
 

Output-Feedback Based Simplified Optimized
Backstepping Control for Strict-Feedback
Systems with Input and State Constraints

Jiaxin Zhang, Kewen Li, and Yongming Li, Senior Member, IEEE

 
   Abstract—In  this  paper,  an  adaptive  neural-network  (NN)
output feedback optimal control problem is studied for a class of
strict-feedback  nonlinear  systems  with  unknown  internal
dynamics, input saturation and state constraints. Neural networks
are  used  to  approximate  unknown  internal  dynamics  and  an
adaptive  NN  state  observer  is  developed  to  estimate
immeasurable  states.  Under  the  framework  of  the  backstepping
design,  by  employing  the  actor-critic  architecture  and
constructing  the  tan-type  Barrier  Lyapunov  function  (BLF),  the
virtual  and actual  optimal controllers  are developed.  In order to
accomplish optimal control effectively, a simplified reinforcement
learning (RL) algorithm is designed by deriving the updating laws
from the negative gradient of a simple positive function, instead of
employing  existing  optimal  control  methods.  In  addition,  to
ensure that all  the signals in the closed-loop system are bounded
and the output can follow the reference signal within a bounded
error, all state variables are confined within their compact sets all
times.  Finally,  a  simulation  example  is  given  to  illustrate  the
effectiveness of the proposed control strategy.
    Index Terms—Backstepping  design,  immeasurable  states,  neural-
networks (NNs), optimal control, state constraints.
  

I.  Introduction

IN  the  last  decade,  fuzzy  logic  systems  (FLSs)  and  NNs
were  widely  used  in  adaptive  backstepping  recursive

control design [1]–[3]. In [1], direct adaptive NN control was
presented  for  a  class  of  nonlinear  systems  with  unknown
nonlinearities. The authors focused on adaptive fuzzy tracking
control  in  [2]  for  a  class  of  nonlinear  systems.  The result  [3]
developed two different backstepping NN control approaches
for  a  class  of  strict-feedback  systems  with  unknown  nonlin-
earities.  In  [4],  the  fuzzy  logic  systems  and  error
transformation-based method were used in  online learning of
completely  unknown  dynamics  and  prescribed  performance
tracking,  respectively.  The  authors  developed  a  finite-time

adaptive fuzzy control strategy for a class of nonlinear strict-
feedback  systems  in  [5].  Furthermore,  the  authors  in  [6]
proposed  a  global  nested  PID  control  method  for  nonlinear
systems  with  unknown  system  nonlinearities  without
linearized  approximators.  However,  it  is  worth  mentioning
that  the  above-mentioned  adaptive  backstepping  control
methods  all  assume  that  the  states  of  the  systems  are
measurable and can be used for control design directly.

As pointed out in [7]–[10], in practice, state variables were
often unmeasured for many nonlinear systems. The authors in
[7]–[10]  designed  different  state  observers,  and  some
intelligent  adaptive  output  feedback  control  approaches  were
developed  for  a  class  of  uncertain  nonlinear  systems  with
immeasurable  states.  Although  the  great  progress  has  been
made in intelligent adaptive control for nonlinear systems, the
constraint problems were not fully considered.

In  engineering  control,  saturation,  dead  zones  and  time-
delay  are  common  phenomena,  all  stemming  from  the
existence  of  control  constraints.  Once  the  control  is
constrained,  the  stability  of  the  nonlinear  system  is  often
difficult  to  guarantee.  In  [11]–[18],  the  control  problems  for
nonlinear  systems  with  full-state  constraints  and  partial  state
constraints were studied. The stability was guaranteed without
violation  of  any  constraints.  In  order  to  clarify  the  effect  of
control  constraints  on  system  stability,  many  scholars
investigated  such  problems  based  on  the  BLF.  The  authors
proposed  an  indirect  adaptive  fuzzy  controller  in  [19]  for  a
class  of  uncertain  nonlinear  systems  with  input  and  output
constrains.  In  [20],  an  adaptive  fault-tolerant  control  (FTC)
scheme  was  proposed  for  a  class  of  nonlinear  systems  with
control  inputs  and  system  state  constraints.  The  authors
designed an adaptive fuzzy control scheme in [21] for a class
of  uncertain  nonlinear  systems  with  input  saturation  and
output  constraints.  In  [22],  the  authors  addressed  the
cooperative  control  problem  for  multiple  high-speed  trains,
which  guaranteed  that  the  speed  and  the  position  of  high-
speed  trains  were  confined  to  specific  speed  limitations,  and
allowed  distances  ratified  by  the  automatic  train  protection
and  the  moving  authority,  respectively.  Even  though  various
intelligent  control  strategies  [11]–[22]  have  been  devised  in
the  constraints  problem for  nonlinear  dynamics,  optimization
in  control  design  and  stability  analysis  has  not  been
considered therein.

As  the  foremost  branch  of  modern  control  theory,  optimal
control was developed by Bellman [23] and Chambers [24] 50
years ago. Since then, some significant results were reported,
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for  example  in  [25]–[33].  In  [25],  a  novel  RL-based  robust
adaptive  controller  was  developed  for  the  continuous-time
(CT)  uncertain  nonlinear  systems  with  input  constraints.  The
authors  developed  an  adaptive  RL  solution  in  [26]  for  the
infinite-horizon  optimal  control  problem of  constrained-input
continuous-time  nonlinear  systems  in  the  presence  of
nonlinearities  with  unknown  structures.  In  [27],  an  optimal
NN  control  scheme  was  presented  for  CT  nonlinear  systems
with  asymmetric  input  constraints.  The  authors  in  [28]
proposed  an  integral  reinforcement  learning  (IRL)  algorithm
on  an  actor-critic  structure  for  a  class  of  affine  nonlinear
systems, wherein the partially-unknown constrained-input was
considered.  The  finite-time  optimal  control  problem  was
studied  in  [29]  for  the  high-order  nonlinear  systems  whose
powers were positive odd ratio numbers.  However,  all  of  the
above  adaptive  optimal  control  methods  are  limited  to  affine
nonlinear  systems  and  thus  cannot  be  applied  to  nonlinear
systems  with  strict-feedback.  To  handle  this  issue,  a  control
technique  called  optimized  backstepping  (OB)  was  first
proposed in [30] by implementing tracking control for a class
of  strict-feedback  systems.  Recently,  the  authors  in  [31]
investigated  an  adaptive  RL  optimal  control  design  problem
for  a  class  of  nonstrict-feedback  discrete-time  systems.  In
order  to  accomplish  optimal  control  effectively,  the  authors
designed  a  simplified  RL  algorithm  in  [32]  instead  of
employing the existing RL-based optimal control methods.

Although  an  optimized  control  method  was  developed  in
[32]  based  on  the  OB  technique  using  simplified  RL  for
nonlinear systems, input saturation and state constraints under
unpredictable  systems  states  were  not  considered.  Based  on
the  above  results,  this  paper  proposes  an  optimal  control
scheme  based  on  NN  approximation  for  a  class  of  strict-
feedback  systems  with  unknown  dynamics,  input  saturation
and  state  constraints.  Compared  with  the  existing  works,  the
main contributions of this paper are listed in the following.

1)  In  this  paper,  an  adaptive  NN  backstepping  output
feedback simplified optimal control method is proposed for a
class  of  uncertain  nonlinear  systems  with  unmeasured  states,
input  saturation  and  state  constraints.  The  tan-type  barrier
optimal  cost  functions  are  constructed  for  subsystems.  In
contrast with [30], the method proposed here does not require
priori knowledge due to the utilization of the state observer.

2)  By  separating  the  optimal  value  function  into  a  novel
error form, the proposed control strategy can effectively solve
the  optimal  tracking  control  problem.  Unlike  [30]  and  [32],
this  paper  adopts  a  stepwise  optimization  strategy  to  analyze
the  stability  of  each  step  of  the  system.  Each  controller  is
designed  in  this  paper  to  be  the  optimal  solution  for  the
corresponding  subsystem,  thus  optimizing  the  control  of  the
whole system.  

II.  Preliminaries
  

A.  Problem Statement
Consider the following strict-feedback nonlinear systems as:

 
ẋi = fi(x̄i)+ xi+1,1 ≤ i ≤ n−1

ẋn = fn(x̄n)+us

y = x1

(1)

x̄n = [x1, x2, . . . , xn]T ∈ Rn y ∈ Rwhere  the  state  and  is  the

fi(x̄i) i = 1,2, . . . ,n
fi(x̄i)+ xi+1 fn(x̄n)+us

us ∈ R

output  of  system,  ( )  are  unknown  smooth
functions.  and  are  assumed  Lipschitz
continuous  and  stabilizable  on  the  sets  containing  the  origin.

 denotes  the  plant  input  subjected  to  the  saturation
described by
 

us =

 sgn(u)ūs |u| ≥ ūs

u |u| < ūs
(2)

ūswhere  is  the  saturation  bound  of u and u is  the  control
input.

|xi| < kci, (i = 1, . . . ,n) kci > 0

Assumption 1 [33], [34]: Assume that all the states (expect
output y)  are  immeasurable  and  constrained  in  compact  sets,
i.e., , where  is a known constant.

ε f = [ε1, f , . . . , εn, f ]T
∥∥∥ε f
∥∥∥ ≤ ε f M

W∗f
W f M

∥∥∥∥W∗f ∥∥∥∥ ≤W f M

Assumption  2  [35],  [36]: The  neural  networks  approxima-
tion  error  is  bounded,  i.e., .
The neural  network weight  is  bounded by a  known posi-
tive constant , i.e., .

yr

Control Objective: The control objective of this paper is to
obtain  a  NN  backstepping  output  feedback  optimal  control
that  not  only  stabilizes  system  (1),  but  also  minimizes  the
value function, while ensuring that all the closed-loop signals
are  guaranteed  to  be  uniformly  ultimately  bounded  (UUB).
All  the  system  states  are  ensured  not  to  transgress  their
constrained  sets  so  that  the  output y can  track  the  reference
signal .  

B.  Neural Networks

f (x) : Rn→ Rm

ε > 0

WT S (x) sup
x∈D

∣∣∣ f (x)−WT S (x)
∣∣∣ <

ε x ∈Ωx ⊂ Rq

W ∈ Rr×m

S i(x) i = 1, . . . ,r S (x)

It  is  well  known  that  NNs  can  approximate  an  unknown
continuous  function  over  a  compact  set D.
Then,  for  any  constant ,  there  exists  a  radial-basis-fun-
ction  NN  (RBFNN)  such  that 

,  where  is  the  input vector, n is  a  positive
integer,  is the NN weight and the neuron number is
r.  Each  element  ( )  of  vector  is  a  basis
function with
 

S i(x) = exp(− (x−µi)T (x−µi)
σ2

i

)

µi ∈ Rn σiwhere  is  the  center  vector  and  is  the  width  of
Gaussian function.

V(t) ∈ R
V̇(t) ≤ −cV(t)+D c > 0 D > 0

Lemma  1: If  the  continuous  function  satisfies
,  where  and  are  constants,  then

the following inequality holds:
 

V(t) ≤ V(t0)e−c(t−t0)+
D
c
.

x,y ∈ RnLemma  2  (Young’s  Inequality): For  any  vectors ,
the following Young’s inequality holds:
 

xT y ≤ (ηa/a)∥x∥a+ (1/bηb)∥y∥b

η > 0 a > 1 b > 1 (a−1)(b−1) = 1where , , , and .  

III.  Main Result
  

A.  State Observer Design
In  this  section,  a  state  observer  needs  to  be  designed  to

estimate  the  unmeasured  states.  Then,  under  the  actor-critic
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architecture,  a  NN  adaptive  backstepping  output  feedback
optimal  controller  will  be  designed  based  on  the  designed
state  observer.  Finally,  a  stability  analysis  of  the  closed-loop
system  is  given  to  prove  our  main  conclusions.  Rewrite
system (1) as the following state space expression form:
 

ẋ = Ax+Ly+
n∑

i=1

Bi fi(x̄i)+Bnus

y =Cx (3)

A =


−l1
... I
−ln 0 · · · 0

 L =


l1
...
ln

 x =


x1
...

xn

 Bi =where , , , 

[0 . . . 1 . . . 0]T Bn = [0 . . . 1]T C = [1 0 . . . 0]
li (i = 1, ...,n)

, , , A is  a
strict Hurwitz matrix and  are observer gains.

P > 0
Thus,  for  a  given  positive  definite  matrix Q,  there  exists  a

matrix  that satisfies the following equation:
 

AT P+PA = −Q. (4)
fi(x̄i) fi(x̄i)

f̂i( ˆ̄xi
∣∣∣Ŵi, f ) = ŴT

i, f S i, f ( ˆ̄xi) (1 ≤ i ≤ n)
Since  is  an  unknown  continuous  function,  can

be identified by the NNs  ,
and we assume that
 

fi(x̄i) =W∗Ti, f S i, f (x̄i)+εi, f (x̄i) (5)

W∗Ti, f εi, f (x̄i)
Ŵi, f

W∗i, f

where  and  are  the  ideal  weight  vector  and  the
approximation error,  respectively,  and  is  the  estimate  of

.
Since the state variables in the system are immeasurable, to

achieve  the  purpose  of  output  feedback  control  design,  the
nonlinear state observer is designed as follows:
 

˙̂xi = f̂i( ˆ̄xi
∣∣∣Ŵi, f )+ x̂i+1+ li(y− ŷ), 1 ≤ i ≤ n

˙̂xn = f̂n( ˆ̄xn
∣∣∣Ŵn, f )+h(u)+ ln(y− ŷ)

ŷ = x̂1 (6)
h(u) = ūs× tanh(u/ūs) = ūs(eu/ūs − e−u/ūs )/eu/ūs + e−u/ūs

us = h(u)+ρ(u) =
ūs× tanh(u/ūs)+ρ(u) ρ(u) = us−h(u)

|ρ(u)| = |us−h(u)| ≤ ūs(1− tanh(1)) = m m > 0
0 ≤ |u| ≤ ūs ρ(u)

|u| ūs
ρ(u)

where 
is  a  smooth  function  to  approximate  the  saturation  of  the
system.  Therefore,  (2)  can  be  expressed  as 

,  where  is  a  bounded
function, and ,  is
a constant. Note that within the bound ,  grows
from  0  to m,  and  changes  from  0  to .  Outside  of  this
range,  decreases from m to 0.

Then, rewrite (6) as the following form:
 

˙̂x =
n∑

i=1

Bi[ f̂i( ˆ̄xi
∣∣∣Ŵi, f )]+Ly+Ax̂+Bnh(u)

ŷ =Cx̂ (7)
x̂i xiwhere  is the estimate of .

From  (1)  and  (7),  the  following  error  equation  can  be
obtained:
 

ė = Bnρ(u)+Ae+F − ŴT
f S f (8)

F = [ f1(x1), . . . , fn(x̄n)]T e = [e1, . . . ,en]T ei = xi− x̂i,

i = 1, . . . ,n W∗Tf = diag{W∗T1, f , . . . ,W
∗T
n, f }

ŴT
f = diag{ŴT

1, f , . . . ,Ŵ
T
n, f } S f = [S 1, f (x̂1), . . . ,S n, f ( ˆ̄xn)]T

where ,  and 
,  is  estimated  by

 and .

Ŵ fTheorem 1: The NN weight estimate  is updated by
 

˙̂W f = ηWS f e1CA−1−ρWe1Ŵ f (9)
ηw ρw

e(t)
W̃ f = Ŵ f −W∗f Ŵ f

e(t)
Ωe {e : ∥e∥ ≤ ke} ke

τ

where  and  are  positive  design  parameters.  As  a  result,
the  state  observer  error  vector ,  the  estimate  errors  of  the
NN  weights  and  are  ensured  to  be  UUB.
Moreover, the error vector  converges to the small compact
set ,  i.e., ,  where  can  be  made  as  small  as
desired by appropriately choosing design parameter .

Proof: Consider the Lyapunov function candidate
 

V0 = eT pe+
1
2

tr(W̃T
f ρ
−1
W W̃ f ). (10)

V0Taking the derivative of  results in
 

V̇0 = eT (AT P+PA)e+2eT P(F +Bnρ(u)

− ŴT
f S f )+ tr(W̃T

f ρ
−1
W

˙̃W f ). (11)

Substituting (9) into (11) yields
 

V̇0 = eT (AT P+PA)e+2eT P(F +Bnρ(u)− ŴT
f S f )

+ tr(W̃T
f ρ
−1
W ηWS f e1CA−1− W̃T

f |e1| (W̃ f +W∗f )). (12)

tr(XYT ) = tr(YT X) = YT X ∀X,Y ∈ RnSince ,  for ,  we  can
obtain
 

tr(ρ−1
W ηWW̃T

f S f e1CA−1) = ρ−1
W ηWe1CA−1W̃T

f S f . (13)

−tr(W̃T
f (W̃ f +W∗f )) ≤

∥∥∥W̃ f
∥∥∥∥∥∥∥W∗f ∥∥∥∥− ∥∥∥W̃ f

∥∥∥2As , (12) becomes
 

V̇0 ≤ − eT Qe+2eT P(F +Bnρ(u)− ŴT
f S f )

+ρ−1
W ηWe1CA−1W̃T

f S f + |e1|
∥∥∥∥W̃ f

∥∥∥∥∥∥∥∥W∗f ∥∥∥∥
− |e1|

∥∥∥∥W̃ f

∥∥∥∥2. (14)

From Assumption 2, the following inequality holds true:
 

2eT P(F − ŴT
f S f +Bnρ(u))

= 2eT P[W∗Tf S f (x̄i)+ε f − ŴT
f S f ( ˆ̄xi)+Bnρ(u)]

≤ 2∥e∥∥P∥ [2W f MS f M +ε f M +m+
∥∥∥W̃ f
∥∥∥S f M] (15)∥∥∥S f

∥∥∥ ≤ S f M S f Mwhere , and  is a positive constant.
From (14) and (15), it follows that:

 

V̇0 ≤ − eT Qe+2∥e∥∥P∥ [2W f MS f M +ε f M

+ ∥Bn∥m+
∥∥∥W̃ f
∥∥∥S f M]+ρ−1

W ηW ∥e∥CA−1

×
∥∥∥∥W̃ f

∥∥∥∥S f + ∥e∥
∥∥∥∥W̃ f

∥∥∥∥W f M −∥e∥
∥∥∥∥W̃ f

∥∥∥∥2
≤ −τ∥e∥2+ ∥e∥ {d0+2∥P∥ (ε f M + ∥Bn∥m)

+β2
W − (
∥∥∥∥W̃ f

∥∥∥∥−βW )2}

≤ (−τ∥e∥+d0+2∥P∥ (ε f M +m)+β2
W )∥e∥ (16)

τ = λmin(Q) λmin(Q)
d0 = 4∥P∥W f MS f M βW = [ρ−1

W ηW
∥∥∥CA−1

∥∥∥
S f M +2∥P∥S f M +W f M]/2

where ,  denotes  the  minimum eigenvalue
of  matrix Q;  and 

.
ke = [d0+2∥P∥ (ε f M +m)+β2

W ]/τ V̇0Let .  is negative only if
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∥e∥ ≥ ke
e(t) Ŵ f

W̃ f

.  According to the Lyapunov extension theorem, both
the system observer error , the neural network weights 
and the estimate errors of the neural network weights  are
UUB. ■  

B.   Output  Feedback  Optimized  Controller  Design  and  Stability
Analysis

α̂i(t) (i = 1, . . . ,n−1) ˙̂Wci
˙̂Wai

In  this  section,  the  optimal  tracking  controller  is  designed
under  the  framework  of  backstepping  technology.  An
auxiliary  design  system  is  introduced  to  reduce  the  effect
arisen  from  input  saturation,  and  the  tan-type  BLF  is
introduced  to  handle  the  problem  of  state  constraints.  The
actor-critic  architecture  was  used  to  construct  optimal  virtual
controllers   and  updated  weights ,

.  A  simplified  RL  algorithm  is  developed,  which  is
generated from the partial  derivative of  the  HJB equation.  In
the n-th  step,  the  optimal  actual  controller  and  the  updating
weights for critic and actor NNs are obtained.

Step 1: Define the tracking error variable as
 

s1 = y− yr (17)
yr yr(t), ẏr(t)where  represents  the  tracking  signal,  and  are

bounded.
Its time derivative along (17) is

 

ṡ1 = x̂2+ ė1+ ŴT
1, f S 1, f (x̂1)+ l1(y− ŷ)− ẏr (18)

x̂2 α∗1(s1)
x̂2
∆
= α∗1(s1) ∥e∥ ≤ ke e1

Ωe
ė1

where  denotes  the  ideal  optimal  virtual  controller ,
i.e., .  Since ,  the  state  observe  error  is
UUB  and  converges  to  the  compact .  Then,  we  can
determine that  is bounded.

s1The optimal  value function for  the -subsystem is  defined
as
 

J∗1(s1) = min
α1∈Ψ(Ωs1)

w ∞
t

(M1(x1)+ r1(α1(τ))2)dτ

=
w ∞

t
(M1(x1)+ r1(α∗1(τ))2)dτ (19)

M1(x1) = (k2
b1/π) tan(πs2

1/2k2
b1) α∗1(s1)

Ωs1 = {s1 : |s1| < kb1}
Ψ(Ωs1) α1

r1 > 0

where ,  is  the  optimal
virtual  controller,  and  is  a  compact  set
containing  origin.  is  the  admissible  control  set  of ,
and .

By decomposing (19) into the following form:
 

J∗1(s1) = η1
S 1(n1)

2
+2η̄1

k2
b1

π
tan(
πs2

1

2k2
b1

)−η1
S 1(n)

2

−2η̄1
k2

b1

π
tan(
πs2

1

2k2
b1

)+ J∗1(s1)

= η1
S 1(n1)

2
+2η̄1

k2
b1

π
tan(
πs2

1

2k2
b1

)+ Jc1(s1) (20)

Jc1(s1) = −η1S 1(n1)/2−2η̄1k2
b1 tan(πs2

1/2k2
b1)/π+ J∗1(s1)

S 1(n1) =
r n1

0 (sinn1/n1)dn1

n1 = π/k2
b1s2

1 η1 > 0 η̄1 > 0
J∗1(s1) α∗1(s1)

s1

where 
is  a  real  scalar-value  function, 
(where ) and ,  are constants. For the
value function  and the optimal virtual controller ,
the HJB equation of the -subsystem is defined as 

H1(s1,α
∗
1,
∂J∗1(s1)
∂s1

)

=
k2

b1

π
tan(
πs2

1

2k2
b1

)+ r1(α∗1)2+ (
2η1

s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)

+
∂Jc1(s1)
∂s1

+
2η̄1s1

cos2(πs2
1/2k2

b1)
)(α∗1+ ŴT

1, f S 1, f (x̂1)

+ l1(y− ŷ)− ẏr + ė1) = 0. (21)
∂H1/∂α

∗
1 = 0 α∗1By solving ,  can be obtained as

 

α∗1 = −
η1

r1s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)− η̄1s1

r1cos2(πs2
1/2k2

b1)

− 1
2r1

∂Jc1(s1)
∂s1

. (22)

∂Jc1(s1)/∂s1
s1
Ωs1

Note  that  is  an  unknown  function  of  variable
. It can be approximated by a neural network on the compact

set  as
 

∂Jc1(s1)
∂s1

=W∗T1 S J1(s1)+ε1(s1) (23)

W∗1 S J1(s1)
ε1(s1)

|ε1(s1)| ≤ δ̄1 δ̄1 > 0

where  and  are  the  ideal  weight  vector  and  the
basis function vector, respectively.  is the approximation
error and  (  is a constant).

α∗1Using (23), the ideal optimal virtual controller  becomes
 

α∗1 = −
η1

r1s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)− η̄1s1

r1cos2(πs2
1/2k2

b1)

− 1
2r1

(W∗T1 S J1(s1)+ε1(s1)). (24)

W∗1
Ŵc1 W∗1

Since  is  an  unknown  constant  vector,  the  estimation
vector  is used to approximate , namely,
 

∂Ĵc1(s1)
∂s1

= ŴT
c1S J1(s1). (25)

Ŵa1 W∗1
α̂1(t)

Based  on  (24),  we  use  to  approximate  in  actor
neural networks. The optimal virtual controller  becomes
 

α̂1 = −
η1

r1s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)− η̄1s1

r1cos2(πs2
1/2k2

b1)

− 1
2r1

ŴT
a1S J1(s1). (26)

cos2(πs2
1/2k2

b1)
πs2

1/2k2
b1 , πΥ/2 (Υ = 1,2, . . .)

sgn(s1)s1 , kb1
√
Υ |s1| < kb1 sgn(s1)s1 , kb1

√
Υ

sin(πs2
1/2k2

b1) πs2
1/2k2

b1 s1→ 0
lims1→0 sin(πs2

1/2k2
b1)cos(πs2

1/2k2
b1)/s1→ 0

α̂1

Remark 1: In order to ensure that the term  in
(26)  is  not  zero,  i.e., ,  one  can
obtain . Since , 
is  obvious.  In  addition,  the  equivalent  infinitesimal  form  of

 is  when  the  error  vector .  We
can  then  get .  The
singularity  problem  in  the  optimal  virtual  controller  is
effectively avoided.

Based on (26), the approximate HJB equation is obtained as
 

H1(s1,α̂1,
∂Ĵ1(s1)
∂s1

)

=
k2

b1

π
tan(
πs2

1

2k2
b1

)+ r1(
η̄1s1

r1cos2(πs2
1/2k2

b1)
+
η1

r1s1
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× sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)+
1

2r1
ŴT

a1S J1(s1))2

+ (
2η1

s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)+
2η̄1s1

cos2(πs2
1/2k2

b1)

+
∂Jc1(s1)
∂s1

)(− η1

r1s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)− ẏr

− η̄1s1

r1cos2(πs2
1/2k2

b1)
− 1

2r1
ŴT

a1S J1(s1)+ ė1

+ ŴT
1, f S 1, f (x̂1)+ l1(y− ŷ)). (27)

Define the Hamiltonian’s approximation error as
 

E1 = H1(s1, α̂1,
∂Ĵc1(s1)
∂s1

)−H1(s1,α
∗
1,
∂J∗1(s1)
∂s1

)

= H1(s1, α̂1,
∂Ĵc1(s1)
∂s1

). (28)

The critic NN adaptive law is designed as
 

˙̂Wc1(t) = −γc1S J1(s1)S T
J1(s1)ŴT

c1(t) (29)

γc1 > 0where  is the critic designed constant.
The actor NN adaptive law is given as

 

˙̂Wa1(t) = −S J1(s1)S T
J1(s1)(γa1(Ŵa1(t)− Ŵc1(t))

+γc1Ŵc1(t)) (30)

γa1 > 0where  is the actor designed constant.

α̂1(s1) E1(t) = H1(s1, α̂1,∂Ĵc1(s1)/∂s1)→
0 H1(s1, α̂1,∂Ĵc1(s1)/∂s1) = 0

According  to  the  above  analysis,  the  optimized  solution
 is expected to satisfy 

.  If  is  held  and  has  the  unique
solution, then it is equivalent to the following:
 

∂H1(s1, α̂1,
∂Ĵc1(s1)
∂s1

)

∂Ŵa1
=

1
2r1

S J1(s1)S T
J1(s1)(Ŵa1(t)− Ŵc1(t)) = 0.

(31)
In  order  to  derive  the  adaptive  laws  to  guarantee  (31),  the

following positive function is constructed:
 

P1(t) = (Ŵa1(t)− Ŵc1(t))T (Ŵa1(t)− Ŵc1(t)). (32)

P1(t) = 0 r1
∂P1(t)
∂Ŵa1(t)

=

− ∂P1(t)
∂Ŵc1(t)

= 2(Ŵa1(t)/r1− Ŵc1(t))

Clearly,  is  equivalent  to  (31).  Since 

 , we can get
 

dP1(t)
dt

=
∂P1(t)
∂Ŵc1(t)

˙̂Wc1(t)+
∂P1(t)
∂Ŵa1(t)

˙̂Wa1(t)

= −γc1
∂P1(t)
∂Ŵc1(t)

S J1(s1)S T
J1(s1)Ŵc1(t)− ∂P1(t)

∂Ŵa1

×S J1S T
J1(γa1(Ŵa1(t)− Ŵc1(t))+γc1Ŵc1(t))

= − γa1

2
∂P1(t)
∂Ŵa1(t)

S J1(s1)S T
J1(s1)

∂P1(t)
∂Ŵa1(t)

≤ 0. (33)

s1

Consider  the  tan-type  barrier  Lyapunov  function  candidate
for -subsystem
 

V1(t) =
k2

b1

π
tan(
πs2

1

2k2
b1

)+
1
2

W̃T
c1(t)W̃c1(t)+

1
2

W̃T
a1(t)W̃a1(t) (34)

W̃c1 = Ŵc1−W∗1 W̃a1 = Ŵa1−W∗1where ,  are  critic  and  actor
NNs approximation errors, respectively.

s2 = x̂2− α̂1 s1 = x1− yrFrom  and , we have
 

ṡ1 = s2+ α̂1+ ė1+ ŴT
1, f S 1, f (x̂1)+ l1e1− ẏr. (35)

V1The time derivative of  is
 

V̇1(t) =
s1

cos2(πs2
1/2k2

b1)
ṡ1+ W̃T

c1(t) ˙̃Wc1(t)+ W̃T
a1(t) ˙̃Wa1

=
s1

cos2(πs2
1/2k2

b1)
(s2−

η1

r1s1
sin(
πs2

1

2k2
b1

)cos(
πs2

1

2k2
b1

)− ẏr

− 1
2r1

ŴT
a1S J1+ l1e1+ ė1−

η̄1s1

r1

1
cos2(πs2

1/2k2
b1)

+ ŴT
1, f S 1, f (x̂1))+ W̃T

c1
˙̃Wc1+ W̃T

a1
˙̃Wa1. (36)

ϑs1 = s1/cos2(πs2
1/2k2

b1)Letting  and substituting (26),  (29),

(30), and (35) into (36) reaches
 

V̇1(t) = ϑs1s2−
η1

r1
tan(
πs2

1

2k2
b1

)− η̄1

r1
ϑ2

s1−
ϑs1

2r1
ŴT

a1S J1(s1)

+ϑs1(ŴT
1, f S 1, f (x̂1)+ l1e1− ẏr + ė1)−γc1W̃T

c1(t)

×S J1(s1)S T
J1(s1)ŴT

c1(t)− W̃T
a1(t)(S J1(s1)S T

J1(s1)

× (γa1(Ŵa1(t)− Ŵc1(t))+γc1Ŵc1))

= ϑs1s2−
η1

r1
tan(
πs2

1

2k2
b1

)− η̄1

r1
ϑ2

s1−
ϑs1

2r1
ŴT

a1S J1(s1)

+ϑs1(ŴT
1, f S 1, f (x̂1)+ l1e1− ẏr + ė1)−γc1W̃T

c1(t)

×S J1(s1)S T
J1(s1)ŴT

c1(t)−γa1W̃T
a1(t)S J1S T

J1

× Ŵa1(t)+ (γa1−γc1)W̃T
a1(t)S J1(s1)S T

J1(s1)Ŵc1. (37)

W̃a1(t)=Ŵa1(t)−W∗1 W̃c1(t)=Ŵc1(t)−
W∗1

Similarly, by using  and 
, there are the following equations:

 

W̃T
c1(t)S J1(s1)S T

J1(s1)Ŵc1(t)

=
1
2

W̃T
c1(t)S J1(s1)S T

J1(s1)W̃c1(t)− 1
2

(W∗TJ1 S 1(s1))2

+
1
2

ŴT
c1(t)S J1(s1)S T

J1(s1)Ŵc1(t) (38)

 

W̃T
a1(t)S J1(s1)S T

J1(s1)Ŵa1(t)

=
1
2

W̃T
a1(t)S J1(s1)S T

J1(s1)W̃a1(t)− 1
2

(W∗TJ1 S J1(s1))2

+
1
2

ŴT
a1(t)S J1(s1)S T

J1(s1)Ŵa1(t). (39)

Substituting (38) and (39) into (37), one has
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V̇1(t) = ϑs1s2−
η1

r1
tan(
πs2

1

2k2
b1

)− η̄1

r1
ϑ2

s1−
ϑs1

2r1
ŴT

a1S J1(s1)

+ϑs1(−ẏr + l1e1+ ė1+ ŴT
1, f S 1, f (x̂1))

− γa1

2
W̃T

a1(t)S J1(s1)S T
J1(s1)W̃a1(t)− γc1

2
W̃T

c1(t)

×S J1(s1)S T
J1(s1)W̃c1(t)− γc1

2
ŴT

c1(t)S J1(s1)

×S T
J1(s1)Ŵc1(t)− γa1

2
ŴT

a1(t)S J1(s1)S T
J1(s1)Ŵa1(t)

+ (
γa1

2
+
γc1

2
)(W∗TJ1 S J1(s1))2+ (γa1−γc1)W̃T

a1(t)

×S J1(s1)S T
J1(s1)Ŵc1(t). (40)

Using Young’s inequality, there is the following fact that:
 

(γa1−γc1)W̃T
a1(t)S J1(s1)S T

J1(s1)Ŵc1(t)

≤ γa1−γc1

2
W̃T

a1(t)S J1(s1)S T
J1(s1)W̃a1(t)

+
γa1−γc1

2
ŴT

c1(t)S J1(s1)S T
J1(s1)Ŵc1(t). (41)

Substituting (41) into (40), one has
 

V̇1(t) ≤ ϑs1s2−
η1

r1
tan(
πs2

1

2k2
b1

)− η̄1

r1
ϑ2

s1−
ϑs1

2r1
ŴT

a1S J1

+ϑs1(l1e1+ ė1− ẏr + ŴT
1, f S 1, f )− γa1

2
W̃T

a1

×S J1(s1)S T
J1(s1)W̃a1(t)− γc1

2
W̃T

c1(t)S J1(s1)

×S T
J1(s1)W̃c1(t)− γc1

2
ŴT

c1(t)S J1(s1)S T
J1(s1)

× Ŵc1(t)− γa1

2
ŴT

a1(t)S J1(s1)S T
J1(s1)Ŵa1(t)

+
γa1+γc1

2
(W∗TJ1 S J1(s1))2+

γa1−γc1

2
W̃T

a1

×S J1S T
J1W̃a1+

γa1−γc1

2
ŴT

c1S J1S T
J1Ŵc1

≤ ϑs1s2−
η1

r1
tan(
πs2

1

2k2
b1

)− η̄1

r1
ϑ2

s1−
ϑs1

2r1
ŴT

a1

×S J1(s1)+ϑs1(l1e1+ ė1− ẏr + ŴT
1, f S 1, f

− γc1

2
W̃T

c1(t)S J1(s1)S T
J1(s1)W̃c1(t)− γc1

2

× W̃T
a1(t)S J1S T

J1W̃a1(t)− (γc1−
γa1

2
)(ŴT

c1(t)

×S J1(s1))2− γa1

2
(ŴT

a1(t)S J1(s1))2+ (
γa1

2

+
γc1

2
)(W∗TJ1 (t)S J1(s1))2. (42)

According to the Young’s inequality, one has
 

ϑs1s2 ≤
ϑ2

s1

2
+

1
2

k2
b2 (43)

 

ϑs1(ŴT
1, f S 1, f (x̂1)+ l1e1− ẏr + ė1)

≤ 2ϑ2
s1+

1
2

l21k2
e+

1
2

ė2
1+

1
2

ẏ2
r +

1
2

ŴT
1, f S 1, f S T

1, f ŴT
1, f (44)

 

−ϑs1

2r1
ŴT

a1(t)S J1 ≤
ϑ2

s1

4r1
+

1
4r1

ŴT
a1S J1(s1)S T

J1(s1)ŴT
a1 (45)

|s2| < kb2where , Substituting (43)–(45) into (42)
 

V̇1(t) ≤ − η1

r1
tan(
πs2

1

2k2
b1

)− (
η̄1

r1
− 1

4r1
− 5

2
)ϑ2

s1+
1
2

l21k2
e

+
1
2

ė2
1+

1
2

ẏ2
r +

1
2

k2
b2+

1
2

ŴT
1, f S 1, f (x̂1)

×S T
1, f (x̂1)ŴT

1, f −
γc1

2
W̃T

c1(t)S J1(s1)S T
J1(s1)

× W̃c1(t)− γc1

2
W̃T

a1(t)S J1S T
J1W̃a1(t)− (γc1

− γa1

2
)(ŴT

c1(t)S J1(s1))2− (
γa1

2
− 1

4r1
)(ŴT

a1(t)

×S J1(s1))2+ (
γa1

2
+
γc1

2
)(W∗TJ1 (t)S J1(s1))2. (46)

λmax
S 1, f

S 1, f (x̂1)S 1, f (x̂1)

λmin
S J1

S J1(s1)S T
J1(s1)

Let  be the maximal eigenvalue of  and
 be the minimal  eigenvalue of .  Inequality

(46) can become
 

V̇1(t) ≤ − η1

r1
tan(
πs2

1

2k2
b1

)− (
η̄1

r1
− 1

4r1
− 5

2
)ϑ2

s1

− γc1

2
λmin

S J1
W̃T

a1W̃a1−
γc1

2
λmin

S J1
W̃T

c1W̃c1

− (γc1−
γa1

2
)(ŴT

c1(t)S J1(s1))2− (
γa1

2

− 1
4r1

)(ŴT
a1(t)S J1(s1))2+D1 (47)

D1 = sup
t≥0
{D1(t)} D1(t) = 1

2λ
max
S 1, f

ŴT
1, f (x̂1)Ŵ1, f (x̂1)+

1
2 ė2

1+
1
2 l21k2

e +
1
2 k2

b2 ( γa1
2 +

γc1
2 )(W∗TJ1 (t)S J1(s1))2+ 1

2 ẏ2
r .

where  and 

 +
γc1 γa1 r1 η̄1We  then  design  the  parameters , , ,  and ,  which

satisfy the following inequalities:
 

γc1−
γa1

2
> 0 (48)

 

γa1

2
− 1

4r1
> 0 (49)

 

η̄1

r1
− 1

4r1
− 5

2
> 0. (50)

η10 = η1π/k2
b1Denote , (50) can then be rewritten as

 

V̇1(t) ≤ −
k2

b1η10

πr1
tan(
πs2

1

2k2
b1

)− γc1

2
λmin

S J1
W̃T

a1(t)W̃a1(t)

− γc1

2
λmin

S J1
W̃T

c1(t)W̃c1(t)+D1. (51)

c1 =min{η10/r1,γc1λ
min
S J1
,γc1λ

min
S J1
}Let . Then, (51) becomes

 

V̇1 ≤ −c1V1+D1. (52)
From (52), we can have

 

V1(t) ≤ V1(t0)e−c1(t−t0)+
D1

c1
. (53)

|s1| < kb1 s1 = y− yr |x1(t)| ≤ |s1(t)|+Since  and ,  we  have 
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|yr(t)| < kb1+ |yr(t)| kb1 = kc1− |yr | |x1| ≤ kc1
t→∞ e−(t−t0)→ 0

T1 t ≥ T1
∥∥∥W̃a1(t)

∥∥∥ ≤ √2D1/c1
∥∥∥W̃c1(t)

∥∥∥ ≤ √2D1/c1√
2D1/c1

c1 D1∥∥∥Ŵa1(t)
∥∥∥ ∥∥∥Ŵc1(t)

∥∥∥
e1 s1

∥∥∥Ŵa1(t)
∥∥∥∥∥∥Ŵc1(t)

∥∥∥ ∥S 1∥ α̂1

∥∥∥∥ ˙̂Wa1(t)
∥∥∥∥ ṡ1

|α̂1| ≤ A2 A2 ˙̂α1

.  Define ,  where .
From (53),  as , .  It  follows that  there  exists

, when , , and .
Clearly,  the  reduction  of  can  be  made  arbitrarily
small  by  increasing ,  while  decreasing .  Therefore,  we
can  determine  that  and  are  bounded.  In
addition,  we  know  the  boundedness  of , , ,

,  and .  Thus, , ,  and  are  bounded
(where ,  is a positive constant), and  is bounded.

(2 ≤ i ≤ n−1) si = x̂i− α̂i−1Step i : Similarly,  define  where
the time derivative is
 

ṡi = x̂i+1− ˙̂αi−1+ ŴT
i, f S i, f ( ˆ̄xi)+ li(y− ŷ). (54)

siThe  optimal  value  function  for  the -subsystem is  defined
as
 

J∗i (si) = min
αi∈Ψ(Ωsi)

w ∞
t

(Mi(xi)+ ri(αi(τ))2)dτ

=
w ∞

t
(Mi(xi)+ ri(α∗i (τ))2)dτ (55)

Mi(xi) = k2
bi tan(πs2

i /2k2
bi)/π α∗i (si)

Ωsi = {si : |si| < kbi}
Ψ(Ωsi) αi

ri > 0

where ,  is  the  optimal
virtual  controller,  is  a  compact  set
containing  origin.  is  the  admissible  control  set  of ,
and  is a constant.

siThe  optimal  value  function  for -subsystem  satisfies  the
following equation:
 

J∗i (si) = ηi
S i(ni)

2
+2η̄i

k2
bi

π
tan(
πs2

i

2k2
bi

)−ηi
S i(ni)

2

−2η̄i
k2

bi

π
tan(
πs2

i

2k2
bi

)+ J∗i (si)

= ηi
S i(ni)

2
+2η̄i

k2
bi

π
tan(
πs2

i

2k2
bi

)+ Jci(si) (56)

Jci(si) = −ηiS i(ni)/2−2η̄ik2
bi tan(πs2

i /2k2
bi)/π+ J∗i (si)

S i(ni) =
r ni

0 (sinni/ni)dni ni = π/k2
bis

2
i ηi η̄i > 0

α∗i (si) J∗i (si)
si

where . Si-
milarly, , ,  and , 
are  constants.  For  and ,  the  HJB  equation  of  the

-subsystem is defined as
 

Hi(si,α
∗
i ,
∂J∗i (si)
∂si

)

=
k2

bi

π
tan(
πs2

i

2k2
bi

)+ ri(α∗i )2+ (
2ηi

si
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)

+
∂Jci(si)
∂si

+
2η̄isi

cos2(πs2
i /2k2

bi)
)(α∗i + ŴT

i, f S i, f (x̂i)

+ li(y− ŷ)− ˙̂αi−1) = 0. (57)
∂Hi/∂α

∗
i = 0Similarly, solving , yields

 

α∗i = −
ηi

risi
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)− η̄isi

ricos2(πs2
i /2k2

bi)
− 1

2ri

∂Jci(si)
∂si

(58)
∂Jci(si)/∂si

Ωsi

where  can be approximated by the following NN
on the compact set : 

∂Jci(si)
∂si

=W∗Ti S Ji(si)+εi(si) (59)

W∗i S Ji(si)
εi(si)

|εi(si)| ≤ δ̄i δ̄i > 0
α∗i

where  is  an  ideal  weight  vector  and  is  the  basis
function  vector.  is  the  approximation  error  satisfying

 where  is  a  real  constant.  By  (58)  and  (59),
the ideal optimal virtual controller  can be acquired as
 

α∗i = −
ηi

risi
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)− η̄isi

ricos2(πs2
i /2k2

bi)

− 1
2ri

(W∗Ti S Ji(si)+εi(si)). (60)

Similarly, we can get
 

∂Ĵci(si)
∂si

= ŴT
ciS Ji(si) (61)

 

α̂i = −
ηi

risi
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)− η̄isi

ricos2(πs2
i /2k2

bi)

− 1
2ri

ŴT
aiS Ji(si) (62)

Ŵci Ŵai

sgn(si)si , kbi
√
Υ (Υ = 1,2, . . .)

limsi→0 sin(πs2
i /2k2

bi)cos(πs2
i /2k2

bi)/si→ 0
α̂i

where  and  are  the  critic  and  actor  NN  weights,
respectively. Similarly, . Thus,
we can get  and the
singularity  problem  in  the  optimal  virtual  controller  is
effectively avoided.

From (62), the approximate HJB equation is obtained as
 

Hi(si,α̂i,
∂Ĵi(si)
∂si

)

=
k2

bi

π
tan(
πs2

i

2k2
bi

)+ ri(
ηi

risi
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)+
1

2ri
ŴT

ai

×S Ji(si)+
η̄isi

ricos2(πs2
i /2k2

bi)
)2+ (

2ηi

si
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)

+
2η̄isi

cos2(πs2
i /2k2

bi)
+
∂Jci(si)
∂si

)(− ηi

risi
sin(
πs2

i

2k2
bi

)cos(
πs2

i

2k2
bi

)

− η̄isi

ricos2(πs2
i /2k2

bi)
− 1

2ri
ŴT

aiS i(si)+ ŴT
i, f S i, f ( ˆ̄xi)

+ li(y− ŷ)− ˙̂αi−1). (63)
EiDefine the Bellman error  as

 

Ei = Hi(si, α̂i,
∂Ĵci(si)
∂si

)−Hi(si,α
∗
i ,
∂J∗i (si)
∂si

)

= Hi(si, α̂i,
∂Ĵci(si)
∂si

). (64)

The actor and critic NN adaptive laws are given as
 

˙̂Wci(t) = −γciS Ji(si)S T
Ji(si)ŴT

ci(t) (65)
 

˙̂Wai(t) = −S Ji(si)S T
Ji(si)(γai(Ŵai(t)− Ŵci(t))

+γciŴci(t)) (66)
γci > 0 γai > 0where  and  are  critic  and  actor  designed

ZHANG et al.: OUTPUT-FEEDBACK BASED SIMPLIFIED OPTIMIZED BACKSTEPPING CONTROL FOR STRICT-FEEDBACK SYSTEMS 1125 



constants, respectively.
siConsider the barrier Lyapunov function candidate for the 

subsystem
 

Vi(t) =
k2

bi

π
tan(
πs2

i

2k2
bi

)+
1
2

W̃T
ci(t)W̃ci(t)+

1
2

W̃T
ai(t)W̃ai(t) (67)

W̃ci = Ŵci−W∗i W̃ai = Ŵai−W∗iwhere  and  are critic and actor
NNS approximation errors, respectively.

si+1 = x̂i+1− α̂iFrom the definitions of , we have
 

ṡi = si+1+ α̂i+ ŴT
i, f S i, f ( ˆ̄xi)+ lie1− ˙̂αi−1. (68)

ViThe time derivative of  is
 

V̇i(t) =
si

cos2(πs2
i /2k2

bi)
ṡi+ W̃T

ci(t)
˙̃Wci(t)+ W̃T

ai(t)
˙̃Wai(t). (69)

ϑsi = si/cos2(πs2
i /2k2

bi)Let . As a result, (69) becomes
 

V̇i(t) = ϑsisi+1−
ηi

ri
tan(
πs2

i

2k2
bi

)− η̄i

ri
ϑ2

si−
ϑsi

2ri
ŴT

aiS Ji(si)

+ϑsi(ŴT
i, f S i, f (x̂i)+ lie1− ˙̂αi−1)−γciW̃T

ci(t)

×S Ji(si)S T
Ji(si)ŴT

ci(t)−γaiW̃T
ai(t)S Ji(si)

×S T
Ji(si)Ŵai(t)+ (γai−γci)W̃T

ai(t)S Ji(si)

×S T
Ji(si)Ŵci(t). (70)

W̃ci(t) = Ŵci(t)−W∗i W̃ai(t) = Ŵai(t)−
W∗i

Similarly, by using  and 
, there are the following equations:

 

W̃T
ci(t)S Ji(si)S T

Ji(si)Ŵci(t)

=
1
2

W̃T
ci(t)S Ji(si)S T

Ji(si)W̃ci(t)−
1
2

(W∗TJi S i(si))2

+
1
2

ŴT
ci(t)S Ji(si)S T

Ji(si)Ŵci(t) (71)
 

W̃T
ai(t)S Ji(si)S T

Ji(si)Ŵai(t)

=
1
2

W̃T
ai(t)S Ji(si)S T

Ji(si)W̃ai(t)−
1
2

(W∗TJi S Ji(si))2

+
1
2

ŴT
ai(t)S Ji(si)S T

Ji(si)Ŵai(t). (72)

Substituting (71) and (72) into (70), one has
 

V̇i(t) = ϑsisi+1−
ηi

ri
tan(
πs2

i

2k2
bi

)− η̄i

ri
ϑ2

si−
ϑsi

2ri
ŴT

aiS Ji

+ϑsi(ŴT
i, f S i, f (x̂i)+ lie1− ˙̂αi−1)− γci

2
W̃T

ciS Ji

×S T
JiW̃ci(t)+ (γai−γci)W̃T

aiS JiS T
JiŴci−

γci

2

× ŴT
ci(t)S Ji(si)S T

Ji(si)Ŵci(t)−
γai

2
W̃T

ai(t)S Ji(si)

×S T
Ji(si)W̃ai(t)−

γai

2
ŴT

ai(t)S Ji(si)S T
Ji(si)Ŵai(t)

+ (
γai

2
+
γci

2
)(W∗TJi S Ji(si))2. (73)

Similarly, we can get 

(γai−γci)W̃T
ai(t)S Ji(si)S T

Ji(si)Ŵci(t)

≤ γai−γci

2
W̃T

ai(t)S Ji(si)S T
Ji(si)W̃ai(t)

+
γai−γci

2
ŴT

ci(t)S Ji(si)S T
Ji(si)Ŵci(t) (74)

 

ϑsisi+1 ≤
ϑ2

si

2
+

1
2

k2
bi+1 (75)

 

ϑsi(ŴT
i, f S i, f (x̂i)+ lie1− ˙̂αi−1)

≤ 3
2
ϑ2

si+
1
2

l2i k2
e +

1
2

˙̂α2
i−1+

1
2

ŴT
i, f S i, f (x̂i)S i, f (x̂i)ŴT

i, f (76)
 

−ϑsi

2ri
ŴT

ai(t)S Ji ≤
ϑ2

si

4ri
+

1
4ri

ŴT
ai(t)S Ji(si)S T

Ji(si)ŴT
ai(t). (77)

Substituting (74)–(77) into (73), one has
 

V̇i(t) ≤ −
ηi

ri
tan(
πs2

i

2k2
bi

)− (
η̄i

ri
− 1

4ri
−2)ϑ2

si

+
1

4ri
ŴT

ai(t)S JiS T
JiŴ

T
ai(t)+

l2i k2
e

2
+

k2
bi+1

2

+
˙̂α2

i−1

2
+

1
2

ŴT
i, f S i, f (x̂i)S T

i, f (x̂i)ŴT
i, f

− γci

2
W̃T

ci(t)S JiS T
JiW̃ci(t)−

γci

2
W̃T

ai(t)

×S JiS T
JiW̃ai(t)− (γci−

γai

2
)(ŴT

ci(t)S Ji)2

− γai

2
(ŴT

ai(t)S Ji(si))2+ (
γai

2
+
γci

2
)

× (W∗TJi (t)S Ji(si))2. (78)

λmax
S i, f

S i, f (x̂i)S i, f (x̂i)

λmin
S Ji

S Ji(si)S T
Ji(si)

Let  be  the  maximal  eigenvalue of ,  and
 be  the  minimal  eigenvalue  of .  Inequality

(78) can then become
 

V̇i(t) ≤ −
ηi

ri
tan(
πs2

i

2k2
bi

)− (
η̄i

ri
− 1

4ri
−2)ϑ2

si

− γci

2
λmin

S Ji
W̃T

ai(t)W̃ai(t)−
γci

2
λmin

S Ji
W̃T

ci(t)W̃ci(t)

− (
γai

2
− 1

4ri
)(ŴT

ai(t)S Ji(si))2+Di

− (γci−
γai

2
)(ŴT

ci(t)S Ji)2 (79)

Di = sup
t≥0
{Di(t)} Di(t) =

l2i k2
e

2 +
k2

bi+1
2 +

˙̂α2
i−1
2 +

γai+γci
2

(W∗TJi S Ji)2 + 1
2λ

max
S i, f

ŴT
i, f (x̂i)Ŵi, f (x̂i)

where  and 

 .
γai γci ri η̄iWe design  the  parameters , , ,  and ,  which  satisfy

the following inequalities:
 

γci−
γai

2
> 0 (80)

 

γai

2
− 1

4ri
> 0 (81)
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η̄i

ri
− 1

4ri
−2 > 0. (82)

From (80)–(82) and Lemma 1, we have
 

V̇i(t) ≤ −
ηi

ri
tan(
πs2

i

2k2
bi

)− γci

2
λmin

S Ji
W̃T

ai(t)W̃ai(t)

− γci

2
λmin

S Ji
W̃T

ci(t)W̃ci(t)+Di. (83)

ηi0 = ηiπ/k2
biDenote , (83) can then be rewritten as

 

V̇i(t) ≤ −
k2

biηi0

πri
tan(
πs2

i

2k2
bi

)− γci

2
λmin

S Ji
W̃T

ai(t)W̃ai(t)

− γci

2
λmin

S Ji
W̃T

ci(t)W̃ci(t)+Di. (84)

ci =min{ηi0/ri,γciλ
min
S Ji
,γciλ

min
S Ji
}Let , then (84) becomes

 

V̇i ≤ −ciVi+Di. (85)

From (85), we have that
 

Vi(t) ≤ Vi(t0)e−ci(t−t0)+
Di

ci
. (86)

si = x̂i− α̂i−1 |x̂i| = |si+ α̂i−1| < kbi+Ai
|α̂i−1| ≤ Ai Ai ei(t) = xi− x̂i
|xi| = |ei+ x̂i| < ke+ kbi+Ai

kbi < kci−Ai− ke |xi(t)| ≤ kci
t→∞ e−(t−t0)→ 0 Ti t ≥ Ti∥∥∥W̃ai(t)

∥∥∥ ≤ √2Di/ci
∥∥∥W̃ci(t)

∥∥∥ ≤ √2Di/ci

ei si
∥∥∥Ŵai(t)

∥∥∥ ∥∥∥Ŵci(t)
∥∥∥ ∥S i∥

α̂i

∥∥∥∥ ˙̂Wai(t)
∥∥∥∥ ṡi |α̂i| ≤ Ai+1 Ai+1 > 0

˙̂αi

Since ,  we  have ,
( ,  is  a  positive  constant).  Since ,  it
has .  Therefore,  if  we  define

, then we can prove . From (86), as
, . It follows that there exists , when ,

 and .  Then,  we  can
obtain that , , , ,  and  are bounded, so

, ,  and  are  bounded  ( ,  is  a
constant), and then  is bounded.

sn = x̂n− α̂n−1−λ
sn

Step n: Define the error variable as  for the
-system.  In  order  to  compensate  for  the  effect  of  the

saturation,  the  following  system  is  constructed  to  generate
signal:
 

λ̇ = −kλ+△u (87)

△u = h(u)−uwhere k is a positive constant and .
The following change of coordinates is made:

 

ṡn = u+ kλ+ ŴT
n, f S n, f ( ˆ̄xn)+ ln(y− ŷ)− ˙̂αn−1. (88)

sn

Considering the auxiliary dynamic system (87), the optimal
value function for the -subsystem is expressed as
 

J∗n(sn) = min
u∈Ψ(Ωsn)

w ∞
t

(
k2

bn

π
tan(
πs2

n

2k2
bn

)+ rn(u(τ))2)dτ

=
w ∞

t
(
k2

bn

π
tan(
πs2

n

2k2
bn

)+ rn(u∗(τ))2)dτ (89)

Ψ(Ωsn)
Ωsn = {sn : |sn| < kbn} rn > 0

where u is  the  optimal  controller,  is  the  admissible
control set of u,  and  is a constant.

The  optimal  value  function  (89)  can  be  rewritten  as  the
following equation:
 

J∗n(sn) = ηn
S n(n)

2
+2η̄n

k2
bn

π
tan(
πs2

n

2k2
bn

)−ηn
S n(n)

2

−2η̄n
k2

bn

π
tan(
πs2

n

2k2
bn

)+ J∗n(sn)

= ηn
S n(n)

2
+2η̄n

k2
bn

π
tan(
πs2

n

2k2
bn

)+ Jcn(sn) (90)

Jcn(sn) = −ηnS n(n)/2−2η̄nk2
bn tan(πs2

n/2k2
bn)/π+ J∗n(sn)where .

snThe HJB equation of the -subsystem is defined as
 

Hn(sn,u∗,
∂J∗n(sn)
∂sn

)

=
k2

bn

π
tan(
πs2

n

2k2
bn

)+ rn(u∗)2+ (
2ηn

sn
sin(
πs2

n

2k2
bn

)cos(
πs2

n

2k2
bn

)

+
∂Jcn(sn)
∂sn

+
2η̄nsn

cos2(πs2
n/2k2

bn)
)(u∗+ kλ+ ŴT

n, f

×S n, f ( ˆ̄xn)+ ln(y− ŷ)− ˙̂αn−1) = 0. (91)
∂Hn/∂u∗ = 0By solving , we can obtain

 

u∗ = − ηn

rnsn
sin(
πs2

n

2k2
bn

)cos(
πs2

n

2k2
bn

)− η̄nsn

rncos2(πs2
n/2k2

bn)

− 1
2rn

∂Jcn(sn)
∂sn

. (92)

∂Jcn(sn)/∂sn
sn

Note  that  is  an  unknown  function  of  variable
. It can be approximated as follows:

 

∂Jcn(sn)
∂sn

=W∗Tn S Jn(sn)+εn(sn) (93)

W∗n S Jn(sn)
εn(sn)

|εn(sn)| ≤ δ̄n δ̄n
u∗

where  is  an  ideal  weight  vector,  is  the  basis
function  vector.  is  the  approximation  error  satisfying

 and  is  a  positive  real  constant.  The  ideal
optimal virtual controller  can be devised as
 

u∗ = − ηn

rnsn
sin(
πs2

n

2k2
bn

)cos(
πs2

n

2k2
bn

)− η̄nsn

rncos2(πs2
n/2k2

bn)

− 1
2rn

(W∗Tn S Jn(sn)+εn(sn)). (94)

From (92) and (93), we can get
 

∂Ĵcn(sn)
∂sn

= ŴT
cnS Jn(sn) (95)

 

u = − ηn

rnsn
sin(
πs2

n

2k2
bn

)cos(
πs2

n

2k2
bn

)− η̄nsn

rncos2(πs2
n/2k2

bn)

− 1
2rn

ŴT
anS Jn(sn) (96)

Ŵcn Ŵan
sgn(sn)sn , kbn

√
Υ (Υ = 1,2, . . .)

limsn→0 sin(πs2
n/2k2

bn)cos(πs2
n/

2k2
bn)/sn→ 0

where  and  are  the  critic  and  actor  NN  weights,
respectively.  Similarly,  is
obvious.  Then,  we  can  get 

.  The  singularity  problem  in  the  optimal
controller u is effectively avoided.

From (91), (95), and (96), the approximate Hamiltonian is
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Hn(sn,u,
∂Ĵn(sn)
∂sn

)

=
k2

bn

π
tan(
πs2

n

2k2
bn

)+ rn(
ηn

rnsn
sin(
πs2

n

2k2
bn

)cos(
πs2

n

2k2
bn

)

+
η̄nsn

rncos2(πs2
n/2k2

bn)
+

1
2rn

ŴT
anS Jn)2+ (

2ηn

sn
sin(
πs2

n

2k2
bn

)

× cos(
πs2

n

2k2
bn

)+
2η̄nsn

cos2(πs2
n/2k2

bn)
+
∂Jcn

∂sn
)(u+ŴT

n, f S n, f

+ ln(y− ŷ)− ˙̂αn−1+ kλ). (97)
The Bellman error is defined as

 

En = Hn(sn,u,
∂Ĵcn(sn)
∂sn

)−Hn(sn,u∗,
∂J∗n(sn)
∂sn

)

= Hn(sn,u,
∂Ĵcn(sn)
∂sn

). (98)

The critic NN adaptive law is given as
 

˙̂Wcn(t) = −γcnS Jn(sn)S T
Jn(sn)ŴT

cn(t) (99)
γcn > 0where  is the critic designed constant.

In order  to ensure the stability and optimal  performance of
the nonlinear system, the actor NN adaptive law is designed as
 

˙̂Wan(t) = −S Jn(sn)S T
Jn(sn)(γan(Ŵan(t)− Ŵcn(t))

+γcnŴcn(t)) (100)
γan > 0where  is the critic designed constant.

Consider  the  overall  Lyapunov  function  candidate  for  the
final step as
 

V(t) =
n−1∑
i=1

Vi+
1
2
λ2+

k2
bn

π
tan(
πs2

n

2k2
bn

)+
1
2

W̃T
cn(t)W̃cn(t)

+
1
2

W̃T
an(t)W̃an(t) (101)

W̃cn = Ŵcn−W∗n W̃an = Ŵan−W∗nwhere  and  are  critic  and
actor NN approximation errors, respectively.

VnThe time derivative of Lyapunov function  is
 

V̇(t) =
n−1∑
i=1

V̇i+λλ̇+
sn

cos2(πs2
n/2k2

bn)
ṡn+ W̃T

cn(t) ˙̃Wcn(t)

+ W̃T
an(t) ˙̃Wan(t). (102)

Similarly, we can get
 

V̇(t) =
n−1∑
i=1

V̇i−
ηn

rn
tan(
πs2

n

2k2
bn

)− η̄n

rn
ϑ2

sn−
ϑsn

2rn
ŴT

anS Jn

+ϑsn(kλ− ˙̂αn−1+ lne1+ ŴT
n, f S n, f (x̂n))

−λ(−kλ+∆u)−γcnW̃T
cn(t)S JnS T

JnŴT
cn(t)

+ (γan−γcn)W̃T
an(t)S Jn(sn)S T

Jn(sn)Ŵcn(t)

−γanW̃T
an(t)S Jn(sn)S T

Jn(sn)Ŵan(t). (103)
W̃cn(t) = Ŵcn(t)−W∗n W̃an(t) = Ŵan(t)−W∗nBy  using  and ,

there are the following equations:
 

W̃T
cn(t)S Jn(sn)S T

Jn(sn)Ŵcn(t)

=
1
2

W̃T
cn(t)S Jn(sn)S T

Jn(sn)W̃cn(t)+
1
2

ŴT
cn(t)S Jn(sn)

×S T
Jn(sn)Ŵcn(t)− 1

2
(W∗TJn S Jn(sn))2 (104)

 

W̃T
an (t)S Jn(sn)S T

Jn(sn)Ŵan(t)

=
1
2

W̃T
an(t)S Jn(sn)S T

Jn(sn)W̃an(t)+
1
2

ŴT
an(t)S Jn(sn)

×S T
Jn(sn)Ŵan(t)− 1

2
(W∗TJn S Jn(sn))2. (105)

Substituting (104) and (105) into (103), one has
 

V̇(t) =
n−1∑
i=1

V̇i−
ηn

rn
tan(
πs2

n

2k2
bn

)− η̄n

rn
ϑ2

sn−
ϑsn

2rn
ŴT

anS Jn

+ϑsn(ŴT
n, f S n, f (x̂n)+ kλ+ lne1− ˙̂αn−1)

−λ(−kλ+∆u)− γcn

2
W̃T

cn(t)S Jn(sn)

×S T
Jn(sn)W̃cn(t)− γcn

2
ŴT

cn(t)S Jn(sn)

×S T
Jn(sn)Ŵcn(t)− γan

2
W̃T

an(t)S Jn(sn)

×S T
Jn(sn)W̃an(t)− γan

2
ŴT

an(t)S Jn(sn)

×S T
Jn(sn)Ŵan(t)+ (

γan

2
+
γcn

2
)(W∗TJn S Jn(sn))2

+ (γan−γcn)W̃T
an(t)S Jn(sn)S T

Jn(sn)Ŵcn(t). (106)

Using Young’s inequality, there is the following fact that:
 

(γan−γcn)W̃T
an(t)S Jn(sn)S T

Jn(sn)Ŵcn(t)

≤ γan−γcn

2
W̃T

an(t)S Jn(sn)S T
Jn(sn)W̃an(t)

+
γan−γcn

2
ŴT

cn(t)S Jn(sn)S T
Jn(sn)Ŵcn(t) (107)

 

ϑsn (ŴT
n, f S n, f (x̂n)+ kλ+ lne1− ˙̂αn−1)

≤ 3
2
ϑ2

sn+
kϑ2

sn

2
+

k
2
λ2+

1
2

l2nk2
e +

1
2

˙̂α2
n−1

+
1
2

ŴT
n, f S n, f (x̂n)S n, f (x̂n)ŴT

n, f (108)

 

−ϑsn

2ri
ŴT

an(t)S Jn

≤ ϑ
2
sn

4rn
+

1
4rn

ŴT
an(t)S Jn(sn)S T

Jn(sn)ŴT
an(t) (109)

 

−λ(−kλ+∆u) ≤ −kλ2+
1
2
λ2+

1
2
∆u2. (110)

Substituting (107)–(110) into (106), one has
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V̇(t) ≤
n−1∑
i=1

V̇i−
ηn

rn
tan(
πs2

n

2k2
bn

)− (
η̄n

rn
− 1

4rn
− 3

2
− k

2
)ϑ2

sn

+
l2nk2

e

2
+
∆u2

2
+
λ2

2
− γcn

2
W̃T

cn(t)S JnS T
JnW̃cn(t)

− γcn

2
W̃T

an(t)S JnS T
JnW̃an(t)− kλ2

2
+

˙̂α2
n−1

2

− (γcn−
γan

2
)(ŴT

cn(t)S Jn(sn))2− (
γan

2

− 1
4rn

)(ŴT
an(t)S Jn(sn))2+

γan+γcn

2

× (W∗TJn (t)S Jn(sn))2+
1
2

ŴT
n, f S n, f (x̂n)

×S T
n, f (x̂n)ŴT

n, f . (111)

λmax
S n, f

S n, f (x̂n)S T
n, f (x̂n)

λmin
S Jn

S Jn(sn)S T
Jn(sn) V̇n(t)

Let  be the maximal eigenvalue of  and
 be  the  minimal  eigenvalue  of ,  can

be rewritten as
 

V̇(t) ≤
n−1∑
i=1

V̇i−
ηn

rn
tan(
πs2

n

2k2
bn

)− (
η̄n

rn
− 1

4rn
− 3

2
− k

2
)ϑ2

sn

+
1
2

l2nk2
e +

1
2

˙̂α2
n−1+

1
2
λmax

S n, f
ŴT

n, f (x̂n)Ŵn, f (x̂n)

− (
k
2
− 1

2
)λ2+

1
2
∆u2− (γcn−

γan

2
)(ŴT

cn(t)S Jn)2

− γcn

2
λmin

S Jn
W̃T

an(t)W̃an(t)− γcn

2
λmin

S Jn
W̃T

cn(t)W̃cn(t)

− (
γan

2
− 1

4rn
)(ŴT

an(t)S Jn)2+ (
γan

2
+
γcn

2
)

× (W∗TJn (t)S Jn)2. (112)
γan γcn rn η̄nBy  designing  the  parameters , , , ,  and k,  which

satisfy the following inequalities:
 

γcn−
γan

2
> 0 (113)

 

γan

2
− 1

4rn
> 0 (114)

 

η̄n

rn
− 1

4rn
− 3

2
− k

2
> 0 (115)

 

k
2
− 1

2
> 0. (116)

Inequality (112) is rewritten as
 

V̇(t) ≤
n−1∑
i=1

V̇i−
ηn

rn
tan(
πs2

n

2k2
bn

)− (
k
2
− 1

2
)λ2

− γcn

2
λmin

S Jn
W̃T

an(t)W̃an(t)− γcn

2
λmin

S Jn
W̃T

cn(t)

× W̃cn(t)+Dn (117)

Dn = sup
t≥0
{Dn(t)} Dn(t) = l2nk2

e
2 +

˙̂α2
n−1
2 +

1
2λ

max
S n, f

ŴT
n, f (x̂n)

Ŵn, f (x̂n)+ ∆u2

2 +
γan+γcn

2 (W∗TJn (t)S Jn)2

where  and 

.

ηn0 = ηnπ/k2
bnDenote , then (117) can be rewritten as

 

V̇(t) ≤
n−1∑
i=1

V̇i−
k2

bnηn0

πrn
tan(
πs2

n

2k2
bn

)− (
k
2
− 1

2
)λ2+Dn

− γcn

2
λmin

S Jn
W̃T

an(t)W̃an(t)− γcn

2
λmin

S Jn
W̃T

cn(t)W̃cn(t). (118)

cn =min{ηn0/rn, k−1, γcnλ
min
S Jn
,γcnλ

min
S Jn
}Let ,  then  (118)

becomes
 

V̇ ≤ −cV +D. (119)
c =min1≤i≤n {ci} D =

∑n
i=1 DiLet  and . Then, (119) becomes

 

V(t) ≤ V(t0)e−c(t−t0)+
D
c
. (120)

T =max1≤i≤n {Ti}
t ≥ T |si| ≤

√
2Dn/cn

∥∥∥W̃ai(t)
∥∥∥ ≤ √2Dn/cn∥∥∥W̃ci(t)

∥∥∥ ≤ √2Dn/cn i = 1, ...,n√
2Dn/cn cn Dn

cn

|si(t)|
∥∥∥W̃ai(t)

∥∥∥ ∥∥∥W̃ci(t)
∥∥∥

Ŵai(t) Ŵci(t)
Ŵi, f (t) x̂i xi

|xi| ≤ kci(i = 1, ...,n)

From  (120),  it  follows  that  there  exists ,
when , , ,  and

 ( ).  Clearly,  the  reduction  of
 can be achieved by increasing  or  decreasing .

Therefore, the parameter  can be chosen to be large enough
to  render  the  tracking  error  and , ,  and 
sufficiently  small.  Then,  we  can  obtain  that , ,

,  and  are  bounded,  and from Theorem 1,  is  UUB
and .  

IV.  Simulation Example

In  this  section,  an  example  will  be  used  to  test  the
effectiveness  of  the  proposed  controller.  Consider  the
following strict-feedback nonlinear systems as:
 

ẋ1(t) = x2(t)− sin(2x1)cos(2x1)

ẋ2(t) = (1− (2+ sin(x1)cos(x2))2+us

x1(t) x2(t) ∈ R us ∈ R

yr = 2.5sin(t−2)+1

where  and  are  the  system  states  and 
represents  the  saturation  form  of  the  control  input.  The
reference signal is given as .

Then, the state observer is designed as
 

˙̂x1(t) = x̂2(t)− ŴT
1, f S 1, f (x̂1)+4(y− ŷ)

˙̂x2(t) = ŴT
2, f S 2, f (x̂1, x̂2)+h(u)+8(y− ŷ)

ŷ = x̂1.

Q = ILetting  and solving (4), we can get a positive-definite
matrix
 

P =
 1.49 −0.5
−0.5 0.1567

 .
k = 5

α̂1(t) u(t) ˙̂W f
˙̂Wc1

˙̂Wa1
˙̂Wc2

˙̂Wa2 η1 = 80
η2 = 20 η̄1 = 58 η̄2 = 4.75 kb1 = 8 kb2 = 22 r1 = 20 r2 = 25
γa1 = 5 γc1= 0.5 γa2 = 1.7 γc2= 2 ηW1 = 0.5 ηW2 = 0.2
ρW1 = 15 ρW2 = 7 ρ = 5
kc1 = 4 kc2 = 20

In  the  auxiliary  dynamic  system  (87),  the  parameter .
The  design  parameters  of  (26),  (96),  (9), 
(29),  (30),  (99), and  (100) are chosen as ,

, , , , , , ,
, , , , , ,

, , .  The  constrained  boundaries  are
 and .

x1(0) = −0.3 Ŵc1(0) = [1,1,1,
1,1]T Ŵa1(0) = [0.1,0.1,0.1,0.1,0.1]T Ŵc2(0) = [1,1,1,1,1]T

Ŵa2(0) = [2, 2, 2, 2, 2]T Ŵ f 1(0) = [0.2, 0.2, 0.2, 0.2, 0.2]T

Ŵ f 2(0) = [0.5,0.5,0.5,0.5,0.5]T λ(0) = −1

The  initial  values  are  set  as , 
, , ,

, ,
, ,  and  other  initial
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values are zeros.

yr

xi
x̂i, (i = 1,2) |x1| ≤ kc1 |x2| ≤ kc2

The simulation results are shown by Figs. 1–8. Fig. 1 shows
the control output y and the reference signal , it is clear that
an  ideal  tracking performance  can  be  obtained. Figs. 2 and 3
show  the  trajectories  of  states  and  their  estimates

 along  with  and ,  respectively.
Figs. 4–6 profile the 2-norm of the weights for the critic, actor

and  observer  NN; Figs. 7 and 8 display  the  trajectories  of
controller u without input saturation and with input saturation,
respectively.

It  can  be  clearly  observed  from  the  simulation  results  that
the proposed control method ensures all signals in the closed-
loop system are  UUB, that  the  system output y can track the
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given  reference  signal,  and  that  all  the  system  states  are
ensured not to violate any constraints.  

V.  Conclusion

In this  paper,  an optimal control  has been developed based
on  the  backstepping  technique  using  a  simplified  RL  for  a
class  of  uncertain  nonlinear  systems  with  unmeasured  states,
input saturation and state constraints. The immeasurable states
were  approximated  by  the  state-observer.  At  the  same  time,
the  tan-type  BLF  has  been  introduced  to  vary  the  constraint
boundary. Meanwhile, the control design can also release the
condition  of  persistent  excitation.  Based  on  the  Lyapunov
method, it was proven that the proposed adaptive NN optimal
controller  can  ensure  that  the  closed-loop system is  UUB.  In
addition, the tracking error of the system converges to a small
neighborhood of the origin and all  states did not violate their
constraints.  Finally,  the  simulation  further  demonstrated  the
effectiveness  of  the  proposed  control  method.  One  possible
research point for future research is to extend the SISO system
in this work to the MIMO case with milder assumptions.
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