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Abstract—In this paper, we investigate the issue of class
imbalance in scene text detection. Class Balanced Cross Entropy
(CBCE) loss is often adopted for addressing this imbalance
problem. We find that CBCE excessively restrains the backward
gradients of background. Negative samples own extremely small
weights which are offered by CBCE during training of text
detectors. These tiny weight values lead to insufficient learning of
background. As a result, the CBCE-based text detection methods
only can achieve sub-optimal performance.

We propose a novel loss function, Strong-Background Re-
strained Cross Entropy (SBRCE), to deal with the disadvantage
in CBCE. Specifically, SBRCE effectively down-weights the loss
assigned to the strong background which means well-classified
negative samples. Our SBRCE can make training focused on
all positive samples and weak background(i.e., hard-classified
negative samples). Moreover, it can prevent the enormous amount
of strong background from overwhelming text detectors during
training. Experimental results show that the proposed SBRCE
can improve the performance of the efficient and accurate scene
text detector (EAST) by F-score of 3.3% on ICDAR2015 dataset
and 1.12% on MSRA-TD500 dataset, without sacrificing the
training and testing speed of EAST.

I. INTRODUCTION

Scene text detection extracts text information from natural

scene images and has obtained an increasing amount of

attention in computer vision community. It plays a significant

role in many computer applications such as automatic driving,

image retrieval, scene understanding and product search. With

the tremendous advance of object detection like Fast R-CNN

[1], Faster R-CNN [2], YOLO [3] and SSD [4] and instance

segmentation such as FCIS [5], MNC [6] and Mask R-CNN

[7], many outstanding approaches concentrated on scene text

detection are successively put forward by regarding text words

or lines as objects. These novel text detection algorithms can

be categorized into three groups: (1) Region proposal based

scene text detection methods [8] [9] [10] [11] [12] [13], which

apply state-of-the-art object detection approaches [4] [2] to

regressing offset values from preestablished default proposals

to the ground truth boxes. (2) Regression based scene text

detection methods [14] [15] which output a score map and the

corresponding offsets. The confidence of a pixel on the score

map indicates its probability of being text. The offsets are the

regression distances from one pixel location to its ground truth.

(3) Instance segmentation based scene text detection [16] [17]

[18] which directly extracts individual text instances from an
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input image. And then a minimal area rectangle algorithm is

used to obtain oriented boxes as the final detection results.

Like object detection, class imbalance also emerges in scene

text detection. As we all know, the root cause of this imbalance

is that the area of background on the image is much larger than

that of foreground. To address this problem, researchers have

come up with many elegant methods such as OHEM [19],

CBCE [20] [15] and Focal Loss [21]. These balancing sample

techniques have already acquired impressive performance on

various benchmarks in object detection and text detection

fields.

However, the above-mentioned techniques also have their

drawbacks. OHEM and Focal Loss contain several hyperpa-

rameters. These hyperparameters do not have specific ranges.

So it is tiresome that the researchers have to spend an immense

amount of time and effort to adjust hyperparameters for finding

their optimal values. CBCE calculates one balancing factor

between positive and negative samples to downscale standard

cross entropy loss. However, CBCE does not differentiate

between easy/hard negative examples. As a result, scene text

detection adopting CBCE merely obtains sub-optimal perfor-

mance.

In this paper, we propose a new loss function named SBRCE

that serves as a more effective substitute to previous techniques

for handling class imbalance. Our loss function also applies

the balancing factor between positive and negative samples

to down-weight cross entropy loss of negative samples, but

only for strong background. The balancing factor is the same

as that of CBCE. To seek out the strong background, we

define a manually adjustable parameter named as c strongbg
whose value is in the range of [0, 1]. Since the c strongbg
parameter has a certain range, it is easier to find its optimal

value. If the confidence of one negative sample is less than

or equal to c strongbg, this negative sample is classified as

strong background. The proposed SBRCE loss can restrain the

loss of strong negative samples and rapidly focuses training

of text detectors on the weak background and all positive

samples. To validate the effectiveness of our SBRCE loss,

we replace the CBCE in EAST [15] by the proposed loss,

which will not sacrifice the training and testing speed of EAST.

Our proposed loss increases the performance of EAST by the

F-score of 3.3% on ICDAR2015 [22] dataset and 1.12% on

MSRA-TD500 [23] dataset.

In summary, this study makes two main contributions:
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(1) In order to better handle the class imbalance in scene

text detection, we design a new loss function, namely SBRCE.

This novel loss function can be seen as a variant of CBCE.

SBRCE aims to balance the positive and negative samples in a

straightforward way. Moreover, it only has one hyperparameter

c strongbg needed to be adjusted. The c strongbg can be

easily set because its value is between 0 and 1.

(2) We experimentally demonstrate that such a SBRCE

loss can improve the performance of scene text detectors.

Meanwhile, it can be easily implemented with only a few

lines of code. This novel loss does not sacrifice the training

and testing speed of EAST. To validate the superiority of

SBRCE, we also adopt OHEM and Focal Loss for score map

[15] in EAST, respectively. OHEM is only applied to negative

samples. From the experimental results, SBRCE can obtain

the best performance.

The rest of this paper is organized as follows: In Section

II a brief review of scene text detection and class imbalance

methods is given. In Section III we introduce the details of

SBRCE loss. In Section IV we present the experimental results

on two benchmarks, which show the effectiveness of proposed

SBRCE loss. And in Section V we conclude this paper.

II. RELATED WORK

As a significant task in the computer vision, scene text de-

tection has been extensively studied for a long time. Numerous

outstanding and effective methods [24] [25] [26] [27] [28]

[20] have been investigated. Some methods pay attention to

detecting horizontal or approximately horizontal text, while

some recent approaches focus on multi-oriented scene text

detection. Below we briefly introduce the related studies.

CTPN. CTPN [29] presents a novel text detection method.

It firstly decomposes the text into many fine-scale text pro-

posals, which can be detected directly on feature maps of

Convolutional Neural Network (CNN). Then these fine-scale

text proposals are combined into text lines according to special

rules. Finally, a side-refinement approach to refine the text line

bounding boxes is also needed in CTPN.

SSTD. SSTD [30] is modified from SSD to capture arbi-

trary oriented text in natural images. SSTD proposes a fancy

attention mechanism which employs an automatically learned

attention map to suppress background inference and highlight

text region. To work reliably on multi-scale text, the authors

design a hierarchical inception module to aggregate multi-scale

inception features effectively.

SegLink. SegLink [10] is an also multi-oriented text detec-

tion approach whose main innovation is to disassemble text

into two locally detectable elements, namely segments and

links. A segment represents an oriented quadrangle enclosing

a part of one word or text line, while a link indicates

whether or not two neighboring segments belong to the same

word or text line. This method employs a fully convolutional

network to detect segments and links at multiple scales. The

final detection outputs are generated by combining segments

connected by links.

DDR. Deep Direct Regression (DDR) [14] detects the scene

text by predicting the relative offsets from a given reference

point. It does not need to design default boxes to match ground

truth boxes. DDR takes advantage of a fully convolutional

network to regress the oriented quadrangles of text. DDR

consists of a segmentation branch predicting the text presence

and a regression branch predicting final box for each word or

text line.

PiexlLink. PixelLink [17] is based on instance segmentation

for obtaining oriented text quadrilateral. This method trains a

CNN to get two kinds of pixel-wise predictions, which are

text/non-text prediction and link prediction. The concept of

this link is similar to the link in SegLink. This link is to

indicate whether or not two adjacent pixels lie within the same

text instance (i.e., word or text line). Finally, it is essential

to use the links to assemble the pixels into a Connected

Components (CC), with each CC representing a detected word

or text line. The final detection bounding boxes of text can

be acquired by applying minAreaRect in OpenCV to CCs

directly.

Class Imbalance. Both outstanding object detection meth-

ods, like YOLO and SSD, and some novel scene text detection

approaches, like EAST and IncepText [18], have to accept the

truth of class imbalance during training. The imbalance be-

tween foreground and background class causes two problems:

(1) training is insufficient as there are too many strong negative

samples, which have few useful learning signals; (2) the strong

negative samples can overwhelm training and lead to sub-

optimal models. This class imbalance is addressed by some

novel methods such as OHEM, CBCE and Focal Loss. OHEM

automatically selects a certain number of hard samples to train

the text detection network more effectively and efficiently.

CBCE directly calculates a balancing factor between positive

and negative samples to downscale standard cross entropy

loss straightforwardly. CBCE applys this balancing factor to

decreasing the weights of backward gradients of all negative

samples. Focal Loss is proposed to reshape the standard cross

entropy loss to alleviate this class imbalance situation by

down-weighting the loss of easy examples. In contrast, we

show that our proposed SBRCE naturally deals with this

imbalance problem and makes the training concentrated on

weak negative samples which contribute more useful sample

information, without strong negative samples overwhelming

the loss and backward gradients.

III. OUR WORK

SBRCE is designed to dispose the class imbalance problem

of scene text detection. We introduce SBRCE starting from

the standard Cross Entropy (CE) loss for binary classification

corresponding to foreground/background classification.

CE(Ŷ , Y ∗) = −Y ∗ log Ŷ − (1− Y ∗) log(1− Ŷ ) (1)

where Y ∗ ∈ {1, 0} indicates the ground-truth class, and Ŷ ∈
[0, 1] is the prediction probability of text detector for the class

with label Y ∗ = 1.
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Fig. 1. Reimplemented version of EAST Framework. EAST uses Resnet50 [31] as backbone to extract feature maps. Then the idea from U-shape [32] is
adopted to merge the feature maps gradually. The merged feature maps are followed by two convolution layers to output score map and RBOX.

CE loss measures the classification performance of text

detectors. If one text detector only adopts CE and does

not contain other sample balancing procedure such as hard

negative mining, the learning is inefficient and the detection

performance is not optimal.

A. Class Balanced Cross Entropy

A common approach to deal with class imbalance is to

design a weight factor β ∈ [0, 1] for text with class label 1 and

(1−β) for background with class label 0. β may be computed

by inverse class frequency or regarded as a hyperparameter to

set manually. This CBCE loss function can facilitate a pretty

simple training procedure:

CBCE(Ŷ , Y ∗) = −βY ∗ log Ŷ − (1−β)(1−Y ∗) log(1− Ŷ )
(2)

In the above, parameter β is the balanced factor between

positive and negative samples, given by

β = 1−
∑

y∗∈Y ∗ y∗

|Y ∗| (3)

CBCE is a straightforward method to balance the samples

by taking advantage of the number of positive and negative

samples to produce a balanced factor β. When adopting

CBCE as the objective function for text/non-text classification

prediction, scene text detector can work better than detector

using CE in practice. But CBCE does not consider the in-

fluence of strong background that prevents the text detectors

from learning the weak background and all positive samples

better, and reduces the detector’s ability to distinguish between

foreground and background.

B. Strong-Background Restrained Cross Entropy

Like object detection, the extreme class imbalance also

exists during training of scene text detectors. This imbal-

ance restrains the learning of weak negative samples. Easily

classified strong negatives comprise the majority of the loss

and dominate the gradient. Notwithstanding CBCE balances

the importance of positive/negative examples, it does not dif-

ferentiate between strong background and weak background.

Therefore, we propose a novel SBRCE loss by modifying

CBCE such that it down-weights the loss assigned to the strong

background and thus the training can be focused on all positive

samples and weak background.

More formally, we discard the parameter β for positive

samples. Because β is pretty close to 1 and it almost has

no influence on the training of scene text detector. And then

we make a new balancing factor G to replace original (1−β)
for negative samples to differentially treat strong background

and weak background. We define the SBRCE loss as:

SBRCE(Ŷ , Y ∗) = −Y ∗ log Ŷ −G(1−Y ∗) log(1− Ŷ ) (4)

G =

{
(1− β), pred neg <= c strongbg

1, otherwise
(5)

where pred neg = Ŷ (1 − Y ∗) is the prediction for negative

samples. β is the same as that of CBCE.

If the prediction of negative samples pred neg is less

than or equal to c strongbg, these negative samples are

strong background and other negatives are weak background.

c strongbg is a hyperparameter to set manually, whose value

is in the range of [0, 1]. Since the c strongbg parameter

has a certain range, it is easier to find its optimal value(we

found c strongbg = 0.5 to work best for ICDAR2015

and c strongbg = 0.6 for MSRA-TD500). The (1 − β) is

approximately equal to 0 and it can down-weight the loss and

gradient of strong background effectively. As a result, SBRCE

can make training focused on weak negative samples and all

positive samples. It lets the text detector capture text region

more easily and promotes the detector’s discriminant ability
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between text and background. Finally, We directly use SBRCE

to replace CBCE in EAST without sacrificing the training and

testing speed of EAST.

C. Anchor-Free Scene Text Detector

In this paper, EAST is adopted as our base scene text

detector. It is a light-weight and anchor-free text detector. And

it is a very simple yet powerful pipeline. EAST can achieve

superior performance and maintain an approximately real-time

speed. The algorithm of EAST follows the general design of

DenseBox [33], which is a simple and efficient object detection

method. Here we briefly introduce EAST algorithm.

An overview of the reimplemented version of EAST frame-

work is illustrated in Fig. 1. The backbone of the reimple-

mented version is Resnet50 [31]. Given an image I , a fully

convolutional network (FCN) is used to extract multi-layers

feature maps with different heights and widths. Since the

scales of text regions vary enormously, capturing small words

would require feature maps from the low-level layers of the

FCN, while obtaining an accurate quadrangle enclosing a large

word would need the high-level feature maps of the FCN.

Hence, the FCN has to employ feature maps from multi-

layers to fulfill these requirements. The idea of U-shape [32]

is adopted by EAST to fuse different levels feature maps

stage by stage. EAST merges low-level feature maps and high-

level semantic features by making use of some concatenation

and bilinear upsampling operations, as shown in Fig. 1. The

fused feature maps are fed into several conv1X1 operations

to be transformed into a score map [15] and a multi-channel

geometry map [15]. The geometry output can be either one of

RBOX [15] or QUAD [15] and here RBOX is chosen.

For RBOX, the network produces output maps of six

channels representing the score map and geometry map. The

first one of the generated channels is the score map with each

pixel valued from [0,1]. It indicates the probability that each

location is text. Note that, before making the score map label,

the ground truth quadrangles need to be shrunk to ignore

the gray zone which is defined on the margin of text and

background region. This label generation of the score map is

like that of semantic segmentation. CBCE loss is adopted for

score map. We define this loss as Ls:

Ls = CBCE(Ŷ , Y ∗) (6)

The rest five output channels of the generated channels

describe the geometric information of the detected bouding

boxes. Four channels indicate the distances from each pixel

having positive score to the 4 boundaries of the rotated

rectangle that encapsulates a word or text line with minimal

area. These distances are used as ground truth. And IOU

loss [34] is adopted for calculating loss, since it possesses

invariance against multi-scale scene text. The loss is denoted

as LIOU . Next, the inclination angle of text θ̂ is also utilized

to compute another loss:

Lθ(θ̂, θ
∗) = 1− cos(θ̂, θ∗) (7)

where θ∗ stands for the ground truth.

TABLE I
RESULTS ON ICDAR 2015 CHALLENGE 4 INCIDENTAL SCENE TEXT

LOCALIZATION TASK

Algorithm Recall Precision F-score
StradVision1 [22] 0.4627 0.5339 0.4957
StradVision2 [22] 0.3674 0.7746 0.4984
Zhang et al. [35] 0.4309 0.7081 0.5358
Tian et al. [29] 0.5156 0.7422 0.6085
Yao et al. [20] 0.5869 0.7226 0.6477
SegLink [10] 0.768 0.731 0.75
RRPN [36] 0.732 0.822 0.774
EAST [15] 0.7347 0.8357 0.7820
DDR [14] 0.800 0.820 0.810

EAST+CBCE 0.7665 0.8032 0.7844
EAST+OHEM 0.7256 0.8834 0.7967

EAST+Focal Loss 0.7675 0.8425 0.8032
EAST+SBRCE 0.7756 0.8638 0.8174

Finally, the total geometry loss Lg is the weighted sum of

IOU loss LIOU and angle loss Lθ , given by

Lg = LIOU + λθLθ (8)

where λθ is set to 20 in our experiments.

The total training loss Ldet is the weighted sum of Ls and

Lg, given by

Ldet = Ls+ λgLg (9)

where λg is set to 1 in our experiments. The original paper of

EAST shows more details.

D. Implementation Details

All experiments are implemented in Tensorflow [37]. For

the sake of fairness, we use original CBCE to reimplement the

origin pipeline of EAST except for using the Resnet50 [31] to

replace the original PVANET2x [15] as the CNN backbone to

extract the feature of input images. Our reimplemented version

of EAST can be regarded as our baseline. The proposed

improved version of EAST is to replace CBCE in the baseline

with SBRCE. Data augmentation of our all experiments is

consistent with EAST with randomly sampling 512x512 crops

from images. These experiments were conducted on a server

(CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz; GPU:

Titan Xp; RAM: 32G). We train our model with the batch size

of 14 on 1 GPU and evaluate our model on 1 GPU with the

batch size set as 1.

IV. EXPERIMENTS

To compare the proposed SBRCE loss with previous CBCE

loss, we conducted qualitative and quantitative experiments on

two public benchmarks: ICDAR2015 and MSRA-TD500.

A. Benchmark Datasets

ICDAR 2015 is Challenge 4 of ICDAR 2015 Robust Read-

ing Competition. This dataset comprises 1000 training images

and 500 test images, which are obtained by using Google Glass

in a casual way. Hence, text in these images can be multi-

oriented, and undergo motion blur and low resolution in some

degree. Each word of every image is annotated by 4 vertices
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The detection results of EAST+SBRCE. Top row: ICDAR2015 dataset. Bottom row: MSRA-TD500 dataset.

of the quadrilateral. Then RBOX output can be produced by

using the methods like minAreaRect in OpenCV to fit one

oriented rectangle which has the minimum area. The 229

training images from ICDAR2013 [38] are also used as the

training data.

MSRA-TD500 is a dataset including a total of 500 images,

300 of which are the training data and the remaining are for

evaluating. Text in this dataset is in arbitrary orientations and

annotated at text line level. Unlike ICDAR2015 dataset, it

consists of scene text in both Chinese and English. The text

regions is annotated in RBOX format. Following the original

EAST, 400 images from HUST-TR400 dataset [39] are also

included as the training data, since the training set is pretty

small.

B. Quantitative Results

As shown in Table I and Table II, EAST+CBCE represents

our reimplemented version of EAST, which uses original

CBCE as loss function for score map [15]. EAST+OHEM
takes advantage of standard CE to replace CBCE of

TABLE II
RESULTS ON MSRA-TD500

Algorithm Recall Precision F-score
TD-ICDAR [23] 0.52 0.53 0.50
TD-Mixture [23] 0.63 0.63 0.60

Yin et al. [40] 0.63 0.81 0.71
Zhang et al. [35] 0.67 0.83 0.74

DDR [14] 0.700 0.770 0.74
Yao et al. [20] 0.7531 0.7651 0.7591

EAST [15] 0.6743 0.8728 0.7608
SegLink [10] 0.700 0.860 0.770

EAST+CBCE 0.7062 0.8527 0.7726
EAST+OHEM 0.6873 0.8734 0.7692

EAST+Focal Loss 0.6976 0.8602 0.7704
EAST+SBRCE 0.7165 0.8651 0.7838

EAST+CBCE and only applies OHEM to the negative sam-

ples of score map. For each image, N hard negative sam-

ples and all positive samples are selected for classfication.

EAST+Focal Loss adopts the Focal Loss [21] to replace

CBCE of EAST+CBCE.

EAST+SBRCE directly uses SBRCE as a substitute of

CBCE of EAST+CBCE. EAST+SBRCE increases the per-

formance of EAST by F-score of 3.3% on ICDAR2015 dataset

(0.8174 vs. 0.7844) and F-score of 1.12% on MSRA-TD500

dataset (0.7838 vs. 0.7726).

We also compare proposed SBRCE with OHEM and Focal

Loss [21]. EAST+SBRCE outperforms EAST+Focal Loss by

F-score of 1.42% (0.8174 vs. 0.8032) and EAST+OHEM by

F-score of 2.07% (0.8174 vs. 0.7967) on the ICDAR2015

dataset. EAST+SBRCE exceeds EAST+Focal Loss by F-

score of 1.34% (0.7838 vs. 0.7704) and EAST+OHEM by

F-score of 1.46% (0.7838 vs. 0.7692) on the MSRA-TD500

dataset. These experiments prove that the proposed SBRCE

can significantly improve the performance of EAST. Note that

Our all experimental results are based on single-scale testing.

C. Qualitative Results

1) Detection with SBRCE: Fig. 2 gives some detection

results of EAST+SBRCE. As shown in Fig. 2, our SBRCE

can help EAST effectively capture text instance for these

cases. Furthermore, many patterns similar to text strokes

are hard to classify, such as fences, lattices, etc. SBRCE

can distinguish these patterns well. The detailed analysis of

SBRCE is presented in IV-C2.

2) Comparison with Baseline: Fig. 3 shows some detection

results from EAST+SBRCE and EAST+CBCE. We can see

that the proposed SBRCE can predict text regions and restrain

redundant background better, because proposed SBRCE makes

the network training focused on the weak negative samples and

all positive samples. To analyze in detail, we summarize four
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparison of the detection results from EAST+SBRCE and EAST+CBCE: (a)-(d) from EAST+CBCE and (e)-(h) from EAST+SBRCE.

advantages of SBRCE loss compared with CBCE loss: (1)

Better text localization: Fig. 3(e) can localize text intances

better than Fig. 3(a). So it can be infered that better training of

classification branch helps to train better localization branch,

because they share merged features in EAST framework. (2)

Remove text-like patterns: Fig. 3(b) contains some text-like

patterns which are actually background regions, while Fig. 3(f)

can avoid the mistake after training with proposed SBRCE

which makes training focused on weak background. (3) Don’t
miss text: Fig. 3(g) would detect more text instances than

Fig. 3(c), due to SBRCE making the training concentrated

on all positive samples as well. (4) Restrain background:

as Fig. 3(h) and Fig. 3(d) show, SBRCE can clear up more

background regions than CBCE.

V. CONCLUSION

In this work, we study the issue of class imbalance in

scene text detection and analyze the drawback of CBCE

loss. Due to too small weights assigned to hard negative

samples, text detectors adopting CBCE for classification can

not effectively learn background information. CBCE leads to

sub-optimal performance of scene text detectors. To handle

this, We have proposed a novel loss function, named SBRCE,

which down-weights the loss of easy negative samples to

focus training on hard negatives and all positive samples. Our

method is simple yet highly effective. SBRCE only has a

hyperparameter c strongbg whose value is in the range of [0,

1]. Therefore, the adjustment of c strongbg is very simple

and the optimal value of c strongbg can be found out in

no time. We replace the CBCE of EAST with the SBRCE

to demonstrate its efficacy. The experiments on the standard

benchmarks sincerely validate the effectiveness of our SBRCE

loss, which also outperforms the classical OHEM methods

and influential Focal loss. Without loss of generality, SBRCE

can be applied to other computer vision fields such as image

classification, object detection and semantic segmentation.
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