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Abstract—Writing abnormality detection is very important in
education applications, but has received little attention by the
community. Considering that abnormally written strokes (writing
error or largely distorted stroke) affect the decision confidence
of classifier, we propose an approach named DeepAD to detect
stroke-level abnormalities in handwritten Chinese characters by
analyzing the decision process of deep neural network (DNN).
Firstly, to minimize the effect of stroke width variation of hand-
written characters, we propose a skeletonization method based on
fully convolutional network (FCN) with cross detection. With a
convolutional neural network (CNN) for character classification,
we evaluate the role of each skeleton pixel by calculating its
impact on the prediction of classifier, and detect abnormal
strokes by connecting pixels of negative impact. For quantitative
evaluation of performance, we build a template-free dataset
named SA-CASIA-HW containing 3696 handwritten Chinese
characters with various stroke-level abnormalities, and spanning
3000+ different classes written by 60 individual writers. We
validate the usefulness of the proposed DeepAD with comparison
to related methods.

Index Terms—handwritten Chinese character recognition
(HCCR), stroke-level handwriting abnormality detection, skele-
tonization, decision making process, conditional sampling

I. INTRODUCTION

Over the last few years, handwritten Chinese character
recognition (HCCR) [1] has achieved high accuracies as over
97% on up to 3755 categories by using convolutional neural
networks (CNNs) in the writer-independent recognition task
[2]. But the interpretability of deep HCCR remains an open
issue. Actually, some applications depend heavily on this issue,
for example, analyzing how handwritten strokes influence the
decision making of deep classifiers is a significant step to
the adoption of deep learning in the handwriting abnormality
detection, which is needed in education applications.

For instance, Fig. 1 shows 12 test samples from 3 randomly
chosen classes in a descending order of confidence predicted
by a CNN classifier named HCCR-CNN9Layer [2]. Though
they are all recognized correctly, regularly-written samples
tend to be given higher scores obviously. Stroke-level deforma-
tions, sloppy writing and irregular configurations of handwrit-
ten strokes decline the confidence scores dramatically. These

Finding Stroke-Level Handwritten Errors in Chinese
Characters from the Decision Making Processes of

Deep Classifier

Abstract—This article presents a stroke-level error detection
method for handwritten Chinese characters, which is such
a crucial issue in educational applications. It is fairly well
known that irregularly/wrongly-written strokes in handwritten
samples downgrade the confidence given by classifiers, while
more formally-written strokes produce much higher confidence.
Thus we can analyze the decision making processes of classifiers,
and highlights strokes in a given input image that provide
evidences against a certain class to find the written errors.
Having considered that the various stroke widths of handwritten
strokes carry barriers to the stroke extraction, we propose a
dual fully convolutional architecture to thinning strokes, which
produce awesome skeletons, especially in the intersection areas.
Furthermore, we calculate how each stroke affects the results
of classifiers. In this paper, we introduce the SE-HW dataset,
including 3696 handwritten Chinese characters with obviously
stroke-level errors, spanning randomly chosen 3100+ different
classes and 60 individual writers. We illustrate the proposed
method in experiments on handwritten images, and a stroke-
level handwritten error detection baseline is built on SE-HW.

Index Terms—handwritten Chinese character recognition
(HCCR), stroke-level handwritten errors, skeletonization, deci-
sion making process of classifiers, conditional sampling

I. INTRODUCTION

Over the last few years, deep neural networks (DNN) have
shown great generalization in solving handwritten Chinese
character recognition (HCCR) problems, and merged as a
standard choice [1]. Regardless of writers, HCCR has achieved
high accuracies as over 97% on up to 3755 categories by using
convolutional neural networks (CNNs) [2]. Though CNNs
serve as powerful classifiers, model interpretability remains
an important issue because in many applications, such as
handwritten evaluation [3], handwritten error discovery, and
handwritten image beautification [4], i.e., analyzing how a
classification confidence comes about is a significant step to
the adoption of deep learning in these areas. Normally,
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Figure 1. Deep classifiers in [2] predict the classes of testing samples
according to the maximal categorical distribution output (confidence) of
softmax function.

Figure 1: HCCR-CNN9Layer predicts the classes of test samples
according to the maximal outputs of softmax function. These samples
are from three classes, boxed in three different colors.

cases reveal that written abnormalities influence against the
confidence of desirable classes given by classifiers. Broadly
speaking, the goal of DeepAD is to find the pixels which cause
negative effects on the correct predictions made by DNNs via
interpretability based method.

Recently, there have been some works toward the inter-
pretability of deep model [3]–[9]. One popular way is visualiz-
ing the knowledge learned by models in the input space. There
are mainly two groups of algorithms for the visualization:
backpropagation based [3]–[7] and forward propagation based
[8], [9]. Backpropagating usually tells how sensitive the loss
are to each input pixel. For example, Shrikumar et al. [4] and
Simonyan et al. [3] compare the real output of each neuron
with its ideal output, then backpropagate the difference to the
input space. Bach et al. [5] propose effective approximations
to the derivations for different layers in CNNs, while Zeiler
et al. [7] simply operate the inverse processes of CNNs to
visualize what they have learnt.

Backpropagating operations highlight the most important
features for the correct predictions [3]. But since the layer-
by-layer propagation magnifies deviations hierarchically as



shown in Fig. 2(b) & 2(c), it fails to generate positive or
negative regions, while forward propagation based methods
exhibit more meaningful results. Class activation mapping
(CAM) [8] uses a linear weighted sum of feature maps from
the last convolutional layer to detect the most salient regions.
Furthermore, the method in [9] outputs those negative regions
which are against the correct predictions. Because stroke-level
abnormalities in handwritten characters will decline the scores
of correct predictions, our proposed DeepAD is to detect
stroke-level abnormalities by finding negative regions in input
images (shown in Fig. 2(b) & 2(d)), based on the forward
propagation based analysis in [9].
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Figure 2: Results of back/forward-propagation based methods. (a) is
the correct writing of class3068 . (b) is a correctly recognized sample
of class3068 , but contains stroke-level handwritten abnormalities. (c)
is produced by the algorithm in [3] on (b). (d) shows the connected
(red) positive/(blue) negative regions generated by DeepAD.

As far as we know, our work is the first to detect stroke-
level handwriting abnormalities from deep classifiers: DeepAD
first performs skeletonization on the input image using a
fully convolutional network (FCN) combined with overlap
detection for better preserving stroke shapes; Next, the HCCR-
CNN9Layer [2] is used to predict the character class label,
and the role of each foreground pixel in the skeleton map
is measured from the network response with respect to the
predicted class; Finally, connected pixels in negative roles are
identified as abnormally written strokes.

The rest of this paper is organized as follows: Section II
briefly reviews related works. Section III details the proposed
DeepAD, Section IV presents experimental results, and Sec-
tion V draws the conclusion.

II. RELATED WORK

Model-Based Structural Matching. Structural matching
methods [10]–[13] parse characters by stroke extraction &
template matching. Kim and Kim [11] represent characters
by the joint distributions of feature points extracted from their
strokes, then a template-driven matching algorithm outputs an
optimal path stroke correspondence between the template and
the input character [13]. Zeng and Liu [12] model characters
via Markov random fields (MRFs), and understand character
image by MRF-guided stroke matching. Liu et al. [13] design
stroke templates in writer order and inter-stroke relationship
types for each character, and stroke correspondence between
a template character and the input character is obtained by
heuristic search when matching. Afterwards, those strokes with
large deformation can be detected.

In this paper, we deploy the model-based structural match-
ing algorithm [13] in our task for comparison, where we

assume that the matching results with maximal distances
indicate that abnormalities occur.
Skeletonization for Handwritten Characters. Skeletoniza-
tion overcomes the stroke width variation and grasps the
shape. For a certain stroke, analysis on its skeleton reduces
the calculation and tends to produce robust outputs [14]. Most
thinning methods base on local visual rules [15]. But when
facing complex and unsmooth shapes, these methods distort
lines at the crosses of strokes and produce redundant branches
easily. Recently, [16] extracts pure and unbroken skeletons
via a supervised FCN. Here, we improve the rule-based post-
processing module in [16] by a cross detection network [17].
Pixel-Level Contributions in CNNs. In [18], to explain pre-
dictions for instances, Robnik et al. propose a general method
for all classifiers with probabilistic outputs. Specifically, they
eliminate each pixel via probabilistic methodology and observe
the changes in the predictions. Inspired by [18], Zintgraf
et al. [9] mine the fine-grained differences between similar
categories in a similar way. Our work is also based on the
instance-specific technologies in [9], [18].

III. METHODOLOGY

The pipeline of DeepAD is shown in Fig. 3, where the image
I is recognized as class c by CNN, and S denotes the skeleton
map of I . When we measure the effect of each pixel x in S, the
basic idea is that the role of x can be estimated by measuring
how the predicted score of classifiers changes if x ”disappears”
in I . Finally, as shown in Fig. 2(d), blue pixels cause negative
effects on predicting I into class c, while red pixels contribute
to the correct prediction. Thus a blue connected component is
identified to a abnormal stroke. For evaluation, we only extract
the detected strokes with the largest areas.

A. Skeletonization Module

Currently, FCN based skeletonization [16] has outperform
other methods. However, extra efforts are still needed to
thinning the crossing regions. To deal with this, we extract
crossing regions in advance and thin them subsequently.

1) Cross/Skeleton Maps Generation: Supervised learning in
cross detection [17] need the annotations for a large training
set [16]. Fortunately, the online handwritten samples [1] can
record strokes in the form of (x, y)-coordinate sequences, thus
we generate the cross regions by dilating the intersection areas
of strokes [17]. As shown in Fig. 3, our dual nets are the same,
thus we only introduce skeleton net. The net is the lightweight
version of [16]. The parameters are listed in the following:
(1) convolution filters from HCCR-CNN9Layer; (2) weights
for giving side outputs from multiple scales; (3) learnable
upsampling for enlarging feature maps; (4) convolution kernels
for generating candidate maps and the final fusion.

2) Skeletonization Algorithm for Cross Regions: After ob-
taining cross/skeleton maps, we conduct the final skeletoniza-
tion process. The details of our algorithm are in Algorithm 1.
To evaluate the performance, we synthesize training data
in {offline image, skeleton target, cross target}-format from
CASIA-OLHWDB1.1 [1] (∼1.121 millions) for training and
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Figure 3: The pipeline of the pro-
posed stroke-level abnormality detec-
tion method: DeepAD. Recognition and
skeletonization can be conducted si-
multaneously, and we assume that the
deep model gives correct prediction c
(class3068 ) with score pc (0.95). Af-
terwards, for each foreground pixel in
skeleton map, we make it unknown to
classifiers, then determine its role by
observing the ascending or descending
of pc. Here, the calculations labeled
in brown color tell how to make the
blue pixel unknown (detailed in Sec-
tion III-B).

test our models on the synthesized data (∼224 thousands) from
ICDAR-2013 Online HCCR Competition Database [16], [19].
The detailed results are listed in TABLE I, where our dual
FCNs outperform the state-of-the-art model [16].

Algorithm 1 Skeletonization for crossing regions

1: INPUT: skeleton map Sp (i.e., the thinning result of [16];
cross map So

2: get the set of crossing regions: Ro
3: for each ro in Ro do
4: if each pixel in ro is background point in Sp then
5: continue
6: else
7: get the central point pco of ro
8: for each skeleton point ps in Sp do
9: if ps /∈ ro and ps is contiguous to ro then

10: link ps to pco in Sp
11: else
12: continue
13: end if
14: end for
15: end if
16: end for
17: RETURN: Sp

Table I: Comparison between skeletonization models on synthesized
data from ICDAR-2013 Online HCCR Competition Database. Image
size: 96 × 96. Average minimal distance (AMD) [16] describes the
visual distance between the prediction and ground truth maps.

Method F-measure AMD

[16] 0.610 1.29
Dual net (proposed) 0.615 1.26

B. Measuring the Roles of Input Pixels

Since the abnormality parts of a handwritten Chinese char-
acter should include those pixels which can make the largest

contributions to the misclassification in HCCR, we design a
pixel-wised contribution quantization method to measure the
role that each pixel plays [9] in HCCR. Here, for ith pixel xi
in input image I , its abnormality contribution Caxi

is regarded
as the performance change of the classifier caused by the cases
with and ”without” xi:

Caxi
= odds(c|I)− odds(c|I\xi

), odds(c|I) = log
(

p(c|I)
1−p(c|I)

)
, (1)

where c represents the class of I , I\xi
denotes the input image

”without” pixel xi [9], [18], and p(c|I) and p(c|I\xi
) indicate

the correct predictions made by HCCR-CNN9Layer on input
images I and I\xi

, respectively. In statistics, odds(·) repre-
sents the expression of relative probabilities. In Equation (1),
odds(·) eliminates the numerical difference between p(c|I) and
p(c|I\xi

) and normalizes them effectively.
Here, p(c|I) simply describes the classifier. As for p(c|I\xi

),
since each pixel is related to its adjacent pixels, therefore, it is
not reasonable to simply remove or set a special value to that
pixel to calculate p(c|I\xi

). In order to deal with this problem,
we simulate the absence of xi by marginalizing methods [9].
Then p(c|I\xi

) can be written as

p(c|I\xi
) =

∑Ns

j p(c|Ixj
i
) p(Ixj

i
|I\xi

), Ixj
i
= I\xi

+ xji , (2)

where Ixj indicates the jth possible case of the input image
with replaced pixel value xj and Ns denotes the number of
different possible values of the ith pixel xi.

However, modeling p(Ixj
i
|I\xi

) can easily become infeasi-
ble with a huge number of pixels. Therefore, we approximate
Equation 2, by assuming that the value at xi is dependent
among those pixels located in a xi-centric l× l-region lxi

. The
region lxi

has been illustrated in Fig. 4, and the approximation
of Equation (2) can be rewritten as the following:

p(c|I\xi
) =

∑Ns

j p(c|Ixj
i
) p(Ixj

i
|lxi

). (3)

This approximation is based on the following two observations
in Fig. 4: Rule A: The ith pixel in input image xi (the blue
pixels in Fig. 4) mainly depends on its neighborhood lxi

(pixels in the brown boxes in Fig. 4) around xi; Rule B: lxi



does not depend on its position, i.e., all patches in different
positions with the identical size l × l in I are independently
and identically distributed.
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Figure 4: Conditional approximation of p(I
x
j
i
|I\xi

): from the whole
image to local neighbors.

Under Rule B, we assume that both lxi and p(Ixj
i
|I\xi

) will
obey Gaussian distributions. Therefore, we can flatten lxi into
fxi

, and figure out the mean vector µf and the covariance
matrix covf of fxi . Then we generalize xji into a k × k-size
region kxi , which is surrounded by lxi . Finally, we need to
make kxi

”disappear” from fxi
. Now we have:

µf = concat(µk, µf \µk
), fxi = concat(kxi , fxi\kxi

), (4)

p(xji |lxi) = p(kxi |fxi). (5)

Here, we know that p(kxi
|fxi

) obeys Gaussian distribution,
and the conditionally sampled mean vector µcs as well as
covariance matrix covcs are given by [9] and Fig. 5:

Table I: Comparison between different skeletonization
models on synthesized data from ICDAR-2013 Online
HCCR Competition Database. Image size: 96 × 96.
Average minimal distance (AMD) [24] describes the
visual distance between the predicted maps and ground
truth maps.

Method F-measure AMD
[24] 0.610 1.29

[24] (2-channel output) 0.601 1.27
Dual net (proposed) 0.615 1.26

our models on the synthesized data (∼224 thousands) from
ICDAR-2013 Online HCCR Competition Database [24], [39].
Table. I tells that the proposed dual nets not only outperform
the state-of-the-art model [24], but also work better than the
single net with multiple outputs.

C. Measuring Roles of Pixels in Classification

After a correct prediction c is given by HCCR-CNN9Layer
[2] on I , we calculate the difference Dx between p(c|I) and
p(c|I\x), where I\x denotes that pixel x is removed from I
[13], [27]. Obviously, this difference Dx reflects the role of
x in the decision making phase. To find Dx, we simulate the
absence of x by marginalizing [13], [40] with regards to x:

p(c|I\x) =
Ns∑

i

p(c|Ixi)p(Ixi |I\x), (1)

Ixi =I\x + xi, (2)

where Ixi indicates all possible cases of I with Ns different
values at pixel x. Once the class probability p(c|I\x) is
estimated, it can be compared to p(c|I). We stick to an
evaluation proposed by [13] referred to as Dx, given by

Dx = log2[
p(c|I)

1− p(c|I) ]− log2[
p(c|I\x)

1− p(c|I\x)
]. (3)

Training and Testing HCCR-CNN9Layer [2].
p(c|I) describes the function of HCCR-CNN9Layer [2]. We

train HCCR-CNN9Layer by CASIA-OFFLINE-HWDB1.0 &
CASIA-OFFLINE-HWDB1.1 [14] (∼ 2.67 millions samples
like Fig. 2(a), spanning 3755 different Chinese charaters), and
report 97.25% accuracy on ICDAR13-OFFLINE [39] (∼ 220
thousands samples, spanning 3755 classes).

A Conditional Approximation of p(Ixi |I\x).
However, modeling p(Ixi

|I\x) can easily become infeasible
with a large number of features. Therefore, we approximate
equation 1, by assuming that the value at x is dependent on
those pixels located in a x-centric l× l-region xl as shown in
Fig. 6:

p(c|I\x) =
Ns∑

i

p(c|Ixi
)p(xi|xl). (4)

This approximation is based on the following 2 observations
in Fig. 6:

• Rule A: x (the blue pixels) depends most strongly on a
small neighborhood xl (pixels in the brown boxes) around
it;

• Rule B: the conditional of x given its neighborhood
does not depend on the position of the pixel in I , i.e.,
all patches located in different positions in I but with
the identical size l × l are independently and identically
distributed (i.i.d.).
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Fig. 6. Conditional Approximation of p(Ixi
|I\x): from

the whole image to a local neighbor.

Gaussian Assumption for p(xl) and p(xi|xl)

From the i.i.d Rule B, we assume that xl obeys a gaussian
distribution [41].

cov11 cov12

cov21 cov22

l2

k2

l2 − k2

D. Distilling the Knowledge in HCCR-CNN9Layer [2]

IV. EXPERIMENTS

V. CONCLUSION
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Figure 5: The covariance ma-
trix covf of fxi .

µcs = µk + (cov12cov
−1
22 )(fxi\kxi

− µf \µk
), (6)

covcs = cov11 − (cov12cov
−1
22 )cov21. (7)

With these two parameters (i.e., mean vector µcs and
covariance matrix covcs), we can get the distribution of all
possible values of the ith pixel xi and sample Ns values from
the distribution to calculate p(c|I\xi

) using Equation (3).

C. Teacher-Student Learning for HCCR-CNN9Layer

DNNs trained with one-hot supervisory targets [2] are likely
to output extreme confidences (approaching 0 or 1). But
DeepAD measures the effects caused to the output of deep
classifier by pixels, which requires the classifier to respond
to fine-grained differences among those similarly handwritten
characters. Thus we apply the teacher-student learning [20] to
yield fine-grained discrimination. Firstly, we choose a trained
HCCR-CNN9Layer TN as teacher, and a newly-constructed

HCCR-CNN9Layer SN as student. Then, we utilize the loss
LKD to update SN iteratively. The objective function of
teacher-student framework can be written in the following:

LKD = H(y, PS) + λH(P τT , P τS ), (8)
P τT = softmax

(
aT
τ

)
, P τS = softmax

(
aS
τ

)
, (9)

where aT and aS represent the input of teacher network and
student network respectively, PT and PS indicate the output
of teacher network and student network respectively, λ and τ
are hyper-parameters, and H denotes various candidate loss
functions in classification tasks. In our experiments, TN and
SN share the same configuration. Though SN reports a little
lower classification accuracy compared with TN (i.e., 96.08%
< 97.65% on ICDAR13-OFFLINE [19]), it outperforms TN
on our abnormality detection task.

IV. EXPERIMENTS

We compiled two datasets from HCCR datasets HANJA
[13] and CASIA-HWDB [1] for evaluation. In the former one,
stroke templates are available, which enables the comparison
between the DeepAD and stroke matching based method. For
convenience, we give only one bounding box to the most
evident written abnormality of each sample, and evaluate
different methods following the IoU (Intersection over Union:
IoU = Area of Cross

Area of Union ) criteria. When an IoU is ≥ a given
threshold, we believe that a written abnormality is detected1.

A. Datasets

1) SA-HANJA: HANJA-DB is a database of handwritten
Chinese characters collected by KAIST [13]. The database
includes 783 frequently-used Chinese characters, among which
we select 355 different classes which belong to the first plane
of GB2312. SA-HANJA (Stroke-level Abnormality-HANJA)
contains 375 samples extracted from the testing part of
HANJA-DB with obvious written abnormalities, and occupies
355 pre-defined templates for the selected 355 classes, which
is large enough for us to compare our method with the model-
based stroke matching method [13].

2) SA-CASIA-HW: In CASIA-HWDB mentioned in Sec-
tion III-B, the datasets HWDB1.0 & 1.1 contain all the
3755 classes in GB2312 level-1 set, and were collected from
∼600 writers. These two datasets will serve as the training
set of HCCR-CNN9Layer. Meanwhile, ICDAR13-OFFLINE
(3755 classes, ∼60 different writers with HWDB1.0 & 1.1)
can be used as the testing set of HCCR-CNN9Layer. More-
over, we also construct a subset SA-CASIA-HW (Stroke-level
Abnormality-HWDB) containing 3696 samples (3087 classes,
60 writers) with stroke-level abnormalities from ICDAR13-
OFFLINE to evaluate our model.

3) SA-CASIA-HWT : SA-CASIA-HWT can is a subset of
SA-CASIA-HW, sharing the same handwritten Chinese char-
acter classes with SA-HANJA and inheriting those templates

1Referred deep models, all datasets collected by the authors, evaluation
toolkits and experimental results are available at https://www.dropbox.com/
sh/2979y3gsom8mkvy/AAD0XIxaFCTKfQ0TXuGPL7Fwa?dl=0.



from SA-HANJA. SA-CASIA-HWT is designed for the com-
parison between the model-based stroke matching method [13]
and our method originally.

B. Experiments on SA-HANJA and SA-CASIA-HWT

First, we conduct experiments on two datasets: SA-HANJA
and SA-CASIA-HWT . TABLE II shows that our method
outperforms stroke-matching based approach. In SA-HANJA,
samples are written more standardly with more stable stroke
widths, while samples in SA-CASIA-HWT are written more
freely in gray format with more complex stroke-level defor-
mations. Therefore, both of those two methods report higher
accuracies on SA-HANJA significantly.

Figure 6: Some good detection results on SA-HANJA. Ground-truth
bounding boxes are labeled in green, DeepAD outputs red bounding
boxes, and stroke matching method outputs yellow bounding boxes.

Figure 7: Some bad results given by stroke-matching method.

Some randomly chosen abnormality detection results are
shown in Fig. 6. In fact, with a given IoU-threshold, though
some results are judge as false or missed detections, they
are still explainable. Stroke-matching method approximates
all strokes by single straight lines, parameterizes stroke-
level templates and limits the tolerance of each template
for writting distortion. Thus we can see that in Fig. 6, the
stroke-matching method finds more abnormalities in straight
strokes, while tends to output unreasonable results when facing
curved strokes as shown in Fig. 7. From Fig. 7, we can see
that there are two cases of miss detections by using stroke-
matching method: (1) some normal strokes in curved shape
are sentenced to be abnormal; (2) some curved written strokes
contained abnormalities but are missed.

C. Experiments on SA-CASIA-HW
This is to evaluate the effectiveness of teacher-student learn-

ing framework on the SA-CASIA-HW in TABLE III. When
CNNs drive the outputs to match one-hot vectors, the negative
influences caused by stoke-level written abnormalities will be
reduced layer-by-layer. However, in our task, the stroke-level
abnormalities are the most crucial causes to the dropping of
the predicted scores. Thus, when detecting those abnormalities,
we encourage SN to predict the true targets as well as match
the soft targets provided by TN , and SN outperforms TN on
our task indeed.

Table II: Detection accuracies on SA-HANJA & SA-CASIA-HWT .

IoU Stroke Matching [13] DeepAD

SA-HANJA SA-CASIA-HWT SA-HANJA SA-CASIA-HWT

0.20 0.576 0.498 0.839 0.860
0.25 0.544 0.443 0.826 0.833
0.30 0.520 0.407 0.802 0.712
0.35 0.490 0.386 0.776 0.697
0.40 0.458 0.313 0.754 0.619
0.45 0.434 0.302 0.725 0.553
0.50 0.386 0.274 0.714 0.466
0.55 0.352 0.239 0.677 0.401
0.60 0.304 0.151 0.640 0.309
0.65 0.234 0.123 0.616 0.270
0.70 0.186 0.071 0.570 0.179
0.75 0.130 0.055 0.472 0.127

Table III: Comparisons on teacher/student models.

IoU TN SN IoU TN SN

0.20 0.875 0.899 0.50 0.467 0.484
0.25 0.843 0.850 0.55 0.395 0.406
0.30 0.771 0.793 0.60 0.294 0.318
0.35 0.719 0.721 0.65 0.233 0.253
0.40 0.630 0.646 0.70 0.157 0.174
0.45 0.551 0.561 0.75 0.101 0.118

D. Influence of Input Image Format

In TABLE IV, we can prove that our method work better
when the input is original gray image. There are some reasons
to explain this: (1). deep models always show the best perfor-
mance when processing the raw images [2]; (2). local patches
in raw images are more likely to be aligned with Gaussian
distribution than those in binary images; (3). the edge points
of strokes are not credible enough because they are connected
with both foreground and background points.

Table IV: Comparison on different types of input images for HCCR-
CNN9Layer. ”Raw”, ”Binary”, ”Skeleton” indicate the raw images,
binarized images and skeleton maps. All these abnormality detection
results are evaluated on SA-CASIA-HW.

IoU Input Accuracy IoU Input Accuracy

0.50
Raw 0.467

0.55
Raw 0.395

Binary 0.454 Binary 0.357
Skeleton 0.410 Skeleton 0.302

0.60
Raw 0.294

0.65
Raw 0.233

Binary 0.261 Binary 0.226
Skeleton 0.245 Skeleton 0.196

0.70
Raw 0.157

0.75
Raw 0.101

Binary 0.142 Binary 0.087
Skeleton 0.113 Skeleton 0.056

E. Error Analysis

We present some successful detection results on SA-
CASIA-HW in Fig. 8, where the explicit handwriting abnor-
malities are localized accurately. But the accuracies in above-
mentioned tables still seem not very satisfactory. Therefore we
focus on analyzing the unsuccessful samples in this part.



Figure 8: Some detection results given by our DeepAD model on
SA-CASIA-HW with ground-truth bounding boxes in green and our
detection results in red.

Figure 9: Some unsatisfactory results given by our method on SA-
CASIA-HW with ground-truth bounding boxes in green and our
results in red.

In Fig. 9, we list three types (in 3 rows) of typical failures
in our experiments. Row-1: the ground-truth bounding boxes
cover larger connected components, but our method boxes
smaller areas while excludes some normally-written parts in
ground-truth boxes; Row-2: our method detects larger areas
than the regions boxed by ground truths; Row-3: False de-
tections. In these cases, a fair amount of detected strokes
have right shapes but appear in unconventional positions or
abnormal widths.

Based on the above discussion, we can conclude that the
proposed DeepAD can better handle the handwriting ab-
normality detection problem in HCCR compared with other
matching methods, and produce meaningful outputs in general.

V. CONCLUSIONS

Character recognition should not only give the class de-
cision, but also detects irregularly/wrongly written strokes,
which is especially important for writing quality assessment
and education. Therefore, we propose a stroke-level hand-
writing abnormality detection method named DeepAD for
offline handwritten Chinese characters. By combining with
cross detection, DeepAD achieve best F-measure in skeleton
extraction, and the skeleton maps provide us all the strokes and
pixels we need. Afterwards, we analyze how the value at each
pixel of skeletons influences the predictions of deep classifiers.
Finally, connected pixels which are against the correct predic-
tions are connected to give abnormally written strokes. We also
release a dataset for the stroke-level abnormality detection task
and build a baseline benchmark. Overall, the proposed method
shows promise and potential.
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