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Efficient Parallel Branch Network With
Multi-Scale Feature Fusion for Real-Time

Overhead Power Line Segmentation
Zishu Gao , Guodong Yang , Member, IEEE, En Li , Member, IEEE, Zize Liang , and Rui Guo

Abstract—Image-based segmentation of overhead power
lines is critical for power line inspection. Real-time segmenta-
tion helps the inspection robot avoid obstacles or land on the
wire during the inspection task. It is challenging for several
studies to achieve real-time overhead power line segmen-
tation with high accuracy. In addition, cluttered background
brings great difficulties to overhead power lines segmenta-
tion. To address these issues, an efficient parallel branch
network for real-time overhead power line segmentation is
proposed. Our framework combines a context branch that
generates useful global information with a spatial branch that
preserves high-resolution segmentation details. The asym-
metric factorized depth-wise bottleneck (AFDB) module is
designed in the context branch to achieve more efficient short-range feature extraction and provide a large receptive
field. Furthermore, the subnetwork-level skip connections in the classifier are proposed to fuse long-range features and
lead to high accuracy. Experiments demonstrate that our framework achieves more than 90% segmentation accuracy.

Index Terms— Real-time segmentation, lightweight network, dilated depth-wise convolution, power line inspection.

I. INTRODUCTION

OVERHEAD power line inspection is a critical task in
power grid systems [1]. Typically, the inspection is per-

formed by power line inspection workers, but manual inspec-
tion can be dangerous and time-consuming. The smart grid has
developed a lot with the advancement of robots and UAVs [2],
and robot inspections gradually replaced manual inspections.
The useful power inspection sensors and methods play a role
in promoting power line segmentation. They not only make
power line segmentation more and more accurate, but also
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enables real-time segmentation. Real-time segmentation helps
the inspection robot avoid obstacles or land on the wire during
the inspection task.

An overhead power line can be seen as a line when viewed
from a distance [3]. With the development of inspection robots
and sensors, many traditional detection approaches have been
formulated. Some studies have used millimeter-wave radar
[4], [5] to detect overhead transmission lines. However, it is
difficult for mobile robots to carry radar equipment because
of weight and power concerns. Therefore, many image-based
methods are gradually developed.

Overhead power line segmentation is a key problem of
power line detection. The wire usually runs through the entire
image, and it is usually assumed to appear in the image
as a long line. Thus, many researchers prefer a line-based
approach [6]. In [7], adaptive binarization is used to pre-
segment the region of wire and the Hough transform is adopted
to extract the line features. The ratio detection operator and
fast Hough transform help to extract the pixels representing
wires and detect straight lines [8]. In [9], a histogram of
oriented segments method is leveraged to both establish the
main angle orientation of power lines and discard segments
that are not power lines in the images. However, it is often
difficult for these methods to separate the wire from the image
when there are buildings or roads in the background. Because
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the difference between the wire and the background in the
infrared band is significant, infrared images can be used to
help segment the wires [10].

However, as the power line inspection robot attempts to land
on the wire, the wire in the image changes to a quadrilateral
region with spiral strips. Deep learning-based methods can
independently leverage the line and stripe features to segment
power lines [11]–[14]. In [15], the multi-scale and structured
features are fully exploited to detect the power line. Spatial
information is crucial to these segmentation methods [16].
Fully convolutional networks (FCN) [17], which are the
foundation of the segmentation framework, utilize VGG as
a backbone [18] to extract spatial features. DeepLab v2 [19]
and DeepLab v3 [20] employ atrous spatial pyramid pooling
to replace the pooling layer and encode the spatial details.
A pyramid pooling module is adopted in pyramid scene
parsing network (PSPNet) [21], which uses multi-scale average
pooling to extract the global context. Multi-Path refinement
networks (RefineNet) [22] designs a residual convolution unit
with multi-resolution fusion to obtain the spatial features of
the images. However, these methods are limited by large
computational costs.

In recent studies, lightweight segmentation methods have
been gradually developed in an attempt to balance computa-
tional cost and segmentation accuracy. ENet [23] is designed
based on SegNet [24], and it prunes redundant channels
to achieve real-time segmentation; however, it loses spatial
information and yields inferior segmentation accuracy in
experiments. Efficient residual factorized convNet (ERFNet)
[25] uses a non-bottleneck-1D module with a factorized filter,
which accelerates its execution time. MobileNet [26] adopts
depth-wise convolution and pointwise convolution to reduce
the parameters of the model. MobileNet v2 [27] employs an
inverted residual structure with linear bottlenecks to reduce
computational cost and increase accuracy. MobileNet v3 [28]
performs a blockwise search using platform-aware NAS to
further improve performance. The ShuffleNet [29] unit is
composed of pointwise group convolution and channel shuffle
operations, which significantly reduces the computational cost
while maintaining accuracy. ShuffleNet v2 [30] employs the
channel split operator to improve the performance of Shuf-
fleNet.

The context guided network (CGNet) [31] uses the context
guided block to capture information of both local features and
surrounding context, and further improves the segmentation
ability. ESPNet [32] introduces pointwise convolutions and
the spatial pyramid of dilated convolutions, which is based
on the reduce-split-transform-merge strategy, to save memory
footprint. ESPNet v2 [33] replaces point-wise convolution and
dilated convolutions with group point-wise convolution and
depth-wise dilated separable convolutions to reduce the para-
meters of the convolution kernel. The deep feature aggregation
network (DFANet) [34] initially uses two versions of Xception
and aggregates spatial information through a sub-network and
sub-stage cascade, respectively. However, a shallow network
weakens the ability to identify features.

In recent studies, multi-branch methods have been grad-
ually developed [35], [36]. The fast semantic segmentation

network (Fast-SCNN) [37] proposes the learning to downsam-
ple module to extract features for both branches. However,
this method has a low capacity for segmentation experiments.
In [38], both visible light and infrared images are fed into a
modified Fast-SCNN framework to increase the detection per-
formance. The two branches in ContextNet include a deep path
at small resolution and a shallow path at full resolution [39].
The bilateral segmentation network (BiseNet) [40] uses the
Attention Refinement Module and Feature Fusion Module
to decode features. However, the learning capacity of multi-
branch networks is reduced owing to the simple connection of
features.

To achieve high-quality segmentation with low computa-
tional complexity, we propose a novel parallel branch over-
head line segmentation network inspired of ContextNet [39],
which can also deal with the challenge caused by cluttered
background. There are two shortcomings for the ContextNet.
The first one is that the method uses two separate branches to
extract features separately, which increases the computational
cost. The second one is that ContextNet adopts a simple
feature fusion module with addition operation and did not
make full use of the extracted features. In this paper, the first
shortcoming is solved by adopting two standard convolutional
layers to extract low-level features for the parallel branch
simultaneously. The second one is solved by proposing AFDB
module and subnetwork-level skip connections in the classifier,
which gather both short-range and long-range information to
produce better segmentation results.

There are three main contributions in our paper:
• The asymmetric factorized depth-wise bottle-

neck (AFDB) module generates short-range context
information while keeping small network size.

• The subnetwork-level skip connections in the classifier
gather long-range features from intermediate layers and
lead to high segmentation accuracy.

• The efficient parallel branch framework achieves more
than 90% accuracy and it outperforms other state-of-the-
art approaches.

The remainder of this paper is organized as follows:
Section II introduces the proposed segmentation network,
including context branch, spatial branch, feature fusion model
and classifier. Section III provides the experiments and seg-
mentation performance analysis. The conclusion of this paper
is drawn in Section IV.

II. PROPOSED SEGMENTATION FRAMEWORK

In this section, we expect to make efficient use of short-
range and long-range features to achieve comparable perfor-
mance. Therefore, we implement an efficient parallel branch
network for real-time overhead power line segmentation.
Fig. 1 shows the overview of the network architectures.
It includes the context branch, spatial branch, feature fusion
model, and classifier. We call this line segmentation network
LSNet for convenience.

Before the context branch and spatial branch, we employ
two standard convolutional layers to implement downsam-
pling. One Batch normalization and ReLU follow each
convolutional layer.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 11,2021 at 07:22:18 UTC from IEEE Xplore.  Restrictions apply. 



12222 IEEE SENSORS JOURNAL, VOL. 21, NO. 10, MAY 15, 2021

Fig. 1. An overview of the proposed LSNet. The context branch leverages AFDB module to achieve short-range feature extraction. The spatial branch
helps to capture abundant spatial information. The feature fusion module solves the information independence between two branches. In addition,
a classifier with subnetwork-level skip connections is designed to recover the long-range features and boost the segmentation performance. The r
represents dilated rate.

A. Context Branch and Spatial Branch
Fig. 2 shows the different residual blocks. They are adopted

to many lightweight detection and segmentation network
to solve the efficiency limitation. However, Fig. 2(a) and
Fig. 2(b) use only pointwise convolutional layer, which bring
a lot of computation burden [29]. To balance the efficiency
and segmentation performance, we propose the AFDB module
in the context branch, which uses the strength of the dilated
depth-wise separable convolution (DDWconv) and factorized
convolution. DDWconv enables the framework to obtain fea-
tures from many originally neighboring pixels and enlarges the
receptive field. The factorized convolution leverages 1×n and
n × 1 convolution kernel instead of n × n convolution kernel,
which reduces the parameters of the model while remaining
the same receptive kernel.

As shown in Fig. 2(c), the AFDB module is designed in
ResNet bottleneck style. First we split the input channel into
two half branches and merge the features from two branches,
which is a kind of feature reuse. Then we leverage asymmetric
factorized depth-wise convolution, one branch is (n × 1 and
1 × n) and the other is (1 × n and n × 1) with dilation. By
adopting this modification, we enlarge the width of the module
to make efficient use of layers. The kernel size of the AFDB
module is 3. Each factorized convolutional layer is followed
by ReLU. The two pair of factorized depth-wise convolutional
layers leverage affluent features with low computational cost.
Next, the outputs of the two paths are concatenated for the
same channel with the input. Identify mapping is used to
combine the inputs and the outputs. Finally, the channel shuffle
operation is performed to gather the spatial information. Note
that we omit the nonlinearity between depth-wise and point-
wise convolutions.

The whole context branch is composed of asymmetric fac-
torized depth-wise bottleneck (AFDB) module, downsampling,
and pyramid pooling module (PPM). Downsampling is single
3 × 3 convolution with a stride of 2 and helps to reduce
computation while obtaining deeper network to gather context

Fig. 2. Comparison of different residual modules. From left to right
are (a) ResNet bottleneck, (b) non-bottleneck-1D, (c) our AFDB module,
where DW represents depth-wise separable convolution, DDW repre-
sents dilated depthwise separable convolution.

information. The pyramid pooling module is inspired by [21]
and obtains different region-based features.

The spatial branch aims to capture high-resolution features
and refine the information with the context. It consists of two
DWconv layers, where the first layer has a stride of 1, and
the other has a stride of 2. The output of the channels of each
layer is 64 and 128.

B. Feature Fusion Model
Some networks use shallow feature fusion module and clas-

sifier to refine the features [37] [39]. Although they ensured
efficiency, the accuracy needs to be improved. To attain a
balance between segmentation performance and speed, we pro-
pose a simpler feature fusion module and a more complicated
classifier with subnetwork-level skip connections. The feature
fusion module solves the information independence between
two branches. As shown in Fig. 3, given the differing resolu-
tion of the features, we use the upsampling layer to enlarge
the resolution of the context outputs. Then, we concatenate
the two outputs of the context branch and the spatial detail
branch. The convolutional layer and batch normalization are
after the concatenation.
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Fig. 3. Feature fusion module. It assists with integration of the multi-scale
features from different resolutions.

C. Classifier With Subnetwork-Level Skip Connections
We found that fusing intermediate layers boots the

segmentation accuracy. Therefore, we propose a classifier unit
with subnetwork-level skip connections. This classifier fuses
the long-range context and spatial information, which not
only refines image detail but also recovers precise edges in
the image. The classifier unit is shown in Fig. 4. It consists of
upsampling layers, concatenation and convolutional layer. The
inputs of the classifier unit includes not only previous unit
output but also intermediate layers in parallel branches. The
upsamlping layer makes the features of the two inputs have
the same resolution, so that the features can be concatenated
together. The convolutional layer is used to bridge the
semantic gaps. We attempted to adopt the addition operation
in place of concatenation for reduced parameters. However,
the addition operation performed worse than concatenation in
our experiments.

Three classifier units make up the decoder of the model.
The classifiers fuse information of different scales step by step,
which can combine contextual information more precisely than
simply stacking multi-scale features [19]. In addition, it does
not cause too much computational cost since the features have
small resolution.

Dropout layer and convolutional layer follow the classifier
units and the details of the whole module is shown in Fig. 1.
In addition, our network uses cross-entropy as the loss
function.

III. EXPERIMENTS

In this section, we carry out several experiments to eval-
uate our segmentation model. First, we describe the dataset
construction, implementation details and segmentation criteria.
Next, we discuss the segmentation criteria. Then we com-
pared the segmentation performance with other state-of-the-art
method. In addition, we analyze the training process of our
method and demonstrate the segmentation performance of our
proposed method. Finally, we provide the ablation evaluation.

A. Experiment Implementation
The overhead power line datasets were acquired by daily

inspection including 1000 original images. Each image con-
tains 1 to 3 wires and has been resized to 256 × 256 × 3.
We apply a 3-fold cross-validation to avoid the contingency
of our conclusion. The 1000 real images are divided into three
folds with the respective number (334,333,333). And each fold
of the data is used for testing the model in turn and the rest
two folds are used for training. In addition, the training set is

Fig. 4. The classifier unit used in LSNet. The subnetwork-level skip
connections improves the ability to recover long-range features.

TABLE I
CONFUSION MATRIX OF SEGMENTED MASK PREDICTION, WHERE

POSITIVE DENOTES TARGET AND NEGATIVE DENOTES BACKGROUND

augmented by random rotation, mirroring, and synthesizing
data with complex backgrounds to better simulate various
imaging environments. In detail, the first fold is augmented
by rotating with the angles of 90◦ and flipping left and right.
The second fold is augmented by rotating with the angles of
180◦ and flipping up and down. The third fold is augmented
by rotating with the angles of 270◦ and synthesizing data with
complex backgrounds. The training set samples are made into
VOC format.

We implement our framework in Pytorch and our experi-
ments are performed on an NVIDIA Tesla V100 graphics card.
The batch size of 8 was applied and the total training epochs
were set to 100 epochs to analyse the loss and pixel accuracy
during the training process. We adopted the stochastic gradient
descent optimizer (SGD) to update the weight parameters
using a learning rate of 0.001 and a learning rate decay of
1 × 10−3. In addition, Nesterov momentum was adopted and
its momentum value was set to be 0.9.

During the test processing, the segmented grayscale prob-
abilistic mask of the object was binarized. The binarization
threshold of 0.4 was applied in our experiments.

B. Evaluation Indicators
To evaluate the quality and efficiency of the segmenta-

tion, several evaluation indicators are adopted. For the binary
semantic segmentation, TP, TN, FP, FN can be adopted to
evaluate the prediction of every pixel in the segmentation
result. Table I explains the define of the four categories.

We apply overall accuracy, precision, recall, F1 and Inter-
section over Union (IoU) as the similarity measure and frames
per second (FPS) as the runtime measure. Through three-fold
cross-validation, the metric of the segmented performance of
each fold is calculated separately, and then the average value
is used as the final result. The metrics are defined as follows:

Overall Accuracy = T P + T N

T P + F P + T N + F N
(1)

Precision = T P

T P + F P
(2)

Recall = T P

T P + F N
(3)
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Fig. 5. Qualitative comparison of the different models.

TABLE II
COMPARATIVE PERFORMANCE OF DIFFERENT MODELS

F1 = 2 × TP

2 × TP + F P + F N
(4)

IoU = T P

T P + F N + F P
(5)

In addition, Receiver operating characteristic (ROC) curve is
adopted to evaluate the power line segmentation performance.
It calculates a series of sensitivity and specificity at various
threshold settings. The larger the area under the curve (AUC),
the higher the accuracy of segmentation.

C. Comparison of Different Networks
To compared the proposed network with other state-

of-the-art methods, we evaluate performance using five
metrics. Table II shows the evaluation metrics in comparison
to those of state-of-the-art methods including ICNet [35],
Fast-SCNN [37], ContextNet [39], and LEDNet [41]. It can
be seen that our proposed method outperforms others in
comprehensive metrics overall accuracy, recall, F1 score and
IoU. ContextNet has higher precision but lower recall than
our proposed method.

Fig. 5 presents the qualitative segmentation results. It can
be seen that the proposed LSNet resembles the ground truth
closely. These results demonstrate that LSNet makes signifi-
cant improvements owing to the efficient context branch and
classifier. The ContextNet gets applicable segmentation perfor-
mance for some images. However, some segmented mask from
ContextNet contains outliers from the complex background,
because it does not make full use of the extracted features
with simple feature fusion module. The boundary of the output
segmented from ICNet is distorted due to simple convolutional
layers for feature extraction. The masks segmented from Fast-
SCNN also have blurry boundaries, because they did not have
enough layers to extract feature modules in order to reduce
network parameters. The outputs from LEDNet miss some
details due to the inaccurate segmentation on the edge of the
power line.

The parameter and runtime analysis are shown in Table III.
It can be seen that all the methods achieve real-time seg-
mentation. In addition, we can see that LEDNet is slower
than the proposed LSNet. LSNet is slightly slower compared
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Fig. 6. The performance of line segmentation in terms of ROC curves and AUC values on the three test folds. From left to right are 1st test fold,
2nd test fold, and 3rd test fold.

Fig. 7. The segmentation performance of some typical samples.

TABLE III
ACCURACY, PARAMETERS AND RUNTIME COMPARISON

OF DIFFERENT METHODS

to other methods, but it gets higher segmentation perfor-
mance. ContextNet, ICNet, and Fast-SCNN are committed
to minimizing network parameters even though there is a
certain loss of accuracy. Our target is to improve the power
line segmentation for power line inspection while satisfying
the real-time segmentation. Therefore, our method improves
segmentation performance with minor loss in runtime.

D. Performance of Data Augmentation and Proposed
Method

To verify the reliability of the datatset and the 3-fold
cross-validation, we plot the ROC curves of the segmentation
results over all three test folds. As shown in Fig. 6, all the
methods show effective segmentation performance in different
test folds. And our proposed model presents larger AUC value
on all the test folds. It also demonstrates that our dataset has
a certain degree of reliability. The three-fold cross-validation

TABLE IV
MIOU COMPARISON OF EACH COMPONENT. CB: CONTEXT BRANCH;

SB: SPATIAL BRANCH; PPM: PYRAMID POOLING MODULE

can effectively prevent the chance of experimental
results.

The segmentation performance of power lines taken at
different distances is shown in Fig. 7. The power line in the
distance appear as line, and that in the vicinity can be seen as
an Quadrangular. We can see that our proposed method can
segment these two types of power lines well.

E. Ablation Evaluation
In this subsection, we validate the contribution of the

modified component of the proposed framework. Table IV
shows that, with the help of the pyramid pooling module
(PPM), the mIoU of the model increases by 6.6%. In addition,
segmentation performance improves from 93.2% to 97.3%
owing to the spatial branch. This demonstrates that the spatial
branch obtains abundant spatial information and boosts the
segmentation performance.
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TABLE V
DETAILED PERFORMANCE COMPARISON OF DIFFERENT FEATURE

FUSION MODULES AND CLASSIFIERS

To fully integrate the features of the two branches, we intro-
duced an efficient feature fusion model and a classifier
with subnetwork-level skip connections. Table V shows the
different choices of feature fusion modules and classifiers.
Addition means that two branches are simply added. The
results demonstrate that feature fusion model is capable of
integrating more multi-scale information and improving the
segmentation performance. Many networks adopt a simple
classifier using one convolutional layer (Conv2d) to decode the
segmentation map. We compare the classifier using multi-scale
skip connections with the simple Conv2d. It can be seen that
although the computational complexity increases, the classifier
with subnetwork-level skip connection yields more accurate
segmentation results.

IV. CONCLUSION

An efficient parallel branch framework for real-time over-
head power line segmentation is proposed in this paper. The
context branch leverages asymmetric factorized depth-wise
bottleneck module to achieve efficient short-range feature
extraction with a large receptive field. The spatial branch
helps to capture abundant spatial information. In addition,
a classifier with subnetwork-level skip connections can be
used to effectively recover the long-range features and boost
the segmentation performance. The experiment results show
that our proposed model performs better than state-of-the-art
networks.

In the future, we will further improve the model architec-
ture for high-resolution images. In addition, we will conduct
overhead power line defect detection.
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