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ABSTRACT

The task of image and sentence matching has witnessed sig-
nificant progress recently, but it is still challenging arising
from the tremendous semantic gap between a pixel-level im-
age and its matched sentences. Due to limited training data, it
is rather challenging to optimize the visual-semantic embed-
dings. In this work, we propose to augment visual-semantic
embeddings via enlarging the training dataset. With more
data, models can learn discriminative features with high-
quality semantic concepts. More specifically, we augment
data by generating sentences for given images. Our method
consists of two steps. At first, to enlarge the training dataset,
given an image, we perform image captioning. Instead of
introducing redundancy to our augmented dataset, we hope
that our generated sentences are in diverse style and main-
tain its fidelity at the same time. Therefore, we consult to
generative adversarial networks (GANs) which can produce
more flexible expressions compared to methods based on the
maximum likelihood principle. Then, we augment visual-
semantic embeddings with the augmented training dataset
and obtain the model for the task of image and sentence
matching. Experiments on the popular benchmark demon-
strate the effectiveness of our method by achieving superior
results compared to our baseline.

Index Terms— Generative Adversarial Networks, Image
and Sentence Matching, Visual-Semantic Embeddings

1. INTRODUCTION

The task of image and sentence matching aims to find a way
to measure the semantic similarity between an image and
a sentence. It plays a vital role in many applications, e.g.,
given an image query to find similar sentences, namely image
annotation, and given a sentence query to retrieve matched
images, namely sentence based image search. While much

progress [1, 2] has been witnessed in this area recently, nar-
rowing the semantic gap between a pixel-level image and its
matched sentences remains a challenge. MSCOCO dataset,
the most significant benchmark for this task, contains less
than 500000 sentences in training subset. Limited data has
always been the bottleneck for improving model performance
further, making it hard to optimize the visual-semantic em-
beddings. In this work, what we focus is not to propose a new
pipeline for the task of image and text matching, we intend
to augment data with GANs [3] and learn more discrimina-
tive semantic concepts for this task. Our method is not only
limited to methods based on visual-semantic embeddings but
also can generalize to different kinds of approaches in this
field for further performance improvement.

Our method can be mainly summarized into two steps.
The first step is to apply conditional GANs to perform im-
age captioning and to enlarge the training dataset. The qual-
ity of visual-semantic embedding has been dramatically im-
proved recently. The embedding features can capture fruitful
semantic information for images and sentences. However, it
is still a challenge to learn discriminative visual-semantic em-
beddings under the circumstance of limited training data and
limited model complexity. In this work, instead of increasing
the complexity of the model for performance improvement,
we intend to enlarge the training dataset with generated data.
Augmenting training data via generating sentences is not a
trivial task. We cannot merely apply traditional image cap-
tion framework based on the maximum likelihood principle
or the distributions of our generated data and original train-
ing data will be roughly the same. Considering that we hope
to generate diverse and natural sentences for a given image,
we consult to GANs equipped with reinforcement learning
for sequence generation as in [4]. Different from [4] which
focuses on producing natural and accurate image captions,
we attach attention to learning better visual-semantic embed-
dings for the task of image and sentence matching. By uti-
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lizing augmented training dataset with generated data, we can
lift the model performance. The second step is to learn visual-
semantic embeddings with our enlarged training dataset. In
our experiment, we adopt VSE++ [5] model as our baseline,
which proposes a triplet ranking loss designed for image and
sentence matching. To demonstrate the effectiveness of our
method, we conduct several experiments on the large-scale
MSCOCO dataset and achieve superior results than our base-
line.

The proposed method has two merits. First, enlarging the
training dataset can benefit the retrieval model to learn more
solid visual-semantic embedding under the condition of lim-
ited training data and limited model complexity. Second, our
method can generalize to nearly all the methods in the task of
image and sentence matching. Our practice lifts the perfor-
mance of VSE++ baseline and achieves competitive results.
Beyond that, compared with models with complex structures,
models with clear and simple structures can achieve compa-
rable performance when equipped with our method.

2. BACKGROUND

In this section, we review recent progress on the task of image
and sentence matching and the task of image captioning. In
our method, we perform image captioning to enlarge the train-
ing dataset and then augment visual-semantic embeddings for
image and sentence matching.

2.1. Visual-semantic Embedding in Image and Sentence
Matching

Frome et al. [6] propose the first visual-semantic embedding
framework in which CNN [7] and Skip-Gram [8] are set as the
optimization objective. Under the similar framework, Kiros et
al. [9] apply LSTM [10] to learn feature representations for
sentences. Vendrov et al. [11] try to encode visual-semantic
hierarchy in the objective function. Additionally, Wang et
al. [12] intend to learn structure-aware representations un-
der within-view constraints. Yan and Mikolajczyk [13] apply
deep canonical correlation analysis to associate the image and
sentence. Huang et al. [14] reason the semantic order for more
discriminative feature representations for both image and sen-
tence. Lee et al. [2] use the stacked cross attention mechanism
to achieve very competitive results.

2.2. Image Captioning

In recent years, the Encoder-and-Decoder paradigm proposed
in [15] is the mainstream framework. Many state-of-art
methods [16, 17, 18] utilize the maximum likelihood princi-
ple for learning. However, as mentioned above, we hope our
generated data is different from data in the training dataset.
Therefore, it is unreasonable to follow the classic framework

based on the maximum likelihood principle directly. Com-
pared with traditional framework, methods based on GANs
[4] can generate diverse and natural sentences for a given im-
age. With the maximum likelihood principle, the model aims
to create similar word patterns existing in training samples but
often overlooks words with low-frequency in training data.
For sequence generation methods based on GANs, low fre-
quency words can be emphasized in reinforcement learning,
leading to more diverse expressions. Therefore, in order to
generate varied sentences while maintaining fidelity, we con-
sult to methods based on conditional GANs for augmenting
training data.

3. ALGORITHM

In this section, we summarize our method for the task of im-
age and sentence matching. Section 3.1 describes how to uti-
lize conditional GANs to enlarge the training dataset. Section
3.2 describes how to conduct image and sentence matching
via visual-semantic embeddings.

3.1. Data Augmentation with Conditional GANs

Given an image, first, we perform image captioning to enlarge
the training dataset. We consult to conditional generative ad-
versarial networks for this task. The entire pipeline consists
of two components: a Generator (G) and a Discriminator (D).
Their structures are depicted in Figure 1 (a) and (b) respec-
tively.
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Fig. 1. The overall structure of our image captioning model.
In the framework, the Generator (G) takes into input im-

age and a noise vector which controls the diversity of gen-
erated sentences. We adopt VGG16 [19] as our backbone
network to extract feature representation for a given image.
After extracting the image feature, LSTM network [10] is
to model words’ distribution and outputs a sentence word
by word. Specifically, LSTM contains a sequence of latent
states (s0, s1, ...sn) encoding continuous feature for previous
words. Then a word wt drawn from the latent distributions
p(w|st) step by step, forming a complete sentence.

The Discriminator (D) aims to measure the semantic sim-
ilarity between the image and sentence. It consists of two
branches. The first branch is to encode the image feature
with CNN, specifically the VGG16 in our setting. The sec-
ond branch is to encode the sentence feature with LSTM net-
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work. Then the Discriminator decides how well the sentence
describes a given image by calculating cosine distance be-
tween the image feature vector and sentence feature vector
and the semantic similarity is measured as:

Similarity(I, S) = σ(f(I, θI), g(S, θS)) (1)

Where (θI , θS) denotes parameters in image and sentence en-
coder network respectively. f(I, θI) and g(S, θS) represent
normalized encoded feature vectors for image and sentence
respectively. σ is dot product function that measures similar-
ity between image and sentence and casts value into [0, 1].

Compared with image generation, it is challenging to ap-
ply GANs for sentence generation. The difficulty lies in the
word generation procedure when we need to sample from the
hidden distribution in LSTM network in the Generator, and
this procedure is unpredictable, making it hard to optimize.
Following [4], we consult to policy gradient, a classic method
in reinforcement learning [20]. The overall optimization pro-
cedure can be mainly divided into two parts, one for the Gen-
erator and the other for the Discriminator.

For the Generator (G), we cast the word generation pro-
cedure as a reinforcement learning problem. The LSTM net-
work is an agent interacting with the outside environment and
input of the agent at every step is the hidden state vector.
This agent defines policy, and the result of this policy can
be viewed as the generated word at every time step. After
the agent finishes the task of sequence generation, it will get a
reward. In our work, the reward is obtained from the Discrim-
inator. Our optimization objective is to update the parameters
in the Generator and to maximize the expected reward. We
can define loss function as follows:
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Where, wg
n is the chosen word at step n, and r denotes

the reward for the generated sentence. pθ is a parameterized
policy and here is the LSTM network. Then we go further to
derive the gradient of our optimization objective as:
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Thus, we can update the parameters in the Generator (G) ac-
cording to rewards obtained from the Discriminator (D) with
the technique of standard gradient descent.

For the Discriminator (D), its function is to evaluate how
well pairs of image and sentence matched and the naturalness
of generated sentences. We design three types of loss func-
tions to discriminate the generated sentence, which is defined
as follows:

minL =
1

N

N

i=1

L(I, S) (4)

=
1

N

N

i=1

(LS∈ST
(I, S) + LS∈SF

(I, S) + LS∈SM
(I, S))

Where N is the number of training images. I and S repre-
sent sets of image and sentence respectively. ST and SF are
ground truth sentences and generated sentences for given im-
ages respectively. SM contains semantic-matched sentences
for given images. The Discriminator (D) is a classification
network, and our three criteria enable the network not only to
discriminate fake or real sentences for a given image but also
to evaluate the semantic similarity between two instances.

3.2. Visual-Semantic Embeddings

After we enlarge the training dataset, what we do next is to
match pairs of image and sentence. For the task of image
and sentence retrieval, it contains two sub-tasks. When the
query is a caption, the task is to retrieve the most relevant
image in the database. When the query is an image, the task
is to retrieve the most relevant sentence in the database. The
optimization goal is to improve the scores for well-matched
pairs and suppress scores for irrelevant pairs, which is known
as recall at K (R@K).

We intend to learn visual-semantic embeddings, mapping
image features and sentence features into the joint embedding
space which is convenient to measure the semantic similarity.
We use the VGG19 network and LSTM network to extract
feature vectors from image and sentence respectively. Then
we use linear projections to map them into a joint embedding
space in which we apply the cosine distance as a measurement
for the semantic similarity between images and sentences.
Then, in order to push the network to separate well-matched
pairs away from irrelevant pairs, we adopt the ranking loss
defined as follows:

L(i, c) = max
c′

[α+ s(i, c′)− s(i, c)]

+ max
i′

[α+ s(i′, c)− s(i, c)] (5)

Where this loss consists of two terms, the first term is to opti-
mize the image retrieval sub-task and the other for caption re-
trieval. (i, c) is a positive pair and the hardest negatives are de-
fined as i′ = argmaxj ∕=is(j, c) or c′ = argmaxd ∕=cs(i, d).
The loss emphasizes on eliminating hard negatives to dig out
well-matched pairs.
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Table 1. Comparison results of image and sentence matching
on the MSCOCO (1000 testing) dataset.

# Model Trainset
Caption retrieval Image retrieval

R@1 R@10 R@1 R@10

1K Test Images

1 VSE[9] 1C(1 fold) 43.4 85.8 31.0 79.9

2 VSE++[5] 1C(1 fold) 42.5 85.4 31.1 79.4

3 VSE++[5] RC 49.0 88.4 37.1 83.8

4 Ours 1C(1 fold) 43.7 86.8 33.6 81.7

5 Ours RC 50.4 90.3 39.7 85.1

4. EXPERIMENTS

In this section, to demonstrate the effectiveness of our
method, we conduct several experiments in terms of image
and sentence matching on MSCOCO dataset [21].

4.1. Dataset and Protocol

The MSCOCO dataset and its protocol are described as fol-
lows. MSCOCO consists of 82783 training and 40504 valida-
tion images, each of which is associated with five sentences.
We follow [9] to split the dataset, with 82783, 4000 and 1000
images for training, validation and testing.

4.2. Implementation Details

In the procedure of extending the training dataset, we gen-
erate another three captions for a given image. We pre train
the Generator (G) based on the standard maximum likelihood
principle for 20 epochs. The Discriminator (D) is supervised
by loss function in Eq. 4 for five epochs. Then we conduct ad-
versarial training, in which one iteration consists of one step
of updating parameters in the Discriminator after one stage of
updating parameters in the Generator. The batch size is 64,
and the learning rate is 0.0001.

4.3. Quantitative Results

We conduct the training procedure on our augmented train-
ing dataset and evaluate the performance of our model on the
standard test dataset. The commonly used evaluation crite-
ria for image and sentence matching are ‘R@1’, ‘R@10’, i.e.,
recall rates at the top one and ten results. From the results
illustrated in Table 1, we can see that our model with aug-
mented training data improves the performance of both cap-
tion retrieval and image retrieval based on VSE++ baseline in
random crop (RC) setting or centre crop (1C) setting. For cap-
tion retrieval, since more sentences have been used to consol-
idate the visual-semantic embeddings, better sentence feature
representations lead to advance in performance. For image
retrieval, the model benefits from the larger scale of data to
discriminate semantic similarity between matched pairs and

unmatched ones, leading to a more significant gain in perfor-
mance even compared to image retrieval.

4.4. Qualitative Results

We show the qualitative results of our image captioning model
in Figure 2. Our generator can produce diverse and natural
image captions without losing fidelity.

Maximum likelihood principle:
a plate of food with a fork.
Conditional GANs:
a white plate with a sandwich and a 
bowl of salad.

Maximum likelihood principle:
a laptop computer sitting on top of a 
table.
Conditional GANs:
a white laptop sitting on a desk next to 
a black keyboard.

Maximum likelihood principle:
a stop sign is on the street corner.

Conditional GANs:
a stop sign on street with a red and 
white sign.

Fig. 2. Comparison results of image captioning on the
MSCOCO dataset

5. CONCLUSION

This paper has proposed a method to further improve the
performance in the task of image and sentence matching.
With the help of GANs and policy gradient in reinforcement
learning, we can produce diverse and natural descriptions
for a given image, which can efficiently enlarge the training
dataset. More training data benefits the retrieval network to
learn solid visual-semantic embeddings, narrowing the se-
mantic gap between images and sentences. As it is shown
in the experiments, compared with the baseline VSE++, our
model achieves superior results. Our method can benefit dif-
ferent kinds of retrieval methods in this field. In the future, we
will equip state-of-art methods with our approach for further
performance improvement.
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