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Abstract—Convolutional neural networks (CNN) based track-
ers have been widely employed in visual object tracking due
to their powerful representations. Features from different CNN
layers encode different information. Deeper layers contain more
semantic information, while the resolution is too coarse to localize
the target. Shallower layers carry more detail information but are
less robust for appearance variations. In this paper, we propose
an algorithm which incorporates the Spatial and Temporal
attention to take full advantage of the Hierarchical Convolutional
Features for Tracking (STHCFT). We firstly learn correlation
filters on each convolutional layer. Based on the spatial attention
inspired by the paraventricular thalamus (PVT) in the brain,
we choose the most important layer to build the base response,
and the others to be the auxiliary responses. In addition, we
make full use of the temporal attention to determine the weights
of the auxiliary responses. Finally, the target is located by the
maximum value of the fused responses. Extensive experimental
results on the benchmark OTB-2013 and OTB-2015 have shown
the proposed algorithm performs favorably against several state-
of-the-art trackers.

I. INTRODUCTION

Visual object tracking is a fundamental and essential cog-
nitive function for human and machine perception, and has
various applications such as video surveillance [1], human-
computer interaction [2], and human motion analyses [3]. In
this paper, we consider single object tracking which contin-
uously localizes a target in a video-sequence given a target
bounding box in the first frame. The main difficulty of this
problem is how to build a tracker that can tolerate various
critical situations, such as scale variation, fast motion, and
background clutters, etc.

Recently, discriminant correlation filters (DCF) based track-
ers [4]–[8] have shown state-of-the-art performance in the
visual object tracking benchmark [9], which have attracted
extensive attention. The DCF trackers train a regressor by
exploiting the properties of circular correlation. By using Fast
Fourier Transform (FFT), the trackers can perform fast in the
Fourier domain. However, most of the DCF based trackers
use hand-craft features, which have limited the performance
to some extent. The Convolutional Neural Network (CNN) has
achieved outstanding performance on many computer vision
tasks, such as image classification [10], image segmentation
[11], and face recognition [12]. Different from hand-craft
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Fig. 1. Comparisons of our STHCFT with four CNN based state-of-the-art
trackers in the changing scenario.

features, the features of CNN are obtained by the model auto-
matically and contain more semantic information. Therefore,
it is of great interest to apply convolutional features for DCF-
based tracking.

A deep convolutional neural network consists of several
convolutional layers. The deeper convolutional layers capture
more abstract and semantic information and have been suc-
cessfully employed for image classification. However, losing
more details due to the low spatial resolution has made them
not so discriminative to the objects with similar appearances in
the same category. The shallower layers provide higher spatial
resolution, which is crucial for accurate target localization.
However, they are less robust to the appearance variations
such as deformation and occlusion of objects. So it is of great
importance to fuse multiple convolutional layers for visual
tracking.

To address the problem, we propose a model to dynamically
fuse convolutional features for visual tracking based on spatial
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and temporal attention. As can be seen in Fig.1, our tracker
has a better performance compared with the four state-of-the-
art CNN based trackers. The contributions of this paper are
summarized below:

• We introduce a spatial attention mechanism to dynam-
ically choose one convolutional layer to build the base
response map and the others to be the auxiliary response
maps.

• We introduce a temporal attention mechanism to deter-
mine the weight of each auxiliary response map.

• The hierarchical convolutional response maps are dy-
namically fused by the spatial and temporal attention
(STHCFT), which performs favorably against existing
state-of-the-art methods.

II. RELATED WORK

A. DCF based trackers

Since the discriminative correlation filters have achieved
great success in video object tracking, many extensions have
been made to further improve its performance. [13] proposed
an adaptive correlation filter by Minimizing the Output Sum
of Squared Error (MOSSE) based on the gray-scale feature,
which can be considered as the first one to introduce cor-
relation filters into tracking. To further improve the perfor-
mance, CSK [14] introduced the kernel trick into the DCF
framework; Furthermore, CSK framework was extended with
multi-channel feature input based on Gaussian kernel [15] and
color feature [16]. [17] proposed a framework to integrate the
powerful features including HOG and color-naming together
to further boost the performance.

In addition to the features, the unwanted boundary effects
were produced due to the basic periodic assumption in DCF
based trackers, which will produce some synthetic examples
compared to the real sample. This caused degradation on
the performance of the standard DCF trackers. To address
this problem, LBCF [18] enlarged the search region to allow
the training signal to be a larger size than the filter, which
would reduce the synthetic samples, and with the Alternating
Direction Method of Multipliers (ADMM), the closed-form
solution could be obtained. The CACF [21] tracker took the
global context into account and incorporated it directly into the
learned filter. In SRDCF [19], Dan et al. introduced a spatial
regularization component in the DCF tracker to penalize cor-
relation filter coefficients depending on their spatial location.
In CSRDCF [20], the channel and spatial reliability concepts
were introduced into DCF tracking, which adjusted the filter
to support the part of the object suitable for tracking.

Apart from enriching features and relaxing the boundary
effects, researchers take other aspects into consideration. For
example, scale estimation, [22] proposed a framework by
learning discriminative correlation filters based on a scale
pyramid representation. Improving the training sample, [23]
down-weighted the corrupted samples while increasing the
impact of correct ones by estimating the quality of the samples.
For ensemble methods, [24] equipped a basic framework with

two KCF trackers to cope with the complex surrounding en-
vironment and large appearance variations. However, all these
methods use handcraft features, which hinder their accuracy
and robustness to a certain extent.

B. CNN features based trackers

Inspired by the great success of CNN in object recognition,
researchers in the field of object tracking have been studying
how to apply CNN in tracking. There are several works to
utilize the features of CNN to further improve the perfor-
mance of DCF based framework. DeepSRDCF [25] replaced
the HOG and Color features with shallow CNN features in
SRDCF framework. CREST [26] integrated feature extraction
and the correlation filter into an end-to-end framework, as well
as, in order to further utilize the features of CNN, redisual
learning was introduced. FlowTrack [27] took advantage of
flow information of consecutive frames with convolutional
neural networks to improve the feature representation. These
works only take advantage of one layer feature of CNN, while
different convolutional layers of CNN encode different levels
of information, lower layers provide more precise localization
but less robust to the deformation and occlusion of objects and
deeper layers encode semantic information which is robust
to the appearance variations. Therefore, combining multiple
layers for visual tracking is of great importance.

There are several works combining the different layers of
CNN for tracking, such as [28]–[33]. Although HCFT [28]
adaptively learned correlation filters on each convolutional
layer and hierarchically infer the maximum response of each
layer to locate targets, the weight of each layer is predefined
manually. The FCNT [29] introduced a distractor detection
scheme to dynamically choose the result of different layers
of CNN for the final tracking result and only one layer to be
chosen without considering the dynamic fusion of different
layers. The HDT [30] considered the correlation filter based
on each convolutional features as a weak tracker and hedged
them with a dynamic weight to form a stronger tracker while
ignoring the characteristics of each layer. C-COT [31] and
ECO [32] employed an implicit interpolation model to effi-
ciently integrate multi-resolution deep feature maps to solve
the problem in the continuous spatial domain, where ECO is
an improved version of C-COT in performance and speed.
Both of them treated the features from each layer equally for
different conditions. [33] extended the ECO framework with
the weighted convolution responses from each feature block,
while the best weight is tried out manually. To sum up, a
model to dynamically fuse different convolutional features of
CNN has so far been rarely studied.

III. THE STHCFT TRACKING MODEL

The pipeline of the proposed model is shown in Fig.2. We
will introduce the correlation filter, the spatial and temporal
attention mechanisms we used in the work. And we will
also give some explanations on related inspirations from
Neuroscience.
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Fig. 2. The architecture of the proposed STHCFT tracker. SA: Spatial Attention. TA: Temporal Attention. The cropped image is sent into the ConvNet.
And the correlation filters are learned on each convolutional layer. According to the spatial attention, we can get the base response. The temporal attention
determines the weight of each auxiliary response map.

A. Correlation Filters

Firstly, we revisit the conventional correlation filter, which
predicts the position of the object by the maximum value of the
correlation response map based on the learned discriminative
classifier. In this work, we denote Xk ∈ RW×H×D, where
W, H, and D represent the width, height, and the number of
channels of the feature of the kth convolutional layer. We
consider all the cyclic shifts ww,h, (w, h) ∈ {0, ...,W −
1} × {0, 1, ...H − 1} as all the training examples for the
classifier. The regression targets y follow a Gaussian function

y(w, h) = e−
(w−W/2)2+(h−H/2)2

2δ2 with value 1 to represent the
center target. A goal of training a correlation filter is achieved
by minimizing the loss function:

W k = arg min
W

||F (Y )− F (Xk) •W ||2F + λ||W ||2F (1)

The • is a linear kernel in the Hilbert space:

F (Xk) •W =

D∑
d=1

F (Xk)∗,∗,d �W∗,∗,d (2)

λ ≥ 0 is used to control the impact of the regularization term.
F (.) indicates the Fast Fourier Transform (FFT). The subscript
d represents the dth channel, the operator � represents the
point-wise product.

Equation (1) has a simple closed solution, which can be
quickly computed in the Fourier domain. The learned filter in
the frequency domain on the dth channel can be written as:

W k
∗,∗,d =

F (Y )� F (Xk)∗,∗,d

F (Xk) • F (Xk) + λ
(3)

W k
∗,∗,d is the filter of the dth channel of the kth layer. F

represents the complex conjugate of the Fourier transform.
For the detection process, we crop a search patch, and obtain

the features in the kth convolutional layer: T k, and the actual
response can be computed as:

Rk = F−1(F (T k) •W k) (4)

F−1 indicates the inverse transformation of the discrete
Fourier transform.

And the location is detected by finding the maximum
response score:

(xk, yk) = arg max
x′ ,y′

Rk(x
′
, y
′
) (5)

B. Spatial Attention for Choosing Base Response

Using the correlation filter, we can get the response of
each layer. The peak of this response map and the degree
of oscillation partly indicate the reliability of this response.
Intuitively, a response map, as shown in Fig.3, the higher
the peak, the smoother the surrounding, more trustworthy the
result is. If a response map has multiple response peaks, then
the credibility of the response to distinguish between the target
and the background is very low.

Here, we introduce the average peak-to-correlation energy
(APCE) used in LMCF [34] to measure the fluctuated degree
of response maps and the confidence level of the detected
targets. It is defined as:

APCE =
|Fmax − Fmin|2

mean(
∑

w,h(Fw,h − Fmin)2)
(6)

where Fmax, Fmin, Fw,h denote the maximum, minimum
and the w-th row h-th column elements of Rk. For sharper
peaks and smoother responses, the APCE will become larger,
indicating that the response is trustworthy to be the base
response map.

C. Temporal Attention for Auxiliary Response Weight

In addition to determining base response with APCE, since
multiple peaks will occur in the other response maps, the
weight determined by the spatial information cannot be trusted.
At this time, the temporal attention mechanism is introduced
to determine the weight. Considering the continuity between
frames, the response distribution of two frames should be
similar after moving the maximum value to the same position.
The temporal attention enables the response map having major
changes down-weighted while increasing the impact of others.
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Fig. 3. Illustration of the dynamic fusion of multiple response maps from
different convolutional layers in sequence Skiing in OTB-2015. The more
oscillating the response map, the worse it is.

Here we use the temporal attention used in [43] which is
shown as:

TAW k =
1

||Rk
t −Rk

t−1 ⊕∆||22 + η
(7)

where ⊕ denotes a shift operation of the confidence map,
and ∆ means the corresponding shift of maximum value in
confidence maps from frame t-1 to t. η is set to prevent the
denominator from being 0. After normalization, we can get
the final weight shown in (8).

TAW k =
TAW k∑N
k=1 TAW

k
(8)

D. Dynamic Fusion of Weighted Auxiliary and Base Response

We can get the final response map based on the base
response and the weighed auxiliary responses, which is shown
in (9) :

Rtotal =
∑
i

ωiR
auxiliary
i +Rbase (9)

In Fig.3, we can see that the dynamic fusion of multiple
layers will choose a better base response, also the weighted
auxiliary responses will help to further improve the base
response map for tracking.

E. Model Update and Scale Estimation

For every frame, we use a common linear interpolation
with the history model to update the model. We denote the
numerator in (6) as Ad and the denominator as Bd. The
updating process can be written as (10):

Ad
t = (1− β)Ad

t−1 + βF (Y )� F (Xk)∗,∗,d

Bd
t = (1− β)Bd

t−1 + βF (Xk) • F (Xk)

W d
t =

Ad
t

Bd
t + λ

(10)

As for the target scale estimation, we follow the DSST
tracker [22].

An overview of the proposed model is summarized in
Algorithm 1.

Algorithm 1 The proposed STHCFT tracking algorithm
Input:

Frames {It}T1 and the initial bounding box;
Output:

Target locations of each frame {Pt}T2 ;
1: repeat
2: Crop an image from the frame It at the last location

pt−1 and send it into the VGG-19 to get the corre-
sponding features Xk;

3: Using the correlation filter trained with (1), the respec-
tive response Rk is obtained;

4: Base response Rbase is obtained by using (6);
5: The weight ωk of auxiliary response is obtained by

using (7) and (8);
6: Fuse the base response and the weighted auxiliary with

(9);
7: Estimate the target location pt with (5) and the scale of

the target as [22];
8: Crop an image patch at pt and extract the convolutional

features to get the new correlation filter
9: Update the correlation filter with (10) and the scale

estimation model as [22];
10: until End of video sequences

F. Explanation from neuroscience

Judging the importance of information is an advanced brain
function, which helps people to better adapt to the changing
environment. In addition to the fixed physical properties of the
sensory input, such as the color or brightness, the behavioral
relevance makes a great contribution to the attention. It is
a relative property that depends on past experience, current
homeostatic state, and behavioral context. The thalamus is
composed of several distinct subnuclei which are different
from anatomy and function. Among them, the paraventricular
thalamus (PVT) is particularly suitable for integrating informa-
tion that is applicable to behavioral relevance which allow the
brain to access the importance of events to make appropriate
choices [35].

Since there are bidirectional connections between the tha-
lamus and many other brain regions, in addition, CNNs
are usually used to simulate the transmission of information
between different visual cortex, inspired by the function of
the PVT, we propose a model to choose the most important
layer dynamically as the base response and the others as
the auxiliary responses whose weights are determined by the
temporal attention.

IV. EXPERIMENTS

A. Experimental Setups

Implementation Setup. For the convolutional features, here
we use imagenet-verydeep-19 (VGG-19) trained on ImageNet,
the last three convolutional layers are used to capture the
appearance of the target. The spatial resolution will gradually
reduce due to the pooling operation. To get the same resolution
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Fig. 4. The PVT area in the brain helps to modify the attention to find the
most important feature and determine the weights of the other features.

for further fusion, here we use the bilinear interpolation to
resize each feature map to a fixed larger size. Here we use the
conv3-4, conv4-4 and conv5-4 layer and resize the conv4-4
and conv5-4 the same size as conv3-4, which is 1/4 size of
the input.

The parameters for each convolutional layer are set the
same, λ = 0.0001, η = 0.1, and β = 0.01.

Also, to avoid the boundary effects, each feature of the
convolutional layer is weighed by a cosine window.

We implement our experiment with a PC with an Intel I7-
5820k 3.30GHZ CPU, 16GB RAM, and a Geforce GTX Titan
GPU. The Matconvnet is used for the computation forward
computation of the VGG-19 to get the feature map.

Benchmarks. We implement the experiment on the OTB-
2013 [44] and OTB-2015 [45] benchmark datasets which
contain 50 and 100 sequences respectively. They are annotated
with 11 attributes which cover various challenging factors,
including scale variation (SV), occlusion (OCC), illumination
variation (IV), motion blur (MB), deformation (DEF), fast
motion (FM), out-of-view (OV), in-plane rotation (IPR) and
low resolution (LR).

Evaluation Metrics. We evaluate the proposed method with
the one-pass evaluation (OPE) with precision and success
plot metrics on OTB-2013. In addition to the accuracy, we
also evaluate the spatial and temporal robustness on OTB-
2015 with temporal robustness evaluation (TRE) and spatial
robustness evaluation (SRE). The precision score measures the
rate of the distance between the estimated position and the
ground-truth within a certain threshold. The threshold we set
here is 20. The success plot measures the overlap ratio between
the estimated bounding box and the real bounding box, and
the success score is the area under the curve (AUC) of the
success plot. The threshold we set here is 0.5.

B. Ablation Studies

Our tracking algorithm is composed of the correlation filter
formed by the features of each convolutional layer of the CNN,
the spatial attention and the temporal attention mechanism. In
this section, we conduct ablation analysis to analyze the effects
of spatial attention and temporal attention mechanism.

We implement the experiment analysis on the OTB-2013
dataset. Firstly, both the spatial attention and temporal at-
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Fig. 5. The precision plot and success plot using OPE on the OTB-2013
dataset. With the integration of spatial attention and temporal attention, the
performance of the tracker is improved gradually.
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Fig. 6. The precision and success plot on OTB-2013 using OPE on comparing
STHCFT with other state-of-the-art CNN based trackers.

tention are removed from the STHCFT, we simply add the
original response maps from the convolutional layers after bi-
linear interpolation; Then, the temporal attention mechanism is
removed and only the spatial attention mechanism is remained
to determine the base response map, and the weight of the
rest response map, the weighted fused response map is used
for the final tracking; Last, we remove the spatial attention
mechanism and only the temporal attention mechanism is used
to determine the base response map and the weight of the rest
response map, and the weighted responses are added for the
final tracking.

Fig.5 shows the quantitative evaluation under AUC and
average distance precision scores. We can see that the spatial
attention and temporal attention will have a great improvement
compared with the simply added response map.

C. Comparison with the state-of-the-art trackers

We conduct quantitative and qualitative evaluations of the
benchmark datasets including OTB-2013, OTB-2015. The
details are discussed in the following.

Quantitative Evaluation:
OTB-2013: We compare our STHCFT tracker with the state-

of-the-art CNN based trackers: DsiamM [46], HCFT [28],
HDT [30], DeepSRDCF [25], CNN-SVM [36], SINT [37],
SiamFC [38], FCNT [29], DeepLMCF [34].

Fig.6 demonstrates the precision plot and the success plot
with the 9 CNN based trackers on 50 sequences. The pro-
posed STHCFT outperforms all the other trackers in terms of
precision score. In the success score, the STHCFT is the third
place.

In DsiamM, in addition to the conventional features, it
introduces the target appearance variation and background
suppression. In DeepLMCF, a special update mechanism is
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Fig. 7. The precision plot over six tracking challenges, including illumination variation, in-plane rotation, low resolution, motion blur, occlusion, out-of-plane
rotation on OTB-2013 using OPE comparing STHCFT with other state-of-the-art CNN based trackers.
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Fig. 8. The precision and success plot on OTB-2015 using OPE, SRE, and
TRE on comparing STHCFT with other 9 state-of-the-art trackers.

introduced. So both of them perform better in success plot. Our
work can be considered as an improvement of HCFT which
makes the weight of each convolutional layers fixed. In Fig.6,
we can see both precision plot and success plot, our work has
an improvement, especially for success plot, our STHCFT has
an improvement of 5%.

Also to facilitate better analysis of the tracking performance,
we also show the one pass evaluation on the precision score
under different attributes such as illumination variation, in-
plane rotation in Fig.7. The results show that our STHCFT
is effective in dealing with illumination variation motion blur,
the reason is that STHCFT could dynamically fuse different
convolutional features for tracking. When the appearance of
the object changes greatly, the weight of the deep layers will be
increased, when the object is similar to the background, it will
choose the lower layer as the base response. In occlusion and
out-of-plane rotation, STHCFT does not perform as well as
DsiamM, it is because the introduction of a target appearance
variation and background suppression in DsiamM, it will
alleviate the interference of candidates from background as
well as handling the appearance variation.

OTB-2015: We also compare STHCFT tracker on the OTB-
2015 benchmark with the 9 state-of-the-art trackers, including
DLT [39], CSK [14], LMCF [34], SRDCF [19], HCFT [28],
DLLSVM [40], MEEM [41], KCF [15], SAMF [42]. The DLT,
HCFT, DLSSVM are CNN-based trackers. The CSK, KCF,
SAMF, SRDCF, LMCF are hand-craft features correlation
filter based trackers. The MEEM is representative tracking
algorithm.

As shown in Fig.8, STHCFT shows the best tracking
accuracy and robustness in all one-pass evaluation (OPE),
temporal robustness evaluation (TRE) and spatial robustness
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STHCFT DLT HCFT KCF SRDCF

Fig. 9. Qualitative results on comparing STHCFT with other trackers in 12 challenging sequences in OTB2015. From left to right and top to down are
Basketball, KiteSurf, Bird1, Matrix, CarScale, Shaking, Diving, Skiing, Football, Soccer, Ironman, Freeman4.

evaluation (SRE) using the distance precision rate at 20 pixels,
overlap success rate at 0.5.

Qualitative Evaluation: Fig.9 shows some results of the top
performance trackers: DLT, HCFT, KCF, SRDCF, STHCFT.
KCF and SRDCF are correlation filter trackers based on hand-
craft features, DLT uses the conventional features, HCFT and
STHCFT use the multi-layer futures while the weight of HCFT
for different layers is fixed.

KCF and SRDCF perform well on illumination variation
and fast motion (Basketball, Football), however, due to the
limitation of the hand-craft features, they fail when the object
has a large appearance changed, such as deformation (Matrix),
motion blur (Ironman) and occlusion (Soccer). Although the
DLT tracker uses the CNN features, its failure to integrate
multiple features makes it lack of rich semantic information,
which leads to the failure in in-plane-rotation, out-of-plane-
rotation (KiteSurf, Skiing). Because of the fusion of multiple
CNN features, the HCFT and STHCFT perform well on most
of the sequences, however, because of the weights of the HCFT
are fixed for different CNN layers, for some chosen chal-
lenging sequences such as CarScale, Shaking, it may perform
worse than STHCFT. STHCFT tracker integrates the spatial
information and temporal information to dynamically choose
the base response and the weight of the auxiliary response
to further take advantage of the different CNN features to
improve the performance of tracking.

V. CONCLUSION

In this paper, we propose STHCFT to make full use of the
different CNN features for tracking. We dynamically choose
the most important feature to constitute the base response filter
based on the spatial information inspired by the PVT in the
brain. In addition, we dynamically determine the weight of
other layers based on the temporal information to get the
weighted auxiliary response map. Finally, we fuse the base
response map and the weighted auxiliary response map for the
final tracking. Experiments on the standard benchmark OTB-
2013 and OTB-2015 indicate that STHCFT tracker performs
favorably against state-of-the-art trackers.
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