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With the fast development of the power system, traditional manual inspection methods of a power transmission line (PTL) cannot
supply the demand for high quality and dependability for power grid maintenance. Consequently, the automatic PTL inspection
technology becomes one of the key research focuses. For the purpose of summarizing related studies on environment perception
and control technologies of PTL inspection, technologies of three-dimensional (3D) reconstruction, object detection, and visual
servo of PTL inspection are reviewed, respectively. Firstly, 3D reconstruction of PTL inspection is reviewed and analyzed,
especially for the technology of LIDAR-based reconstruction of power lines. Secondly, the technology of typical object detection,
including pylons, insulators, and power line accessories, is classified as traditional and deep learning-based methods. After that,
their merits and demerits are considered. Thirdly, the progress and issues of visual servo control of inspection robots are also
concisely addressed. For improving the automation degree of PTL robots, current problems of key techniques, such as
multisensor fusion and the establishment of datasets, are discussed and the prospect of inspection robots is presented.

1. Introduction

Traditional PTL inspection methods include line crawling
inspection, ground-based inspection, and manual inspection
with telescopes, as shown in Figure 1. Their defects are
clearer with the progress of the power system. These methods
are slow and dangerous and may not be conducted some-
times. The reasons are as follows: (a) intricate and diverse
workspace. The arrangement of PTL corridors includes sev-
eral scenarios, such as overhead ground wire and multi-
bundled conductors. The slope of conductors is different.
What is more, a great variety of obstacles are on the PTL,
as shown in Figure 2 [1]. (b) Geographical conditions of
PTL are various. Part of the PTL is located in some complex
areas such as swamps, lakes, and mountains. Although the
speedy and maneuverable helicopter inspection method can
overcome this difficulty, its detection precision of small-

scale objects is affected by the long working distance. Conse-
quently, it is also not the best inspection method. Automatic
PTL inspection technology is eager to be developed in these
cases, which is also a challenging task. Apart from mechani-
cal design, PTL environment perception and control technol-
ogies are the foundation of automatic PTL inspection. And
they are research hotspots in PTL inspection.

In the whole process of automatic PTL inspection, the
main tasks completed by inspection robots now are as fol-
lows: (a) 3D reconstruction of PTL corridors [2, 3]. 3D
reconstruction can be employed for the visualization of
PTL, which is helpful for inspectors to analyze the excursion
trend of PTL corridors, interference of surrounding environ-
ment, broken point detection, and snow loading. (b) Fine
inspection of pylons [4] and components [5, 6]. Object detec-
tion is exploited to recognize and locate them and their
defects, such as cracked nut, bolt looseness, and fitting corro-
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FIGURE 2: Suspension clamps, vibration dampers, and insulator strings [1].

sion, which are difficult to be found by manual inspection. =~ Obstacle crossing and fault maintenance [7, 8]. Obstacle
Besides, object detection can be interfered with by rain, snow,  crossing and fault maintenance can be realized by remote tel-
and wind. Therefore, 3D reconstruction is also applied to a  eoperation or autonomous control. Remote teleoperation is
local map to acquire a more precise target position. (c)  easy to realize, which depends on the manual operation of a
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ground control unit. However, it is difficult to achieve auton-
omous operation. Due to much interference existing in the
PTL environment, the autonomous operation of inspection
robots requires a more robust control system. In contrast to
sensor-based control, visual servo control is more robust
and flexible. It is suitable for the unpredictable environment
of PTL corridors. Aimed at these tasks, 3D reconstruction,
object detection, and visual servo of PTL inspection are sum-
marized and analyzed for providing a widely comprehensible
review.

The rest of this paper is organized as follows: Section 2
describes the development of the transmission line corridor
in 3D reconstruction. Section 3 introduces the progress of tra-
ditional and deep learning-based detection algorithms in the
field of PTL inspection. Then, their merits and demerits are
considered. Section 4 concerns the visual servo of different
inspection robots. Section 5 analyzes key technical problems
and presents future development directions of inspection
robots. Finally, the conclusion is presented in Section 6.

2. 3D Reconstruction of PTL Inspection

3D reconstruction is a means to obtain 3D data of measured
objects. It is mainly used to acquire object texture, structure,
and scale. There are two approaches to 3D reconstruction:
the contact and noncontact methods. In contrast to the for-
mer way, noncontact methods are extensively used. Based
on whether or not to actively transmit measurement signals,
they are divided into active and passive visual means.
According to various principles, active visual methods are
classified as laser methods [9-13], structured light methods
[14], and interferometry [15-17]. On the basis of the number
of vision sensors used, passive visual methods can be classi-
fied as monocular vision [18, 19], binocular vision [20, 21],
and multieye vision [22, 23].

In the field of PTL inspection, active visual methods are
chiefly used to construct the 3D model of the PTL corridor.
The characteristics of objects can be intuitively expressed by
the 3D model. It is helpful for inspectors to discover existing
or potential hazards in the transmission line corridor.

2.1. The 3D Reconstruction of Power Lines. The power line
plays a key role in the entire PTL corridor as the main carrier
of electricity supply. 3D reconstruction of power lines is the
foundation for the analysis of wire sag, icing, wind deviation,
and distance measurement. Therefore, many studies of it are
presented.

2.1.1. Active Visual Methods. Now, laser scanning is normally
adopted to complete power line reconstruction. It contains
three sections, which are point cloud extraction, point cloud
segmentation, and model fitting. Point cloud extraction is
divided into simple extraction and fine extraction. The raw
data contains point clouds of various objects. The simple
extraction is utilized to eliminate point clouds of ground. In
addition, fine extraction is employed to further eliminate
point clouds that do not belong to lines. Point cloud segmen-
tation falls into determining point clouds of one span and a
single conductor. Firstly, the data of different spans are

divided according to the highest suspension point. And then,
the data of a single power line in one span are confirmed.
Finally, the model is selected for fitting.

The extraction of point clouds is generally based on filter-
ing methods. Firstly, DTM [24] is generated by filtering.
Then, the points of the ground and objects are differentiated.
After that, features such as elevation are employed to obtain
the point clouds of power lines. Methods based on TIN such
as PTD [25] are used commonly. Yu et al. [26] utilized PTD
to eliminate ground points. Furthermore, an angle filter was
adopted to acquire point clouds of power lines. In addition
to PTD, slope filtering [27] and morphological filtering [28]
are also used for eliminating ground points. Nevertheless,
they are less applied in the extraction of power lines com-
pared to PTD. The elevation is used in conjunction with
DTM to gain the point clouds of power lines. Based on
nDSM, Liu et al. [29] used the elevation histogram statistical
method to get point clouds of power lines. Besides, there is
also direct use of elevation to complete extraction. Shen
et al. [30] proposed an elevation threshold segmentation
algorithm based on the subspace feature and an elevation
density segmentation algorithm. Some other methods for
point cloud extraction are also employed. Mclaughlin [31]
used a GMM and the EM algorithm for extraction. What is
more, Jwa and Sohn [32] adopted Hough transform, eigen-
value analysis, point density analysis, and the one-outlier
testing technique for extraction.

In the process of segmentation, point clouds of lines in
one span are decided by the position of pylons. The position
of pylons can be obtained by the height [26, 33] or the density
of point clouds [29]. Moreover, the segmentation of point
clouds can be also completed by the minimum linkage hier-
archical clustering [34] and the second derivative [35]. There
are three types of techniques to determine point clouds of a
single conductor. (a) Clustering. To distinguish each power
line, point clouds that belong to the same power line in one
span are clustered. Lai et al. [36] proposed a cluster analysis
method based on spatial distance restriction. What is more,
Lin et al. [35] presented the 3D connected component analy-
sis based on fixed-radius near neighbors (FNN) and the k
-means algorithm [37] of normalized projection. (b) Hough
transform (HT). Yu et al. [26] and Wu et al. [33] employed
HT for the segmentation of the single power line. Melzer
et al. [34] used an iterative version of the HT, but this method
was unstable. (c) Local growth. The means gradually merges
or grows to form the entire power line model, such as the
local affine model [31] and the piecewise model growing
(PMG) [32].

Four types of curve fitting models of power lines are typ-
ically employed: (a) the polynomial model [33, 38], (b) the
model that combines a line segment and a parabola [36,
37], (c) the model that combines a line segment and the qua-
dratic polynomial with two variables [29, 39], and (d) the
model that combines a line segment and a catenary [26, 31,
34, 35]. The first model directly fits the entire power line.
However, the other three models split the power line into a
line segment and a curved part for fitting. The difference
between the latter three models is the expressions of curve fit-
ting. The second model is the approximate expression of the



fourth model. And the performance of the second model is
much better because of its simpler formula. Besides, Zhang
et al. [40] improved the second model and the fourth model.
Overall, the second model is better.

In the above literature, the methods used in each step of
the paper are shown in Table 1, which completed the whole
process of 3D reconstruction.

Now, 3D reconstruction of power lines is focused on areas
with simple structures. The background of PTL, areas of dif-
ferent structures, and various types of power lines are consid-
ered much less. It is difficult to identify and reconstruct sleeve
nodes and spacer nodes. Moreover, the density of LiDAR
point clouds influences firsthand 3D reconstruction.

2.1.2. Passive Visual Methods. Passive visual methods are less
employed in the 3D reconstruction of power lines, and their
accuracy is lower than that of active visual methods. Zhang
et al. [41] developed a multiangle imaging power line detec-
tion system to reconstruct 3D power lines, but the method’s
accuracy was low. Ganovelli et al. [42] presented a means of
using a handful of images to reconstruct power lines. This
means employed SFM. Because the method was based on
specific assumptions, it could not be used in inspection tasks
actually. Maurer et al. [43] presented a means that used
semantic segmentation based on FCN and multiview geome-
try. The flowchart is shown in Figure 3. The method was
effective but had high requirements on hardware. It is hard
to match different images with the lack of effective point fea-
tures of power lines by passive visual methods. Therefore,
active visual methods are mostly employed in the power line
reconstruction.

2.2. The 3D Reconstruction of Ground Surface and Pylons. In
addition to the reconstruction of power lines, the PTL corri-
dors also need to reconstruct the ground surface and pylons.
Nonetheless, their 3D reconstruction is in the preliminary
stage. With regard to the ground surface, Maurer et al. [43]
completed the 3D reconstruction of power lines and the
ground surface simultaneously. In light of the reconstruction
of pylons, Chen et al. [44] raised a model-driven approach to
reconstruct pylons. The pylon could be divided into head,
body, and foot. The three segments were reconstructed by
different strategies. And they were assembled to the whole
pylon by utilizing the direction and position. The result
showed that the method’s accuracy could reach the centime-
ter level. Guo et al. [45] presented a means based on model
library and stochastic geometry for pylon reconstruction.
This method built an energy model of the correlation
between point clouds and pylons. It also used simulated
annealing and an MCMC sampler to reconstruct pylons.
But this means required plenty of calculations.

Recently, oblique photography has been applied to 3D
reconstruction of PTL corridors. Xi et al. [46] designed a
UAV power inspection system based on oblique photogra-
phy. The system used the UAV to obtain multiview images
of ground objects and accelerated the 3D reconstruction of
the PTL corridors through data processing and model refine-
ment. Pei et al. [47] designed a data acquisition device for 3D
reconstruction of PTL corridors, which could obtain the
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structural information of the pylons’ four facades. Oblique
photography has some defects in the field of PTL inspection.
Oblique photography requires 60%-80% of the air belt over-
lap. Hence, it is necessary to collect data by multiple flights
and the collection efficiency is low. Oblique photography is
better for the 3D reconstruction of larger objects but ordinary
for small and hollow objects such as power lines and pylons.
Consequently, it is imperative to combine oblique photogra-
phy with other means to gain good reconstruction results. It
will be one of the research directions for the 3D reconstruc-
tion of PTL corridors in the future.

3. Object Detection of PTL Inspection

Object detection refers to a method of identifying and posi-
tioning targets from the background. In nearly two decades,
the development of object detection is separated into the tra-
ditional detection period and deep learning-based detection
period [48]. In the early stage of research on PTL inspection
robots, traditional detection algorithms were used to identify
and locate power components. With the performance of
handcrafted features that tended to be stable, the research
on traditional detection algorithms was almost stagnant.
The development of inspection robots’ object detection fell
into a bottleneck. On account of the emergence of R-CNN
[49], the progress of object detection algorithms had taken
a quantum leap. Neural networks are now used in object
detection. They are able to boost detection performance
and acquire robust characteristics. As a result, the research
on object detection for PTL inspection robots has gradually
changed from traditional detection algorithms to deep
learning-based detection algorithms.

3.1. Traditional Object Detection Algorithms. Traditional
object detection algorithms used on inspection robots were
mostly foreground modeling-based methods over the last
decades. They are classified as region selection, feature
extraction, and classification. Sliding windows are used to
acquire many candidate bounding boxes of the entire picture.
And then, features of candidate bounding boxes are
extracted. Classifiers, such as SVM [50], AdaBoost [51], and
multilayer perceptron (MLP), are used to determine objects
of candidate bounding boxes as the target or background.
At last, NMS [52] is used to complete the detection. In the
field of PTL inspection, SIFT [53], SURF [54], LBP [55],
and HOG [56] are often used in traditional detection algo-
rithms. Relevant research can be divided into two aspects:
(a) pylons and (b) insulators and fittings.

3.1.1. Pylons. While conducting pylon detection, pylons and
birds’ nests are mainly detected. For pylons, Sampedro et al.
[57] advanced a power pylon detection method based on
HOG and MLP. Two MLPs were trained in this method.
They were used for background-foreground segmentation
and the classification of four types of pylons. The system
architecture is shown in Figure 4. Cerdn et al. [58] advanced
a pylon detection method based on a line detection method
and a grid of two-dimensional feature descriptors. Pylons
could be characterized well by the descriptors. Wang et al.
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TaBLE 1: The methods used in each step of 3D reconstruction in different studies.
Reference Simple extraction Fine extraction Determln.a tion of point Dete.rmmé.mon of pomt. Fitting
clouds in one span clouds in a single power line  models
. A minimum linkage The
Mfelzer and  Interpolation method A grid culling mechanism hierarchical clustering Iterative HT fourth
Briese [34] for DTM generation
approach model
. . . . The
Mclaughlin Using a Gaussian mixture model and the EM A local affine model fourth
(31] algorithm
model
. The
Yu et al. [26] PTD An angle filer The p 051tloq of pylons (by HT fourth
height)
model
Liu et al. The elevation histogram __ . . . The position of pylons (by A spatial domain The third
[29] statistical method Using point cloud density density) segmentation algorithm model
Wu et al. . Grid height elevation and  The position of pylons (by The first
[33] Echoes of LIDAR data elevation threshold height) HT model
UAV-based Line-based 3D Power line
images > reconstruction > filtering
Semantic 3D fusion of . . ) Inspection
g segmentation semantic Distance evaluation result
Structure from Dense image . Obtaining
motion —> matching —» Depthmap fusion memory efficiency

FIGURE 3: The overview of the method based on FCN and multiview geometry [43].

[59] used HOG and SVM to complete the rapid detection of
pylons, but this method’s dismissal alarm rate was higher
than the false alarm rate. Wang et al. [60] presented a method
based on HOG for detecting the pylon components from far
to near. This method used HOG features of the pylon in dif-
ferent orientations to train the MLP. It was suitable for pylon
detection in an open environment. Aiming at the bird’s nest,
Zhang et al. [61] raised the means based on the coarse-fine
search tactics. It used HOG and AdaBoost to detect pylons’
position and roughly determined the candidate bounding
boxes of birds’ nests. Then, color features were used to subtly
detect birds’ nests. Xu et al. [62] proposed a method based on
HSV and texture features. This method could eliminate
much interference caused by areas, which were similar to
the color and texture of the bird’s nest under the complex
background.

3.1.2. Insulators and Fittings. In terms of insulators and fit-
tings, many of the detection algorithms are designed for a
single object, while only a few algorithms are for multiob-
jects. For insulators, Zhao et al. [63] came up with an insula-
tor detection means based on SIFT and RANSAC. This
method used RANSAC to remove abnormal SIFT features
of insulators and completed the insulator detection through
affine transformation. After that, Zhao and Liu [64] pre-
sented an approach based on SURF and intuitionistic fuzzy
set (IFS). The steps are shown in Figure 5. The insulator’s

SUREF features were divided by IFS. Then, the connected
regions of all categories were calculated to obtain the smallest
circumscribed rectangle of each region for positioning. Pra-
sad et al. [65] used SVM and local binary pattern histogram
Fourier (LBP-HF) to complete health status detection of
insulators, with a precision of 93.33%.

For fittings, Zhang et al. [66] proposed a fitting means
based on HOG. This method used PCA to reduce the dimen-
sion of HOG features. Then, these features were identified by
SVM. In contrast to other traditional algorithms, this means
is more accurate. Zhang et al. [67] raised a method that could
detect vibration dampers under the complex background.
This method used Relief-F to weight and merge aggregate
channel features (ACF) and complex frequency domain fea-
tures. Ultimately, AdaBoost and NMS were used to complete
the detection of vibration dampers. Feng et al. [68] employed
HOG and SVM to accomplish the detection of bolts, but the
accuracy of the means was low. Fan et al. [69] presented a
method based on an improved HT for bolt detection. The
peak selection strategy of HT was ameliorated for the
improvement of detection accuracy.

On the grounds of size, the targets of PTL can be classi-
fied into the pylon level, the device level, the part level, and
the component level [70]. At the moment, object detection
research is focused on targets of pylon level and device level.
There is less research on detecting targets of the part level and
component level. Traditional object detection algorithms
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applied to pylon level and device level generally use the
framework of “feature expression” + “classifier”. Conse-
quently, features and classifiers are vital for the precision of
detecting different objects. In traditional algorithms, basic
features usually cannot perfectly characterize the detected
target. Features need to be improved as the detected object
is replaced. This phenomenon is more obvious in the field
of PTL inspection. There are nearly two thousand kinds of
fittings in different specifications used in the field of PTL
inspection. The features acquired from different regions can-
not be unified. For the purpose of ensuring precision, it is
imperative to design features for specific targets. Although
the features designed for specific objects are intuitive and
accessible, it has drawbacks such as low efficiency and poor
generalization ability. In addition, tasks of PTL inspection
require the robustness and real-time performance of algo-

rithms. Facing the changes of light and viewing angle in the
environment, handcrafted features are less robust. Besides,
detection accuracy will be immensely influenced in the face
of harsh operating environments. Moreover, handcrafted
features are highly complex. And they are poorly real-time,
which cannot satisfy needs of PTL tasks.

3.2. Deep Learning-Based Object Detection Algorithms. Pow-
ered by deep learning, R-CNN [49] broke the deadlock of
stagnation of object detection. Plenty of similar approaches
emerged in the following years, and they are also applied in
PTL. These algorithms are classified as the “two-stage detec-
tion” and the “one-stage detection”. In “two-stage detection”
algorithms, since the speed of Faster R-CNN is relatively
quick [71, 72], it is often used in PTL inspection. In “one-
stage detection” algorithms, the algorithms of the YOLO
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series [73-76] are used much more. Object detection algo-
rithms, which are based on deep learning, can also be classi-
fied as two aspects like traditional algorithms.

3.2.1. Pylons. In terms of pylons, Guo et al. [77] presented a
real-time pylon detection model based on YOLO. The
method used k-means to improve the anchor parameters in
YOLO. Its detection rate was about twenty frames per sec-
ond, and mAP was 94.09%. Wang et al. [78] verified the per-
formance of different networks for detecting pylons. For
birds’ nests, Shi et al. [79] proposed a bird’s nest detection
model by employing RetinaNet [80]. This model was accu-
rate but not real-time. No other neural network models had
been tried as the backbone in this model, so there were some
limitations in the experiment. Aiming at the same task, Wang
et al. [81] proposed an approach, which was used to detect
birds’ nests in a multiscale of high-voltage pylons. For
enhancing the detection ability for birds’ nests, multiscale
convolution features and region proposals were employed
in this model, which was based on Faster R-CNN. The model
was evaluated on a test set composed of two thousand
images. And the average detection precision reached 84.55%.

3.2.2. Insulators and Fittings. For insulators, Liu et al. [82]
employed Faster R-CNN to detect insulators. The precision
reached 94%. Zhao et al. [83] proposed an approach based
on improved Faster R-CNN. This approach achieved better
detection of insulators by improving NMS and anchor gener-
ation in RPN. It also solved the problem of missed detection
caused by insulator shielding. Han et al. [84] designed a new
neural network to detect insulators. There was high average
precision but low real-time performance in the model.

In terms of fittings, the detection based on deep learning
is no longer limited to a single target. In recent years, research
on multiobject detection has emerged. The targets include a
variety of fittings and insulators. Lin et al. [85] advanced a
means based on improved Faster R-CNN. The means could
keep a good detection performance in different resolutions,
angles, and positions. Dong [86] came up with a real-time
multidevice detection method based on YOLOV3. Data aug-
mentation was used to improve the model’s performance.
And it had good average accuracy for insulators and vibra-
tion dampers. Yang et al. [87] presented an MSFE-KCD algo-
rithm to detect multiscale devices. The precision of this
means could maintain 86% on ARM devices, but the speed
is not quick. In addition, Yang et al. [88] compared the per-
formance of different backbone networks based on SSD
[89] and used feature fusion to improve detection accuracy.
For the purpose of detecting fittings, Qi et al. [90] presented
an improved SSD model. This model improved the detection
performance of small or dense targets in a complex back-
ground by improving Intersection over Union (IoU) and
using the repulsion loss function. For the same task, Liu
et al. [91] proposed a means based on R-FCN. Online hard
example mining, sample adjusting, and soft NMS were
employed to promote the performance of R-FCN.

The above research of multidevice detection indicates
that deep learning-based detection algorithms have a good
generalization ability. They do without a complicated process

of handcrafted features and can choose suitable and robust
features to express targets. For multiscale problems, similar
to the traditional algorithms, their performance is poor. So
it is necessary to consider the use of multiscale technologies,
such as improved anchor generation, SNIP [92], and Tri-
dentNet [93], to solve this problem. It is a good direction
for the power line inspection study.

Due to the confidentiality of power line inspection data-
sets, there is no one public dataset now, which hinders the
progress of power line inspection. So only some typical deep
learning-based detection algorithms for PTL inspection are
listed in Table 2 for comparing performance. In China, there
are two power grid companies, which are State Grid Corpo-
ration of China and China Southern Power Grid. They have
massive datasets of the power grid. Consequently, if they
cooperatively create a public dataset, which combines data
from power grids across the country, researchers could first
use public datasets to testify the effectiveness of the means
or the model proposed by themselves and show their results
based on private datasets.

Although it is impossible to accurately compare the per-
formance between these models, it can be seen that the per-
formance is improved due to new modified models.
However, there do not exist neural network models, which
achieve simultaneously high precision and speed, in object
detection. Just as these two series, the precision and the speed
are focused on severally. The improved algorithms based on
these two series often sacrifice real time to improve detection
accuracy. Now researchers always use YOLO series to detect
objects because of its excellent real-time performance. Never-
theless, PTL inspection should be able to fulfill the high
requirements in both aspects. Thus, many improved algo-
rithms are only in the research stage. Moreover, limited by
computational capabilities of embedded platforms, they can-
not be actually used in engineering. Besides, the deep learn-
ing model used in engineering needs to be capable of
training with new data, but little research is ongoing in this
area.

4. Visual Servo of PTL Inspection

The visual servo system takes visual information as feedback.
After the relative pose between the robot and the target is
computed by visual information, it can realize the robot’s
pose control. Three classification standards including types
of feedback [95-97], camera location [98], and calibration
requirements [99] are commonly used in visual servo sys-
tems. Among them, PBVS and IBVS are usually employed
in the tasks of PTL inspection. The former is based on posi-
tion, and the latter is based on images. According to opera-
tion modes, inspection robots can be divided into climbing
robots, UAVs, and hybrid platforms [94], as shown in
Figure 6. Research on hybrid platforms is not yet mature,
and visual servo control solutions are only used in the first
two types of inspection robots.

4.1. Servo Control of Climbing Robots. The visual servo con-
trol of climbing robots is most applied to autonomous line-
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TaBLE 2: Typical deep learning-based detection algorithms for PTL inspection.

Reference Object Network Dataset mAP

Guo et al. [77] Pylon YOLO+anchor cluster based on k-means Training set: 7636 images, test set: 815 images ~ 88.68%

Wang et al. [81]  Bird’s nest Faster R-CNN+modified ResNet-50 Training set: 9000 images, test set: 3000 images ~ 94.09%

Han et al. [84] Insulator A new model based on modified ResNet-50  Training set: 2675 images, test set: 1356 images ~ 98.30%

Yang et al. [88] Fittings MSFF-KCD Training set: 3440 images, test set: 382 images ~ 90.80%

(®)

F1GURE 6: The PTL inspection robots: (a) LineScout (climbing robots); (b) SmartCopter (UAVs); (¢) LineDrone (hybrid platforms) [94].

grasping control in the process of bypassing obstacles. And
visual servo is less used in other aspects of control.

In terms of autonomous line grabbing, Wang et al. [100]
designed a single-camera-based visual servo control method
for line grasping. Although this method could meet the
line-grasping requirements, it mainly depended on the
mechanical structure of the robot. Zhang et al. [101] designed
an IBVS controller for getting across obstacles. The image
processing of this scheme was complicated, and it was sensi-
tive to light changes. After that, Zhao et al. [102] proposed a
means of combining remote control and IBVS. This method
was effectively carried out in the laboratory environment.
Guo et al. [103] raised an IBVS method for autonomous
line-grasping control. This method used a 2D fuzzy control-
ler. The final deflection error of a grasping line was within
two degrees, and the time was less than forty seconds. Wang

et al. [104] presented a line-grasping control based on hand-
eye-vision. This method used a 2D fuzzy controller as shown
in Figure 7. The impacts of changes in lighting, background,
and other factors on the line-grasping accuracy were consid-
ered comprehensively. And it consumed twenty seconds.
Aiming at a new dual-arm inspection robot designed by
themselves, He et al. [105] proposed an adaptive visual servo
method. This method could provide good characteristics of
power lines without hand-eye calibration, and it improved
the robustness of autonomously grasping the line.

The above-mentioned studies are aimed at the line-
grasping problem of dual-arm PTL inspection robots, and
many of them use IBVS. But the inspection robots only com-
plete the autonomous line-grasping function in the labora-
tory environment, and they are not used in actual
application scenarios. The problems of image noise, model
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errors, control delay, and environmental changes are not
considered, which may be met in the actual scenarios.
Besides, it takes too long for the inspection robots to grasp
the line and the efficiency is low. Compared with traditional
visual servo, uncalibrated visual servo has higher flexibility
and adaptability, which is more suitable for inspection
robots. Therefore, uncalibrated visual servo of inspection
robots will be the future research direction.

In other ways, aiming at the problem of autodocking
charging control for inspection robots, Wu et al. [107] used
IBVS for precise positioning control. A variable universe
fuzzy control was employed to overcome the difficulty of
insufficient control precision. Besides, Jiang et al. [106] pre-
sented a double closed-loop autonomous localization control
means. It originated from the BP network and visual servo.
The BP network and visual servo were, respectively, used to
solve the coarse and fine positioning of the manipulator. This
method could effectually boost the automation level of
inspection robots, but it took too long to complete the bolt
alignment. The control architecture diagram of the method
is shown in Figure 8.

Intelligent methods have begun to be used in the visual
servo of inspection robots. However, they are not fully used
in visual servo because of calculation drawbacks of intelligent
means. Besides, many of the above-mentioned visual servo
studies only concentrate on one task. However, there were
many maintenance tasks on the PTL. The visual servo
scheme based on single-task control has poor applicability,
so it is necessary to focus on the research of multitask visual
servo control.

4.2. Servo Control of UAVs. Compared with the visual servo
control of climbing robots, the research scope of UAVS
visual servo control is more limited. Currently, only visual
servo control of tracking power lines is available.

Aiming at the problem of tracking power lines, Araar and
Aouf [108] of Cranfield University proposed two solutions,
which, respectively, were an IBVS method combined with
the LQ-Servo and a partial PBVS (PPBVS) method. There
was a better effect of PPBVS by contrast. However, this
method was greatly affected by calibration errors. Xie et al.
[109] raised a novel IBVS method. It could be robust to cam-
era calibration errors without depth estimation. However, it
was only in the simulation stage. Aiming at the problem of
fixed-wing UAV tracking targets in the presence of wind,
Mills et al. [110] designed an IBVS method. It considered

the wind correction angle as the desired line angle. The result
showed that it could boost the tracking response of UAVs.
Rafique and Lynch [111] used IBVS combined with output
feedback for the motion control of UAVs. Taking into
account uncertain factors such as linear acceleration distur-
bance and quality, it adopted the inner-outer loop structure.
The result showed that the stability of the structure is good.
However, it was not tested in the outdoor PTL environment.

Many studies of visual servo control of UAVs are in the
simulation stage. UAVs are notably influenced by environ-
mental factors. The influence of wind on the motion control
of UAVs needs to be considered in tracking power lines.
Besides, compared to climbing robots, the inspection speed
of UAVs is faster. It is necessary to boost response speed of
servo during tracking. On the basis of tracking power lines,
UAVs also need to perform path planning. So path planning
for visual servo of UAVs is a good research direction.

5. Problems and Prospects

Many research institutions have started to study inspection
robots globally. However, the research of inspection robots
is only in the preliminary stage. Some key problems remain
unsolved in terms of 3D reconstruction, object detection,
and visual servo control. At the same time, the research of
inspection robots in other areas still needs to develop.

5.1. Pivotal Technical Problems. It is effective to use inspec-
tion robots to replace manual inspection. And there are clear
application requirements of PTL inspection. Hence, there is a
very important engineering value to develop an inspection
robot system that can perform efficient operations in a com-
plex PTL environment. At present, studies concentrates on
mechanical design, environmental perception, and visual
servo control in the field of PTL inspection. Nevertheless,
many of the results are mechanical design-related, and few
results are given in other areas. Therefore, for boosting the
efficiency and operation precision of inspection robots, the
following problems need to be solved.

5.1.1. The Problem of Environmental Perception. Both the
high-altitude environment and natural interference factors
pose challenges to inspection robots. In this scenario, highly
accurate environmental information is imperative for task
conduction. The use of a single sensor will inevitably have
perceptual limitations. For example, illumination variations
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affect the camera and fog affects the LIDAR. When power
devices are aging or damaged, fault areas on the power
devices can be hardly recognized with naked eyes, but heat
or discharge will occur in the fault area. These phenomena
can be detected by infrared thermal devices and UV cameras.
Therefore, multisensor information fusion is indispensable
for PTL inspection. As shown in Figure 9, it can be carried
out from the following steps:

3D fusion reconstruction of transmission line corridors is
used. Firstly, a rough 3D model of the transmission line cor-
ridor is constructed by oblique photography. The data regis-
tration is completed by the ICP algorithm to form a detailed
3D model. The fault areas are approximately found by the
detailed 3D model.

The data fusion of infrared, visible light, and ultraviolet
images is employed. After determining approximate fault areas
and time synchronization, these sensors are used to shoot for
image fusion. At present, image fusion still rests on the pixel
stage. Feature fusion should be further considered for it.

The accurate coordinate of discharge, hotspot, and visible
defects in fault areas are gained by object detection. The spa-
tial conversion relations are gained by the calibration of the
visible-light camera and LiDAR. For getting 3D information,
the precise coordinate of the defect area is projected into
point clouds according to spatial conversion relations. Then,
the 3D information is used for local 3D reconstruction.

Visual servo control is applied. The current pose of the
robot and objects can be obtained by local 3D reconstruction.
After that, it can be provided to a 3D visual servo controller
to complete the control.

5.1.2. The Problem of Datasets Required for Deep Learning.
With the development of Al a growing number of fields com-
mence research by employing deep learning. Deep learning
algorithms rely on data, but there is no standard power inspec-
tion dataset for researchers to conduct algorithm research.
Therefore, the establishment of a standard power inspection
dataset for deep learning development promotion is urgently
needed. It can be constructed from the following steps:
Standards of inspection images and power devices are
made. Aiming at different defects of power devices, a unified
defect description and classification rules should be estab-
lished. The size and sharpness of inspection images should
be normalized. Standards provide convenience when

instructing personnel in data collection and highly improve
the dataset construction.

Datasets of PTL inspection should be divided according
to various regions. The geographical environment and
weather conditions of each region are different. PTL will be
affected by a distinct climate, which makes the type of the
same power device be disparate. Different types of power
devices may vary greatly in appearance and shape, which
results in regional characteristics. Therefore, there are
regional characteristics in PTL corridors. In addition, the
background of various regions differs greatly. Hence, it is
necessary to divide the whole dataset first according to the
territories.

According to different kinds of power devices and
degrees of defects, datasets of regional PTL inspection should
be further divided into different subset datasets. According to
specific power devices in PTL, it is helpful to form the corre-
sponding PTL dataset by subset datasets, which can represent
the characteristics greatly and be helpful for training models.
The steps are shown in Figure 10.

Now, a good deep learning model is always based on
high-quality annotated data. However, it is expensive to col-
lect data, especially annotated data. In the field of PTL
inspection, this phenomenon is more obvious. Consequently,
researchers try to employ weakly supervised data to train
models [112, 113]. Furthermore, they employ unsupervised
learning to annotate data. These methods can be also used
in object detection of PTL inspection [114] for reducing the
cost of data annotation. It will be a good research direction
of PTL inspection.

5.1.3. The Problem of Applying a Light Network Model
Suitable for Embedded Platforms. The training of models usu-
ally runs on servers. The computational ability should be
considered when deep learning-based object algorithms are
used. Therefore, setting up a light-weight network in advance
is significant. Then the model, transferred from the server to
the embedded platform, can be additionally trained in actual
scenarios. At present, different backbones such as SSD and
YOLOvV4 can be used in MobileNetv3. Furthermore, fine-
tuning can also be employed.

5.1.4. The Problem of Control Efficiency and Robustness of the
Visual Servo System. Now, the whole control process of
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grasping the line or tracking lines takes much time. And the
efficiency is low. In this regard, improving visual sampling
frequency and image processing speed is able to ameliorate
its real-time capability. In addition, subtle structural changes
of inspection robots may occur due to wind and drag of
vibration dampers, which leads to errors. The uncalibrated
visual servo has a high tolerance for these errors. Therefore,
it can be adopted for improving the robustness.

5.2. Prospects. In the application scenarios of PTL inspection,
not only the foundation capabilities of inspection robots but
also further expansion should be realized according to
requirements. It is helpful to realize the vital engineering
value of inspection robots. The facets of future directions
are as follows:

5.2.1. The Development of Mechanical Design. The core of
inspection robots is the mechanical design. And a good one
can greatly improve the efficiency. For example, compared
to LineScout [115], LineRanger [116] takes much less time
to cross obstacles because of the ingenious and passive
obstacle-crossing mechanism. However, the mechanical
design of PTL inspection robots is not refined now, and
robots cannot balance inspection and operation. So far, in
contrast to other inspection robots, climbing robots are more
practical due to their in-contact measurements. The engi-

neering value of climbing robots is greater when they can
succeed in crossing pylons. So the mechanical design of
inspection robots still needs to be improved.

5.2.2. The Development of Energy Harvesting. Battery capaci-
ties directly influence the duration of PTL inspection.
Regarding a certain load capacity of robots, a high-capacity
battery, such as lithium battery, can increase maximum
endurance of robots, but it limits the weight of other mechan-
ical components. So online charging is important. For
increasing the inspection endurance, inspection robots can
acquire electric energy from power line autonomously. So
an induction power supply system should be developed.

5.2.3. The Development of Electromagnetic Protection. EMI
on inspection robots is more intense with increasing voltage,
especially the transient discharge process of the equipotential
working. However, the present inspection robots are weak to
EMI. Therefore, it is an inevitable problem during the inspec-
tion. The entire robot should conduct electricity for avoiding
electrical discharge within components of robots. Shielding is
an effective protection measurement aimed at EMI, and
high-quality shields should be designed. However, inspection
robots cannot be fully shielded, which means that other opti-
mization technologies, such as routing, filtering, and



12

grounding techniques, should be considered. Consequently,
how to design electromagnetic protection is a crucial
challenge.

5.2.4. The Development of Modularity. It is inevitable that
inspection robots will be damaged in a bad working environ-
ment. And the modularity development of inspection robots
is significant for rapid maintenance. The modularity of
inspection robot is convenient for the maintainer to find
the fault location and replace the fault module of robots.
Moreover, it is easy to install and disassemble inspection
robots by modularity, which also improves the efficiency of
online and offline switchover. Furthermore, it helps to switch
robot configurations in different inspection scenarios, such as
overhead ground wire and multibundled conductors.

5.2.5. The Development of Reliability. The working environ-
ment of inspection robots is harsh, such as the power line
area with long span and steep slope. There is a requirement
for good robustness to accurately complete the task. Conse-
quently, inspection robots should have the ability to cross
the most complex area in PTL. For the purpose of satisfying
the needs of multiple and complicated tasks, effective load
capacity and operation control technology should be
improved. What is more, before online operation, robots
should be tested for endurance, such as wear of the mechan-
ical system, battery performance, and EMI robustness.

5.2.6. The Development of Cooperation. This cooperation not
only refers to the cooperation among a variety of inspection
robots. It also includes the cooperation between inspection
robots and the ground control system (GCS). The multirobot
system can promote the performance of PTL inspection. In
addition, in the case of teleoperation, the efficiency of inspec-
tion can be also affected by the cooperation between inspec-
tion robots and GCS. Appropriate deployments of GCS
points in a long PTL corridor are the key to the cooperation
between inspection robots and GCS. The cooperation
includes real-time bidirectional data transmission, the energy
consumption of disassembly, installation, and teleoperation.

5.2.7. The Development of Friendly Operability and
Autonomy. The final goal is to achieve autonomous patrol
of inspection robots. However, autonomous control and tele-
operation need to coexist in the process of development.
Although inspection robots could automatically get across
obstacles such as spacers and suspension clamps, there is a
lack of autonomous ability in specific operations. The specific
operations include dealing with damaged power lines and
removing foreign bodies. For fulfilling tasks securely and
briskly, teleoperation should be used. Meanwhile, the
friendly man-machine interface of inspection robots should
be developed for simple teleoperation.

6. Conclusion

For promoting researchers to develop advanced research of
PTL inspection, studies of 3D reconstruction, object detec-
tion, and visual servo of PTL inspection are summarized.
The extant problems, such as perception limitation and lack

Journal of Sensors

of datasets, are correspondingly discussed. What is more,
several aspects are posed, which are promising research
directions in the field of PTL inspection. In a word, the pres-
ent perception technologies and control technologies cannot
meet the requirement of automatic and accurate power line
inspection. With the emergence of these research results,
the automation degree of inspection robots will be highly
boosted.
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