finally, rules from (Zhang and Suen 1984) clear the redun-
dant foreground points and generate ideal skeleton as Fig.
9(d) shows.

Experiments and Results
Experiments on Skeleton Extraction Tasks
We use the framework in Fig. 1 without rDUC as our base-
line model, which obeys the widely accepted construction
standards introduced by (Shen et al. 2016). We replace the
MDF with the general convolutional fusion in the baseline
model. Besides, the bilinear upsampling operations in the
baseline model are unlearnable.

We synthesize the pair-wise training data as (Fig. 6(a),
Fig. 6(b)) from CASIA-OLHWDB1.1 (∼1.121 millions) for
the training and test our models on the synthesized data
(∼224 thousands) from ICDAR-2013 Online HCCR Com-
petition Database (Yin et al. 2013). The performances of

(a) Heatmap of PF . (b) 1
2

-thresholded sigmoid(PF ).

(c) K -Means on (a). (d) Our result.

Figure 9: The results of our postprocessing method.

skeleton extraction methods are measured by the F-measure
( 2×Precision×Recall

Precision+Recall ) (Shen et al. 2016). Because the F-
measures cannot give visual descriptions about the perfor-
mances of different models, we propose a new metric named
Average Minimal Distance (AMD) to evaluate our methods.
Ps and Pg express the sets of skeleton points in the predicted
maps and ground truth map, respectively. Each item dij in
matrix D|Ps|×|Pg| indicates the distance between P i

s and P j
g .

Therefore, we have:

AMD = average(H (D)), (4)

where H is the Hungarian algorithm1 designed to solve the
linear sum assignment problems.

protocol used in (Tsogkas and Kokkinos 2012), and under
which the performances of skeleton extraction methods are
measured by the F-meansure ( 2×Precision×Recall

Precision+Recall ) (Shen et
al. 2016).
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measured by the F-meansure ( 2×Precision×Recall
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al. 2016).
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2011) for the training purpose and test our models on syn-
thesized data from ICDAR-2013 On-line HCCR Competi-
tion Database (Yin et al. 2013). We follow the evaluation
protocol used in (Tsogkas and Kokkinos 2012), and under
which the performances of skeleton extraction methods are
measured by the F-meansure ( 2×Precision×Recall

Precision+Recall ) (Shen et
al. 2016).

We conduct our experiments on 4 models: baseline, base-
line + learnable upsampling, baseline + learnable upsam-
pling + MDF, and baseline + learnable upsampling + MDF +
rDUC. Loss curves with different configurations are present
in Fig. 14, 10, 11.
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the consistent input size 96 × 96 are present in Fig. 10 and
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+ rDUC exceeds all other models. Moreover, the curves in
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In Fig. 11, the black curve tells the history of Lf when
we train the baseline net without inheriting WH from the
pre-trained model, and the green one means the fine-tuning
phase on the basis of WH . Obviously, even if we have > 1
million pairs of training samples, domain-relative initializa-
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We report the F-measure in Table. 1, where our models
outperforms others significantly. In our experiments, Zhang-
Suen algorithm works better than other traditional methods,
such as stroke correction (Pujari, Mitra, and Mishra 2014)
and stroke continuity (Dong et al. 2017). Distance-based
methods are suitable for patterns with simple shapes and
smooth contours, but fail to present comparable outputs in
our task. HED network reports a much better AMD than tra-
ditional methods, but its recall is not ideal. Though the skele-
tons extracted by our models are not fit the ground truth per-
fectly, they look very natural, that means they can be read
by humans and recognized by machines. AMDs in Table.
1 strongly demonstrate that in our methods, the predicted
skeleton points are closer to the ground truth points.

Table 1: Comparison between different models on synthesized data
from ICDAR-2013 Online HCCR Competition Database. Image
size: 96× 96.

Method F-measure AMD
Stroke Correction (Pujari, Mitra, and Mishra 2014) 0.215 3.87

Stroke Continuity (Dong et al. 2017) 0.349 3.45
ZhangSuen (Zhang and Suen 1984) 0.381 3.23

HED (Xie and Tu 2015) 0.373 1.78
Baseline 0.575 1.51

Baseline + learnable upsampling 0.592 1.44
Baseline + learnable upsampling + MDF 0.597 1.46

Baseline + learnable upsampling + MDF + rDUC 0.610 1.29

Experiments on Recognition Tasks
We illustrate the character skeleton extraction results ob-
tained by different methods in Fig. 12. These examples
show that our method has detected the most ground truth
points. Obviously, our results are more smooth, and contain
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Table 1: THE TEXT SKELETON EXTRACTION RESULTS.

We propose a fully convolutional network with multi-loss
learning to extract skeletons from the offline handwritten
Chinese characters. By combining the standard side output-
s with the regressive dense upsampling convolution (rDUC)
and multi-rate dilated fusion (MDF), we achieve the state of
the art F-measure on the open dataset of synthesized and real
Chinese Characters. On this basis, we prove the robustness
of the skeletons in recognition tasks. The encouraging ex-
perimental results demonstrate the effectiveness of the pro-
posed method for text skeleton extraction. In the future, we
will further dive into the research and application of stroke
level extraction and matching.
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Table 2: THE TEXT SKELETON EXTRACTION RESULTS.

Figure 12: The character skeletons attained by different methods
on synthesized data from ICDAR-2013 Online HCCR Competition
Database. From up to down: input images; ground truths; stroke
continuity based algorithm; ZhangSuen method; HED network,
and ours. Image size: 96× 96.

fewer noisy points. Above all, our results are as human-
readable as the raw images and ground truths. Though
our models are trained on synthetic data, they can handle
the real offline handwritten Chinese character samples in
CASIA-OFFHWDB1.1 (Liu et al. 2011a), and extract re-
sultful skeletons in Fig. 13.

It is clear that skeletons of real/synthesized offline char-
acters are human-readable. Thus, we recognize skeletons
directly in classification tasks. We use HCCR-CNN9Layer
as our classifier and conduct experiments on two sides: (1)
Training models directly on character skeletons. (2) Train-
ing models on the 2-channel inputs, where the raw images
and skeletons occupy one input channels separately. From
Table. 2, we can see that when only recognizing skeletons,
the best accuracy 95.53% is 1.28% lower than the state of the
art 96.81% achieved by training on the 96× 96 raw images.
Nevertheless, combining raw image and skeleton as classi-
fier input reports the best performance 96.90% when only
training on CASIA-OFFHWDB1.1, this result is compara-
ble with the best accuracy 96.95%. Moreover, in Table. 2,
the low accuracy 69.94% for skeletons generated by Zhang-
Suen algorithm indicates that traditional thinning algorithms
do not preserve character shapes well.

Though only recognizing skeletons cannot reach the
best performance, we can not ignore the structural in-
variance contained in skeletons. The changes of fore-



Table 2: Testing accuracies on ICDAR-2013 Offline HCCR Com-
petition Database. All models are trained on offline dataset CASIA-
OFFHWDB1.1.

Method Training Data Input Image Size Accuracy
(Liu et al. 2011b) 1.1 Raw 48× 48 92.18%
(Yin et al. 2013) 1.1 Raw 48× 48 94.77%

(Cireşan and Meier 2015) 1.1 Raw 48× 48 95.79%
(Wu et al. 2014) 1.1 Raw 64× 64 96.06%

HCCR-CNN9Layer

1.1 Raw 96× 96 96.81%
1.1 Skeleton (Ours) 96× 96 94.34%
1.1 Skeleton (Ours) 64× 64 95.53%
1.1 Skeleton (Ours) 48× 48 94.66%
1.1 Skeleton (ZhangSuen) 64× 64 69.94%
1.1 Raw + Skeleton (Ours) 96× 96 96.90%
1.1 Raw + Skeleton (Ours) 64× 64 96.63%
1.1 Raw + Skeleton (Ours) 48× 48 96.10%

(Zhang, Bengio, and Liu 2017) 1.1 + 1.0 DirectMap 8× 32× 32 96.95%

ground/background colors, stroke widths, and image qual-
ities will cause the performances degradation on mod-
els trained on the raw images, but the recognitions of
skeleton are robust to these kinds of variants. As Fig.
6(b) shows, we synthesize two offline datasets from two
online datasets: ICDAR-2013 Online HCCR Competition
database and CASIA-OLHWDB1.1TST (the testing set of
CASIA-OLHWDB1.1 (Liu et al. 2011a)), which are named
ON2OFF-Comp2013 and ON2OFF-HWDB1.1TST.
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Table 1: THE TEXT SKELETON EXTRACTION RESULTS.

We propose a fully convolutional network with multi-loss
learning to extract skeletons from the offline handwritten
Chinese characters. By combining the standard side output-
s with the regressive dense upsampling convolution (rDUC)
and multi-rate dilated fusion (MDF), we achieve the state of
the art F-measure on the open dataset of synthesized and real
Chinese Characters. On this basis, we prove the robustness
of the skeletons in recognition tasks. The encouraging ex-
perimental results demonstrate the effectiveness of the pro-
posed method for text skeleton extraction. In the future, we
will further dive into the research and application of stroke
level extraction and matching.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 2: THE TEXT SKELETON EXTRACTION RESULTS.

Figure 13: The character skeleton extraction results on the real of-
fline data. From up to down: input images; stroke continuity based
algorithm; ZhangSuen method; HED network, and ours. Image
size: 96× 96.

In Table. 3, we present the accuracies under 4 kinds of
different inputs: raw images, binary images, directMaps (Liu
2007), and skeletons. On the synthesized datasets, the classi-
fiers trained on the raw data of CASIA-OFFHWDB1.1 drop
by >6%. When training and testing on binary images or di-
rectMaps, models perform better. However, models trained
on binary samples or directMaps cannot reach higher ac-
curacies because the stroke widths in testing sets are vari-
ous while the stroke width in CASIA-OFFHWDB1.1 have
smaller variance.

In Table. 3 the models trained on skeleton still report com-
parable performances with the result in Table. 2, and this can
be easily explained. A real offline sample is shown in Fig.

Table 3: Testing accuracies on synthesized datasets. All models are
trained on the real offline datasets CASIA-OFFHWDB1.1.

Method Input Image Size ON2OFF-Comp2013 ON2OFF-HWDB1.1TST

HCCR-CNN9Layer Raw 96× 96 89.27% 89.41%
Binary 96× 96 88.37% 89.65%

(Zhang, Bengio, and Liu 2017) DirectMap (Raw) 8× 32× 32 90.14% 90.73%
DirectMap (Binary) 8× 32× 32 90.40% 91.23%

HCCR-CNN9Layer Skeleton (ZhangSuen) 64× 64 70.26% 70.44%
Skeleton (Ours) 64× 64 94.42% 94.53%

(a) Offline sample. (b) Skeleton of (a). (c) Synthesized data. (d) Skeleton of (c).

Figure 14: The different forms of offline and synthesized data.

14(a), and a typical synthesized sample is just like Fig. 14(c).
Though they are machine-readable, the pixel-wise distribu-
tions of synthesized data are totally different from the real
offline one. Hence, even if under the gray normalization, the
models trained on the real offline data fall down evidently
on synthesized data. By contrast, the directMaps can capture
more invariant features for recognition tasks. In the skeleton
based recognition task, we recognize the extracted skeletons
of input samples instead of the raw images. Though there
exists different distributions in the raw data and the synthe-
sized data, the skeletons hold enough discriminative and in-
variant clues for robust recognition, i.e., Fig. 14(b) and Fig.
14(d) are the skeletons of Fig. 14(a) and Fig. 14(c) respec-
tively, and models trained on samples like 14(b) are capable
to understand samples like Fig. 14(d).

To show the usefulness of skeletons extracted from char-
acter images synthesized from online handwritten charac-
ters, we also evaluate the recognition accuracies on real of-
fline test data using models trained with synthesized sam-
ples in ON2OFF-HWDB1.1 (synthesized by the universal
set of the online data CASIA-OLHWDB1.1). The results are
shown in Table. 4, where we can see that the accuracies are
comparable with the ones in Table. 3. This implies means
the online samples can fulfill data argumentation in offline
recognition tasks.

Table 4: Testing accuracy on ICDAR-2013 Offline HCCR Compe-
tition Database. All models are trained on the synthesized offline
data ON2OFF-HWDB1.1.

Method Input Image Size Accuracy

HCCR-CNN9Layer Raw 96× 96 89.05%
Binary 96× 96 89.42%

(Zhang, Bengio, and Liu 2017) DirectMap (Raw) 8× 32× 32 90.56%
DirectMap (Binary) 8× 32× 32 91.20%

HCCR-CNN9Layer Skeleton (ZhangSuen) 64× 64 69.77%
Skeleton (Ours) 64× 64 94.51%

Conclusion
We propose a fully convolutional network with multi-loss
learning to extract skeletons for handwritten Chinese char-
acters. By combining the standard side-output architecture
with the regressive dense upsampling convolution (rDUC)
and multi-rate dilated fusion (MDF), we achieve high F-



measure in skeleton pixel detection. Our experimental re-
sults of skeleton-based character recognition using CNNs
demonstrate that the skeletons extracted using the proposed
method preserves character shapes very well. In the future,
we will study into structural shape analysis, matching and
interpretation based on character skeletonization.
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