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Output-Feedback Based Simplified Optimized
Backstepping Control for Strict-Feedback
Systems with Input and State Constraints

Jiaxin Zhang, Kewen Li, and Yongming Li, Senior Member, IEEE

Abstract—In this paper, an adaptive neural-network (NN)
output feedback optimal control problem is studied for a class of
strict-feedback nonlinear systems with unknown internal
dynamics, input saturation and state constraints. Neural networks
are used to approximate unknown internal dynamics and an
adaptive NN state observer is developed to estimate
immeasurable states. Under the framework of the backstepping
design, by employing the actor-critic architecture and
constructing the tan-type Barrier Lyapunov function (BLF), the
virtual and actual optimal controllers are developed. In order to
accomplish optimal control effectively, a simplified reinforcement
learning (RL) algorithm is designed by deriving the updating laws
from the negative gradient of a simple positive function, instead of
employing existing optimal control methods. In addition, to
ensure that all the signals in the closed-loop system are bounded
and the output can follow the reference signal within a bounded
error, all state variables are confined within their compact sets all
times. Finally, a simulation example is given to illustrate the
effectiveness of the proposed control strategy.

Index Terms—Backstepping design, immeasurable states, neural-
networks (NNs), optimal control, state constraints.

1. INTRODUCTION

N the last decade, fuzzy logic systems (FLSs) and NNs

were widely used in adaptive backstepping recursive
control design [1]-[3]. In [1], direct adaptive NN control was
presented for a class of nonlinear systems with unknown
nonlinearities. The authors focused on adaptive fuzzy tracking
control in [2] for a class of nonlinear systems. The result [3]
developed two different backstepping NN control approaches
for a class of strict-feedback systems with unknown nonlin-
carities. In [4], the fuzzy logic systems and error
transformation-based method were used in online learning of
completely unknown dynamics and prescribed performance
tracking, respectively. The authors developed a finite-time
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adaptive fuzzy control strategy for a class of nonlinear strict-
feedback systems in [5]. Furthermore, the authors in [6]
proposed a global nested PID control method for nonlinear
systems with unknown system nonlinearities without
linearized approximators. However, it is worth mentioning
that the above-mentioned adaptive backstepping control
methods all assume that the states of the systems are
measurable and can be used for control design directly.

As pointed out in [7]-[10], in practice, state variables were
often unmeasured for many nonlinear systems. The authors in
[71-[10] designed different state observers, and some
intelligent adaptive output feedback control approaches were
developed for a class of uncertain nonlinear systems with
immeasurable states. Although the great progress has been
made in intelligent adaptive control for nonlinear systems, the
constraint problems were not fully considered.

In engineering control, saturation, dead zones and time-
delay are common phenomena, all stemming from the
existence of control constraints. Once the control is
constrained, the stability of the nonlinear system is often
difficult to guarantee. In [11]-[18], the control problems for
nonlinear systems with full-state constraints and partial state
constraints were studied. The stability was guaranteed without
violation of any constraints. In order to clarify the effect of
control constraints on system stability, many scholars
investigated such problems based on the BLF. The authors
proposed an indirect adaptive fuzzy controller in [19] for a
class of uncertain nonlinear systems with input and output
constrains. In [20], an adaptive fault-tolerant control (FTC)
scheme was proposed for a class of nonlinear systems with
control inputs and system state constraints. The authors
designed an adaptive fuzzy control scheme in [21] for a class
of uncertain nonlinear systems with input saturation and
output constraints. In [22], the authors addressed the
cooperative control problem for multiple high-speed trains,
which guaranteed that the speed and the position of high-
speed trains were confined to specific speed limitations, and
allowed distances ratified by the automatic train protection
and the moving authority, respectively. Even though various
intelligent control strategies [11]-[22] have been devised in
the constraints problem for nonlinear dynamics, optimization
in control design and stability analysis has not been
considered therein.

As the foremost branch of modern control theory, optimal
control was developed by Bellman [23] and Chambers [24] 50
years ago. Since then, some significant results were reported,
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for example in [25]-[33]. In [25], a novel RL-based robust
adaptive controller was developed for the continuous-time
(CT) uncertain nonlinear systems with input constraints. The
authors developed an adaptive RL solution in [26] for the
infinite-horizon optimal control problem of constrained-input
continuous-time nonlinear systems in the presence of
nonlinearities with unknown structures. In [27], an optimal
NN control scheme was presented for CT nonlinear systems
with asymmetric input constraints. The authors in [28]
proposed an integral reinforcement learning (IRL) algorithm
on an actor-critic structure for a class of affine nonlinear
systems, wherein the partially-unknown constrained-input was
considered. The finite-time optimal control problem was
studied in [29] for the high-order nonlinear systems whose
powers were positive odd ratio numbers. However, all of the
above adaptive optimal control methods are limited to affine
nonlinear systems and thus cannot be applied to nonlinear
systems with strict-feedback. To handle this issue, a control
technique called optimized backstepping (OB) was first
proposed in [30] by implementing tracking control for a class
of strict-feedback systems. Recently, the authors in [31]
investigated an adaptive RL optimal control design problem
for a class of nonstrict-feedback discrete-time systems. In
order to accomplish optimal control effectively, the authors
designed a simplified RL algorithm in [32] instead of
employing the existing RL-based optimal control methods.

Although an optimized control method was developed in
[32] based on the OB technique using simplified RL for
nonlinear systems, input saturation and state constraints under
unpredictable systems states were not considered. Based on
the above results, this paper proposes an optimal control
scheme based on NN approximation for a class of strict-
feedback systems with unknown dynamics, input saturation
and state constraints. Compared with the existing works, the
main contributions of this paper are listed in the following.

1) In this paper, an adaptive NN backstepping output
feedback simplified optimal control method is proposed for a
class of uncertain nonlinear systems with unmeasured states,
input saturation and state constraints. The tan-type barrier
optimal cost functions are constructed for subsystems. In
contrast with [30], the method proposed here does not require
priori knowledge due to the utilization of the state observer.

2) By separating the optimal value function into a novel
error form, the proposed control strategy can effectively solve
the optimal tracking control problem. Unlike [30] and [32],
this paper adopts a stepwise optimization strategy to analyze
the stability of each step of the system. Each controller is
designed in this paper to be the optimal solution for the
corresponding subsystem, thus optimizing the control of the
whole system.

II. PRELIMINARIES

A. Problem Statement
Consider the following strict-feedback nonlinear systems as:
Xi=fi(x)+xi41,1<i<n-1
Xn = fu(Xn) +us
y=x1
where the state X, =[x[,x2,...,x,]7 €R"” and yeR is the
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output of system, fi(x;) (i=1,2,...,n) are unknown smooth
functions. fij(X;)+ x;4+1 and f,(X,)+us are assumed Lipschitz
continuous and stabilizable on the sets containing the origin.
us € R denotes the plant input subjected to the saturation
described by

sgn(u)id |u| > g

Us =
u

where i, is the saturation bound of u and u is the control
input.

Assumption 1 [33], [34]: Assume that all the states (expect
output y) are immeasurable and constrained in compact sets,
i.e., |xi| < ke, (i=1,...,n), where k.; > 0 is a known constant.

Assumption 2 [35], [36]: The neural networks approxima-
tion error & = [81,f,...,5n,f]T is bounded, i.e., “8f|| <efm.

2

|u| < i1

The neural network weight W7 is bounded by a known posi-
tive constant Wy, i.e., ”W;“ <Weum.

Control Objective: The control objective of this paper is to
obtain a NN backstepping output feedback optimal control
that not only stabilizes system (1), but also minimizes the
value function, while ensuring that all the closed-loop signals
are guaranteed to be uniformly ultimately bounded (UUB).
All the system states are ensured not to transgress their
constrained sets so that the output y can track the reference
signal y,.

B. Neural Networks

It is well known that NNs can approximate an unknown
continuous function f(x):R" — R™ over a compact set D.
Then, for any constant & > 0, there exists a radial-basis-fun-

ction NN (RBFNN) WS (x) such that sup|f(x)- W7S (x)| <
xeD

g, where xe Q, cR? is the input vector, n is a positive
integer, W € R™™ is the NN weight and the neuron number is
r. Each element S;(x) (i=1,...,r) of vector S(x) is a basis
function with
(x— )" (x— ;)
— )
1

where y; € R" is the center vector and o is the width of
Gaussian function.

Lemma 1: If the continuous function V(t) e R satisfies
V(1) < —cV()+ D, where ¢ >0 and D > 0 are constants, then
the following inequality holds:

Si(x) = exp(—

: D
V(1) < V(tg)e 70 + =,
Cc

Lemma 2 (Young’s Inequality): For any vectors x,y € R,
the following Young’s inequality holds:
Ay < @ )l + (1 /b’
where n>0,a>1,b>1,and (a—1)(b-1)=1.

III. MAIN RESULT

A. State Observer Design

In this section, a state observer needs to be designed to
estimate the unmeasured states. Then, under the actor-critic
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architecture, a NN adaptive backstepping output feedback
optimal controller will be designed based on the designed
state observer. Finally, a stability analysis of the closed-loop
system is given to prove our main conclusions. Rewrite
system (1) as the following state space expression form:

n
X=Ax+Ly+ Z B, fi(X;) + Bpug
i=1

y=Cx 3
—11 ll X1

where A = : I L= Lx=| . |[Bi=
-, 0 -+ 0 1, Xn

0 ..1..07% B,=[0 ... 1", C=[10...0], A4is a

strict Hurwitz matrix and /; (i = 1, ...,n) are observer gains.
Thus, for a given positive definite matrix Q, there exists a
matrix P > 0 that satisfies the following equation:

ATP+PA=-Q. )

Since fi(X;) is an unknown continuous function, f;(X;) can

be identified by the NNs fi(%;|W; /) = W[fs,», (&) (1<i<n),
and we assume that

[il®) = W LS p () + & p (%) ()

where Wl*}{ and &; ¢(X;) are the ideal weight vector and the

approximation error, respectively, and W;, 1 is the estimate of

w; I

Since the state variables in the system are immeasurable, to

achieve the purpose of output feedback control design, the
nonlinear state observer is designed as follows:

&= fi(Zi|Wip) + & + L —9), 1<i<n

S = fuCEn| Wo )+ h(u) + 1,y = )

y=4% (6)
where h(u) = iis X tanh (u/iiy) = fis(e"/s — e #/s) [ s 4 g7U/Es
is a smooth function to approximate the saturation of the
system. Therefore, (2) can be expressed as u; = h(u) + p(u) =
ity X tanh(u/ig) + p(u), where p(u)=us—h(u) is a bounded
function, and |o(«)| = |us — h(u)| < ig(1 —tanh(1)) =m, m >0 is
a constant. Note that within the bound 0 < |u| < &g, p(u) grows
from 0 to m, and |u| changes from 0 to ;. Outside of this
range, p(u) decreases from m to 0.

Then, rewrite (6) as the following form:

= Bilfi(%| Wil + Ly+ A%+ Buh(u)

n
i=1
y=Cx (7
where X; is the estimate of x;.

From (1) and (7), the following error equation can be

obtained:

é=B,pu)+Ae+F-W[S (8)
where F = [fi(x1),..., fu(F)]", e = [e1,....e,]" and e; = x; — &,
i=1,....n, W;'=diag(W,...W;"} s estimated by
Wi = diag(W] ..., W! Jand Sy = [S 1), S sG]
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Theorem 1: The NN weight estimate Wf is updated by

Wf = T]st(?]CA_l - pwel Wf )
where n,, and p,, are positive design parameters. As a result,
the state observer error vector e(t), the estimate errors of the
NN weights Wy = Wy — W7 and W, are ensured to be UUB.
Moreover, the error vector e(¢) converges to the small compact
set Q,, i.e., {e:|le|| < k.}, where k, can be made as small as
desired by appropriately choosing design parameter 7.

Proof: Consider the Lyapunov function candidate

| R
Vo=e pe+ ztr(W}pwl Wy). (10)
Taking the derivative of V results in
Vo = el (AT P+ PA)e +2¢” P(F + Bup(1)
— WIS )+ tr(WEpy! W), (11)

Substituting (9) into (11) yields
Vo = e’ (AT P+ PA)e+2¢" P(F + B,p(u) - WS f)
+1r(W py/ nwS rel CA™ = Wi let|(Wp + W)).  (12)

Since tr(XYT)=tr(YTX)=YTX, for VX,Y €R", we can
obtain

tr(py nwW1S e1CA™Y) = py/qwei CAT' WIS r. (13)

As —tr(Wf(Wf + W) < ||VVf“ “W}‘ - ||Wf||2, (12) becomes

Vo < —el Qe+2e" P(F + B,p(u) — W}S )

+ 03 mver CATWIS el [ W | |7

_ 2
~lerl|W, [ (14)
From Assumption 2, the following inequality holds true:

2¢T P(F - WfT.S 7+ Bup(u))
=2¢" PIWSTS (%) + 87 = WS (%) + Bup(u)]
<20lellIPN2WsmS pp +&pm +m+||Wel[S paa]l  (15)
where ||Sf“ <S8 m,and S p) is a positive constant.
From (14) and (15), it follows that:

Vo < —e' Qe+ 21lellIPN[2W mS pm +erm

+1Bullm +||Wr||S a1+ 03/ nw llell CA™!

1 s+ e |

IA

= tlell® +lell {do + 211Pl(zaa + | Bullm)
+8 = (W, || -

< (llell +do +211Pll (g ar +m) + B llell (16)
where 7 = Apin(Q), Anin(Q) denotes the minimum eigenvalue
of matrix Q; do=4IP|WsuSsu and Bw = [oy nw||CA7!|
S +211PIIS fm + Weml/2.

Let k. = [do +2||P||(ssum +m) +B3,1/7. Vo is negative only if
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lle]| = k.. According to the Lyapunov extension theorem, both
the system observer error e(?), the neural network weights Wf
and the estimate errors of the neural network weights Wy are
UUB. ]

B. Output Feedback Optimized Controller Design and Stability
Analysis

In this section, the optimal tracking controller is designed
under the framework of backstepping technology. An
auxiliary design system is introduced to reduce the effect
arisen from input saturation, and the tan-type BLF is
introduced to handle the problem of state constraints. The
actor-critic architecture was used to construct optimal virtual
c_ontrollers &i(r) (i=1,...,n—1) and updated weights W.;,
Wa. A simplified RL algorithm is developed, which is
generated from the partial derivative of the HIB equation. In
the n-th step, the optimal actual controller and the updating
weights for critic and actor NNs are obtained.

Step 1: Define the tracking error variable as

SI=Y=Yr (17)
where y, represents the tracking signal, and y,.(¢), y.(t) are
bounded.

Its time derivative along (17) is

$1=Sa+er+ Wl S1 p(R)+L=H - (18)
where %, denotes the ideal optimal virtual controller aj(s1),
ie., % 2 a@](s1). Since |le|| < k., the state observe error e; is
UUB and converges to the compact €,. Then, we can
determine that é; is bounded.

The optimal value function for the sj-subsystem is defined
as

Ji(s))= min

1€¥(Qy)

{7 oG + i@

{7 e+ @@y

(19)

where M(x1) = (k7, /m)tan(rs? /2k7 ), @/(s1) is the optimal
virtual controller, and Qg = {s; : |s1| <kp1} iS a compact set
containing origin. W(Qy;) is the admissible control set of a,
and r; > 0.

By decomposing (19) into the following form:

2 2

oy Sin) UL S1(n)
Jis)=m— (2k2 )=m—
k2 2
—2771—tan( L)+ J5(s1)
n 21
b1
K2 2
S st
2o P an e Qo)
2 Zkb1

where Jei(s1) = —m18 1(n1)/2 = 271 k7, tan(res? /2k3,) /7 + T (s1)
is a real scalar-value function, S(n) = jonl (sinny /ny)dny
(where nj = 7r/kb1 1) and 1y > 0, 71 > 0 are constants. For the
value function Ji(s1) and the optimal virtual controller a}(s1),
the HIB equation of the s;-subsystem is defined as
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aJ(s1)
H 9 9
1(s1, ) 51 )
2 2 2 2
= ﬂtan(ﬁ)—i-rl(o/[)2 + (— 1n( L) cos(—-
n k2 s 242, 2k2
dJc1(s1) 27151 T o
+ a; + W7 .S1¢(x
ds1 cosz(ns%/2ki1))( WS
+h=9)-yr+e1)=0. (21)
By solving 0H; /6(1/* = 0, a] can be obtained as
m nsy 7151
a; = ——si co —_—
ons (2k2 ) (2k2 ricos2(ns?/2k2, )
1 a-]cl(sl)
22
21’1 8s1 ( )

Note that dJ.;(s1)/ds; is an unknown function of variable
s1. It can be approximated by a neural network on the compact
set Qg as

9Jc1(s1)
651
where Wi and §(s;) are the ideal weight vector and the
basis function vector, respectively. £1(s;) is the approximation
error and |e1(s1)| < 1 (8 > 0 is a constant).
Using (23), the ideal optimal virtual controller a} becomes

=WiTS j1(s1)+&1(s1) (23)

2 2

s
n )cos(

. 77151
aj = - gin(—L 1
2
Zkhl

r (:052(7z's%/2k}%1 )

1
ris1 2k§1

1
- Z—(W;”Sn(sl)m(sl)). (24)
r

Since Wy is an unknown constant vector, the estimation
vector W, is used to approximate W7, namely,
afcl(sl)
(9S1
Based on (24), we use W, to approximate Wi in actor
neural networks. The optimal virtual controller & () becomes
2 2 _
s
)cos( %
ricos(msy/2k;,)

=W!S j1(s1). (25)

X . TS
a, = - n sm(—zl
r1s1 2k,

1
2k2,
_ LWT S 1(
2 WS 51).

Remark 1: In order to ensure that the term cos?(zs7/2k7,) in
(26) is not zero, i.e., ns%/Zkil #nY/2(Y=1,2,...), one can
obtain sgn(s|)s| # kp1 VY. Since |s1] < kp1, sgn(s1)s1 # kp1 VY
is obvious. In addition, the equivalent infinitesimal form of
sin(rst/2k7,) is ms7/2k;, when the error vector s; — 0. We
can then get limy, osin(rs?/2k7, ) cos(nst/2k3,)/s, — 0. The
singularity problem in the optimal virtual controller @ is

effectively avoided.
Based on (26), the approximate HJB equation is obtained as

(26)

aJ (s1)
Hy(s1.6), —
10851, D5, )
k; 51 n151 m
= () N S
n Kk, ricos=(msy/2k,,) - risi
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2 2
5 7S 1 o7 2
x sin(—5-)cos(—-)+ —W_. S j1(s1))
2 2 1
ki1 2kiyy 2 ¢
2 2 _
2 s s 2
+(_771 sin(—21 )co (—21 SNV NTTIRN 7712S1 3
51 Zkb1 2kb1 cos (7”1/2]‘171)
(s, m st
+—
as1 s (2k2 )Cos(2k2 )=
151

(- .
- — W, Snls)+er

 ricos¥(ns?/2k2,) 2

+ W] S 1) +0G-9).
Define the Hamiltonian’s approximation error as

aJi(s1)
asl

27)

aJ,
Ey =H(s1,1, c1(51)

)—H(s1,a], )

)- (28)
The critic NN adaptive law is designed as

Wer () = ~yaS n(s)S T (sHWh @) (29)

where y.1 > 0 is the critic designed constant.
The actor NN adaptive law is given as

War() = =S 71(s0S T, (s1)Yat War (1) = Wt (1))

+ Y1 Wer ()

where y,; > 0 is the actor designed constant.

According to the above analysis, the optimized solution
@, (s1) is expected to satisfy E1(z) = Hi(s1,&1,0J01(s1)/0s1) —
0. If Hy(s1,&1,0J.1(s1)/ds1) =0 is held and has the unique
solution, then it is equivalent to the following:

(30)

OH (s, @y, 20y

e Is1_ 7 _ ESJl(Sl)S?I(Sl)(Wal(f)—Wc1(t))(=3:))_

In order to derive the adaptive laws to guarantee (31), the
following positive function is constructed:

Pi(t) = (Wa1 () = Wer ()T (Wt (£) -

Wi (0)). (32)
Clearly, Pi(t)=0 is equlvalent to (31). Since ry ?WI(Z) =
AP\(1) _

— S = 2(War (/1 -

dP(t) (9P1(f)A (+ oP1(t)
di W (1) Wa W1 (1)

OP (1) OP (1)
S S WC -
W) NS GsHWa @ oW

xS 118 T (vt (Wa1 () = Wer () + ye1 Wer (1)

_ Yai OP1(2) 7. OP(D)
= S S 33
3 aWal() 71(s1) J](Sl)awal(t) < (33)

Consider the tan-type barrier Lyapunov function candidate
for s1-subsystem

W (1)), we can get

al(t)

—Ycl

1123

2 2

& et o
Vi) = ” tan( )+ (t) O+ 2Wa](t)Wal(t) (34)

247,
where W, = Wei —=W;, Wa = W, —W; are critic and actor
NNs approximation errors, respectively.

From s = % — @ and s; = x; —y,, we have

$1 =S2+d’1+é1+W17:fSLf()?1)+ll€1—)'/r. (35)
The time derivative of V is
. 1 ~ T <
Vi) = ——————51 + WL W, () + W ()W,
T cosms2i2) AW 0+ W OW,
2
S1 m s
=———— (sp———sin cos ,
cos2(ns§/2k,§1)( SETIRLTEN 2 (2k2 )=y
1 T]]S] 1
- TS +he +ep -t —
2r; ATASITET cosz(ﬂs%/Zkil)
+ WIS 10+ W W, + WHW,,. (36)

Letting ¥, = Sl/COSZ(ﬂ'SZ /2 ;) and substituting (26), (29),

(30), and (35) into (36) reaches

ﬁsl

Vl(t)=l95152—n " sl_ 2

tan(—)
hl

WIS 1(s1)

+ (W[ (S1 (R0 +her = +é) =ya Wi (@)

xS j1(s)S T (sWE (6) = W (S 1 (s)S T (s1)

X (a1 (Wa1 (£) = Wer (1) +ye1 Wer)
1
= 9150 - Dran( oLy -T2~ BLyyTg s))
bl 8| 2

+ﬂs1(W1T,fSI,f()AC1)+llel —Jr+e)=yaWh@
xS 1 (sDS T (sOWE () =y W (DS 1S T,

X Wa1 () + (Ya1 = ye)WE®S j1(s1)S T (s)Wer. (37)

Similarly, by using W (£) =W, ()~ W; and W1 (£)= Wei (1)-

W1, there are the following equations:

WL®S 1 (s)S T (s)HW,, ()

1.
= EWZl(r)SJl(s])S,l(sl)W (0= (Wj{sl(smz

+ 5 WHOS 1 (1S 3 (sDW, () (38)

WIS 1 (s)DS T (s)W,, ()
- ~ 1
S War S 11(sDS J1 (s)W,y (0 = S (WS i (s1)?
1. A
+ 5 Wa (08 51 (s1)S 1y (s Wy, 0. (39)

Substituting (38) and (39) into (37), one has
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)

2“ WIS 1(s1)

Vi() = 95152 — ’71 tan(—)— r—ﬁﬂ

bl 1
+ 051 (=Y, +her+é1+ W] S p(51)

7a1
2

xS j1(s)S T (s)W, (1) -

')’al

ycl

WIS 51 (sDS T (sOW,, () - =W (1)

%1 Z](t)SJI(Sl)

ijl(sl) 1(1)

751 + m)(W;ITSH(SO) +(Ya1 = 7Ye1) al(t)

xS 71(s1)S 7, (s)Wer (0. (40)
Using Young’s inequality, there is the following fact that:
Va1 =YeDWa (0S 11 (DS Jy (s)Wer (1)
< Z AW 0 5108 T, (s1)War ()
+ AW 08 n(s)S T (sWar (0. (41)
Substituting (41) into (40) one has

WIS 51 (sDS T (sHW,, (1)

+(

2 19

: m sl 4, T
Vi) < - t — — W,
1() < Ds152 an (Zklyl) o 0 - o 71
Yal
+51(lieg +é1 — yr+W1f51f)— W
XS 11 (s)S T (sOW, (1) = W08 51(s1)

761

xSt (s)W, (D) - Zl(osn(sl)Sﬁ(sl)

xW 1(t)—
7(11 +701

1([)SJ1(SI)S11(51) 1([)

Yal — Vel

(W;{Snm)) =

T
Wal

5 1= Yel A
XS]1551Wa1 + %WCTlSJlSaWCI
s
SﬂﬂSQ—ﬂtan(
n o
XSJ1(51)+19s1(1161+é1—)')r+W1TfS1,f
Yel Vel

- TW 1(1)511(S1)511(S1)WL1(I)— —

Yal

X W (DS 18 7 Wy (1) = (Vcl——)(Wfl(l)

XS 1(s1)% = M(W 1(r>sﬂ<s1>)2+<7“l

+ %)(Wﬁ(r)snm))z. (42)

According to the Young’s inequality, one has

2

P |
D182 < 7‘1 + Ekiz 43)

ﬂsl(WTfsl,f(fCl)+11€1 —yr+eér)

1
<219%1+ 12k2+ e1 —yr+

1
5 Wi S1ST Wi, (44)

2

1,
€
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941 92
tS <_Sl
2 Wa 0S5 ar Tdr

WIS (St (snHw! (45)

where [s2| < kpp, Subst1tut1ng (43)—(45) into (42)

1

(____

)19 —J%kZ

Vl(t)<—zta ( ) 3

1, 1,2 1, 1. .
+Eel+§yr+_kb2+_Wl,fS1’f(x1)

PRI Vel
X ST GOW] ==

2
Wﬁ OS nSTH W, (0 (v

=WHOS j1(s1)S ] (s1)

XWI(I) Yel

Yal

__)( Yal

| RN
A0S y1(s0) = (5= = )Wy (1)
T

xsn(m)%(“ +E)<W, OS (s> (46)

Let Ama" be the maximal eigenvalue of S (£1)S 1 s(%1) and

/lm‘“ be the minimal eigenvalue of S j;(s1)S 1(sl). Inequality

Jl

(46) can become

V](I)S I
r

7L1
2

7L1

2
LWL OS n(s10) - (M

Ag“f; wiw, AmmWT W,

Yal
_(701 -

——)(W (DS 71(s1))* + Dy 47)

where D| =sup{D;(r)} and D;(r) = 1/lmaXWTf(x1)W1 FED+

>0
+ 3 13kG + Skyy T8+ LWL (S j1(s0)* + 357

We then design the parameters 7.1, Y41, 71, and 77;, which

satisfy the following inequalities:

Yel = _7;1 >0 (48)

Yal 1

———>0 49
2 47‘1 > ( )

m 1 5

—_—— = . 50

ry 4r1 2 >0 ( )

Denote 1710 = 17/k> i (50) can then be rewritten as

_ k2
Vi < - 20 (—)— LG
7; AW (W, (1) + Dy (51)
Letcy = min{mo/rl,yd/lmm,yd/lm;‘l‘}. Then, (51) becomes
V1 <—-c1Vi+D. (52)
From (52), we can have
D
Vi(0) < Vi(tg)e 10710) 4 =L, (53)
Cl

Since |[si| <kp; and s; =y-y,, we have |x;(®)| <|s1()|+
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[y-(Ol < kp1 +1y-(0)]. Define k1 =ke1 —Iy |, where |xi| < k.
From (53), as t — oo, e~#70) — 0. It follows that there exists

T\, whent > Tl,HWal(t)“ < m,and”Wd(t)“ < v2Di/c;.
Clearly, the reduction of v2D;/c; can be made arbitrarily
small by increasing c;, while decreasing Dj. Therefore, we
can determine that HWal(t)“ and ”Wc.l(t)” are bounded. In
addition, we know the boundedness of ej, s, ||Wa1(t)“,
[Wei ()|, and 1S 1]l. Thus, @1,
(where |@| < A,, As is a positive constant), and & is bounded.

, and $; are bounded

Step i (2<i<n-1): Similarly, define s; = &; —&;_; where
the time derivative is
§i = Riv1 = Qi1 + W S pG0) + Ly = 9). (54)

The optimal value function for the s;-subsystem is defined
as

o= min |7 (M) + i) de
= [ M)+ e (@) (55)
where Mi(xi)=k§itan(ns?/2k§i)/n, ai(s;) is the optimal

virtual controller, Qg ={s;:|s;| <kpi} 1is a compact set
containing origin. W(Qy;) is the admissible control set of «;,
and r; > 0 is a constant.

The optimal value function for s;-subsystem satisfies the
following equation:

« Siny) o _ Si(n;)
T () = =2 -n (—)— >
k2 JTSZ
—277, tan(—)+] (s7)
kbt
2
S S?
S o B sy 56)
2 d 2kbt
where J.;i(s;) = —m;8 i(n;) /2 - 27:k;, tan(ns2/2 ki) /m+J; (s:). Si-
milarly, Si(n) = [y’ (sinn,-/n,-)d,,i, n; _n/kgl 3, and 7;, 7; >0

are constants. For a7 (s;) and J:(s;), the HIB equation of the
si-subsystem is defined as

. 0J7(s)
H,-(si,a,.,(;—si’)
ot tan P55 4 a4 (2 sing s2> Wit
=—tan—+ra + L sin(—~)cos
ok Si K2, 202,
Jci(si) 275 « T A
+ a; +W: .S (%
Jsi cosz(nsl.z/Zkl%i))( ! i S 1o (1)
+Li(y—9) —&i-1) =0. (57)
Similarly, solving dH;/da;; = 0, yields
« ni . ( Siz)cos(nsiz nisi 1 0J:i(s)
a; = ——sin(— —) -
P ms 2222 rcosi(ms?/2k2) 2ri O
(58)

where 0J.(s;)/ds; can be approximated by the following NN
on the compact set Q;:

1125

0J.i(si)
asi
where W is an ideal weight vector and S ;(s;) is the basis
function vector. €;(s;) is the approximation error satisfying
lei(s;)| < 6; where §; > 0 is a real constant. By (58) and (59),
the ideal optimal virtual controller o} can be acquired as

=WTS ji(si) +&i(s:) (59)

2 2 _
s s -
a; = —lsm(—z)m( o)
TS 2k, 2k, ricos*(ms; [2k;.)
| P
- 2—(W,» TS 1i(si) +&i(s).- (60)
T
Similarly, we can get
aJLl(Sl)
— = WZLS ji(s) (61)
Si
2 2 _
. 54 TSs* R
&= -1 Sin(-—5-)cos(55) = —————5—>— n,s; 5
TiSi 2k, 2k, ricos*(ms; [ 2k;;)
1 or
- Z_nW“iS 7i(87) (62)

where W, and W,; are the critic and actor NN weights,
respectively. Similarly, sgn(s;)s; # kpi VY (Y =1,2,...). Thus,
we can get limy,_osin(rs? /2k;.) cos(rs? /2k%.)/s; — 0 and the
singularity problem in the optimal virtual controller &; is
effectively avoided.

From (62), the approximate HIB equation is obtained as

R 8F.(sp)
Hi(s;,q,;, 6lsl-l )
K2, 82 . 82 ns? 1
b M . o
=2 tan(ﬁ) + ri(i—li sm(—é)cos(ﬁ) + Z_nW“i
bi bi bi
_ ) 2
nisi S
XS ji(sj)+ ———————— +—sm cos(—=
) R s 24 G (2k2 Vs
21; i 0Ji(s; i ns? ns?
+ i i(Si ))( i sin(—;)cos(—;
cos2(ms? [2k2) 0s; risi 2k, 242
1isi 1 or
- W Si(s)+ W Sir(x
r,'cosz(ﬂsf/Zkil.) 2r; i(si)+ WipSis )
+1i(y=9) — i) (63)
Define the Bellman error E; as
0Ji(sh) 0J; (si)
Ei = Hi(Si, a;, (;lsl ) H( Si, @ 1’ ﬁs,- )
OF +(s;
= Hi(sp,ay, 222090 (64)
6S,‘
The actor and critic NN adaptive laws are given as
Weil) = = yerS 1i(s0)S T(s)Wi(o) (65)
Wai(t) = =S ji(s)S T (DY ai(Wai(H) = Wei(0))
+Vei Wci(t)) (66)

where 7y, >0 and vy, >0 are critic and actor designed
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constants, respectively.
Consider the barrier Lyapunov function candidate for the s;
subsystem
k2 s 2

Vi) = 7tan( Ly+ = WT(t)W (D+= WT(t)W ()

(67)
b 2
where W,; = W; — W and W,; = W,; — W7 are critic and actor
NNS approximation errors, respectively.

From the definitions of s;.; = X;+1 — &;, we have

s-—s,+1+a,+WfS f(x,)+lel &i_y. (68)
The time derivative of V; is
Vi(t =—’s,+WTzW t+WTtW n. (69
(t) o e 21 OW () +WEOW,.(1).  (69)
Let 9y = s; /COSZ(ﬂSiZ / 2k§i). As aresult, (69) becomes
. . s n: Fei
Vilt) = 9sisit — L tan(——) — Tp% — TS ji(s;)
ri o ; 2r;
+95i(W] 1S (&) +lier = Gimt) =y Wi (1)
xS ji(s)S L(sOWE®) =y WEDS 1i(si)
X ST (s)Wai(t) + Vai = Ye) WEDS 1ils:)
x ST (s)Weilt). (70)
Similarly, by using Wei(f) = Wei(t) — W and Wi(r) = Wyi(t)—
W, there are the following equations:
WS i(s)S (s W, (1)
1 1 *T 2
= —W (DS i(s)S T (s)W () — S Wi SiCsi)
1.
+= W (S 1i(s1)S T (s)W, (1) (71)
WS 1i(s)S L(sy W, ()
1 "
= —WT<r>S Ji(sDS T (spW (0 - (WJ,-T S ji(si))?
+= WT(r>S J1i(s)S T ()W, (D). (72)
Substltutlng (71) and (72) into (70), one has
ni ns} ﬁ
: _ . [ 2 _ T
Vi(t) = Byisiv1 — r tan(2k2 )— r 19 W SJI
yu T
+ﬂs,(WfS,f(X,)+l€1 a'l 1)—— W SJl
X STW.(0)+ Vai = Ye) WS 1iS ?,Wa- - 77
X WL1)S ji(s1)ST.(s)W (1) — MWZ,»(t)Sﬁ(si)
xS T(s)W, (1) - 7‘” WS 1i(s)S T.(s) W, (D)
+ (@ + @)(W,,Tsﬁ(si»z. (73)

Similarly, we can get
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Vai=Ye)WEDS 1i(s1)S . (s)Weilt)

< Yai—Yei > YaiZ Y 1) 1i(51)S T-(50) Wi (0)

4 YaiZ Yei 27” WIS 1i(s0)S (s Wei(2) (74)
9 1,
ByiSiv1 < 7 + zkbi+l (75)

sz(W fS f(xz)+lel al 1)

3 1, |
< Eﬂ?l‘i' 2llzk2+§ 12 1+ 2W fSlf(xl)Slf(xl)Wf (76)

Oy 91
-5 SIWT0S ) < E + 4—WT<z)SJ,<s ST (soWro. (77
Substlmtmg (74)—(77) into (73), one has
52 a1
<X A ) o
V(t) - tam(Zk2 )— (rl_ I )ﬂSl
! B2,
T T e i+
+ 4_nW”i(t)S]lS W () + ’2 + T
a1
+ T + = W fS (Xl)S (X,)
_ X BEWE 0 58T W,i(0) - Y Biwio
XS ;iSTW ()= (yei - %(WT«)SJ,V
y“’(Wi(r)SJ,(s ))2+(M + ﬁ)
x (W3l (0)S ji(s))?. (78)

Let /lm“x be the maximal eigenvalue of S; ¢(%;)S; (%), and

/lm“‘ be the minimal eigenvalue of S j;(s; )S .(s). Inequality

Jt

(78) can then become

2 _
_ni ni_1 50
Vi(t) < . tan( 2k2 Ly— (Vi I, 2)9;
72" AW OW,(6) - L2 DA Wi OW,i(0)
Yai T
- (— - —)(W (DS ji(5:))* + D;
- 0= EOWEOS 1)? (79)
22 R .
where D; =sup{D;()} and D;(t) = il Lo Yel

t>O

WS 1) +5 ﬂm“XWT EDY/AFED)

We de51gn the parameters Yais Yeis Ti» and 7;, which satisfy

the following inequalities:

Yai

Yei — D) >0 (80)
Yai 1

———>0 81
2 A 1)
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i1

L _2>0. (82)
ri  4r
From (80)—(82) and Lemma 1, we have
ni ns} Y
Vi) < — —’tan(—)— ﬁxlm'“WT(z)W (D)
ri Zk2
72” AFWLOW, 1) + D, (83)
Denote ;o = nint/ kii, (83) can then be rewritten as
: kl%z i0 4 si _ Yei T
Vi(f) < — 2—tan(—= /lmmW (OW,;(1)
;i 2625 2
72” AW (OW,(0) + D, (84)
Let ¢; = min{n;o/ r,',%i/lfgnj?,)’ci/l‘s“i“}, then (84) becomes
Vi < —c;Vi+D;. (85)
From (85), we have that
Vilt) < Vi(tg)e 1~ + (86)

Ci

Since s;=X;—&;_1, we have |&]=[si+a&i_1]| <kpi+A,;
(I&i—1] < A;, A; is a positive constant). Since e;(f) = x; — &;, it
has |x;| =|e; + Xi| < ko +kp; +A;.  Therefore, if we define
kpi < kei — A — k., then we can prove |x;(¢)| < k.;. From (86), as
t — oo, e~ 710) — 0. It follows that there exists T;, when ¢ > T},
||Wai(t)|| < V2D;/c; and “Wd(t)“ < V2D;/c;. Then, we can
obtain that e;, s;, |Wui (0|, |Wei(0)||, and [1S]] are bounded, so
& |[Wao)
constant), and then &; is bounded.

Step n: Define the error variable as s, = X, — &,—1 — A for the
sp-system. In order to compensate for the effect of the
saturation, the following system is constructed to generate
signal:

and $; are bounded (|&; <Ai+1, Aix1 >0 is a

A= —kA+ Au (87)
where £ is a positive constant and Au = h(u) — u.
The following change of coordinates is made:
$n=utkA+ W S, q(G) 4Ly =9 =1 (88)

Considering the auxiliary dynamic system (87), the optimal
value function for the s,-subsystem is expressed as

* _ . Im
Ji(sw) = uerqgl(bnm)f Crtantg dr
2
= [ ® (bin (89)
! m Zklzm

where u is the optimal controller, W(Q,) is the admissible
control set of u, Qg, = {sy, : || < kpn} and r, > 0 is a constant.

The optimal value function (89) can be rewritten as the
following equation:

1127
(s =m0 o K sy Saln)
n nl‘l 2 nn 2k2 nn 2
2 2
— 277" _bn
T bn
Sa(n s,
S0, a0 B sy 00
bn
where Jen(s7) = =17,8 5(n)/2 — zf,,,k,fn tan(rs?/2k; )/ 7+ J5(sn).
The HJB equation of the s,-subsystem is defined as
oJ,
Hy(sp,u”, an(sn))
Sn
2 752 2 ns2
2 tan(—=-) +r, +
(2ka) ] Sn 2k2 202,
oJ 27 .
" en(Sn) MnSn Y + kA + WZ‘f
dsy, cos?(msy /27, ) ’
XSn,f(J%n)"'ln(y_j})_a'nfl)=O' (91)
By solving 0H,,/du* = 0, we can obtain
ns2 2 =
W= — I gin( iy cos( oy o i
TnSn 21<2 217 " racos?(nsy /2K )
1 8Jcn(sn)
92
2r,, 8sn ©2)

Note that dJ.,(s,)/0s, is an unknown function of variable
sy. It can be approximated as follows:

0Jcn(8n)
asy,
where W, is an ideal weight vector, S j,(s,) is the basis
function vector. &,(s,) is the approximation error satisfying
le(sy)| <6, and 6, is a positive real constant. The ideal
optimal virtual controller #* can be devised as

= WiTS 1u(sn) + &n(sn) (93)

I/t* — _ 77n ( 2 F]nsn
rnsn 2k2 2k2 racos?(msh/2k7 )
1
= —(WTS gu(sn) + &n(sn))- (94)
2r,
From (92) and (93), we can get
aJ, .
Wenlsn) _ WIS 1u(sn) (95)
Osn
U= — n 2 2 TTnSn
FSn 2k2 2k2 racos?(rsy /2k7 )
1 .
- ;W;,Sjn(sn) (96)

where W., and W,, are the critic and actor NN weights,
respectively. Similarly, sgn(sy)s, # kpn VY (T=1,2,..) is
obvious. Then, we can get limg,osin(rsa/2k7, )cos(msa/
2k§n)/sn — 0. The singularity problem in the optimal
controller u is effectively avoided.

From (91), (95), and (96), the approximate Hamiltonian is
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aJ,
Hn(sn,us "(Sn))
as,
K2 ns? ns2 ns?
bn n M . n n
= — tan( )+ rpy(—— sin(——) cos(——
x s e e,

NnSn I 7 5 2mn . 7TS,21
4+ —W.S + sin
racos2(ms2 /202 ) 2ry ey (2k§m)

2 —

s 2108 0J e AT
xcos(—L )+ —— -~ 4 Yu+W, Sy,
22 co(ms/2d ) Bs,
+1,(y=9) = Gp_1 +kA). 97)
The Bellman error is defined as
O en aJ:
E, = Hy(sp,u, - (Sn))_Hn(Sn,u*’ n(sn))
asy, dsn
aJ,
= Hy s, ) (98)
Sn
The critic NN adaptive law is given as
Wen(t) = =YenS 1n(sn)S J,(sn) W, (1) (99)

where vy, > 0 is the critic designed constant.

In order to ensure the stability and optimal performance of
the nonlinear system, the actor NN adaptive law is designed as

Wan(t) = =S m(sp)S in(sn)(yan(wan(t) - ch(t))

+ ycn ch(t))
where vy, > 0 is the critic designed constant.

Consider the overall Lyapunov function candidate for the

final step as
n—1 2 2
1 2 kbn Sy l~T 0
V() = Vit A"+ —tan(—- )+ =W_, (0O)W,_, (¢
(0 Z] Fy NG )+ W OWe, 0

W OW,,0) (101)

where W, =W, —W, and W,, =W,,—W, are critic and

actor NN approximation errors, respectively.
The time derivative of Lyapunov function V,, is

n—1
. ’ p Sn . 5, T 2
V()= ) Vitdd+ ——————$, + W (OW,,(t
" ; l COSz(ns%/Zkin) n en(DWen (D)

+ W (OW,, ().

Similarly, we can get

(102)

n—1 2 _

V() = ; Vi- 'Z— tan(%) - 'Z—Zﬁ?n - g—;:WaTnSjn
+ Fsn(kA = &yt + lner + W, S (%))
— A=K+ Au) =y e WE)S 1S T WL (1)
+ Yan = Yen) W (DS 1a(50)S §,, () Wen(0)

~Yan W DS 1u(s)S T (52)Wan(2). (103)

By using W,,(t) = Weu(£) = W' and W, (£) = Wan(t) — W,

(100)
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there are the following equations:

WD) ju(sn)S §, ()W, (1)
= %WCTn(I)S In(s)S T (s)W,, (D) + %VAVCTn(t)S In(s0)

xST (s)W,,(H) — %(W;Z S Ju(sn))? (104)

W2 (OS sn(sn)S 1, (5) W, (1)
ls . 1.
=5 WIS ju(s)S T (s)W,, () + 3 WI (S ju(sn)
XS;‘n(S”)Wan(t)_ %(W;ZSJn(Sn))Z (105)

Substituting (104) and (105) into (103), one has

2 _
TSy Tngy Osner
> )T " VUsnT WanS n
Zkbn I'n 2ry

n—1
Vo= Vi- M tan(
i=1 In

+ Psn (W 1S (R) +kA+ Lyer = &)

— A=k + Au) — %W;(t)s Jn(Sn)

X ST (s)W,(t) %Wi,(r)s‘ Jn(Sn)

X ST (s)W,(1) %W;mm(sn)

X ST (s0)W,(1) - %Wf,,(r)smo

X ST (s)W,n(1) + (77 + %)(W;Z S sn(sn))?

+ Yan = Yen) Wai(D)S 1u(s:)S T (s0) Wen(2). (106)

Using Young’s inequality, there is the following fact that:

Yan=Yen)WEDS 1a(52)S T (52)Wen(0)

< wWaTn(t)SJn(sn)Sgn(S")Wa"(t)
Y YT () (508 T (500 Wen ()

5 (107)

Fsn (Wifsn,f(fcn) +kA+1,e1 - &n—l)

k92, ko, 1 1,
+ 2 PR+ 24P

3
<92 -
SVm T Ty Ty Ty Ty %

1. . s
5 WS pGn)S s Gn) W, (108)

_Fsn

5 Wan)S 1
l
P2, 1 g r 7
S + Wan(t)S ]Vl(sn)Sjn(Sﬂ)Wan(t)

109
4r, 4r, (109)

1 1
—A(—kA+ Au) < —kA* + 5,12 + zAuz. (110)

Substituting (107)—(110) into (106), one has
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n—1
ORI A
i=1 n

l,zlkg A2 22 Yen

bn n

7t 7 Va0 ST, Wen0)
k/12 @
_ 7;” WS 1uST W) — —— + "2 :

~ Yen— 7””)( W (5)S su(sn))? —(7“”

yan + 7/cn

2(OS () + =

1 2T
_E)(Wa
X (WL (DS ju(s))* + 5 WT S . (Bn)

(111)

Let /lma" be the maximal eigenvalue of S, £(£,)S f(x,,) and

xS! GaWL

/lm‘“ be the minimal eigenvalue of S Jn(sn)S 2 (Sn), V,(t) can
be rewrltten as

w13 k.

v:<§v--r —————————19

® hn) (r,, 4r, 2 2) s
iy ls +1/lm“xWT GEOW. (Zn)
e o @1 7S n, fA) T, fAAR

l an
—(———)/12+§Au2—(7cn Loy W (1) 1u)?

7;;1 /lmmWT (t) (- 70n /lmmWT (l) o0
—(M——x a,,(r)SJn>2+<M o)
X (W) (DS ). (112)

By designing the parameters Y., Yen, ¥ns fin, and k, which
satisfy the following inequalities:

Y= 2250 (113)
2
Yan 1
———>0 114
2 A4r, (114)
a1 3 k
———-===>0 115
e dr, 2 27 (113)
k1
Z_250 116
775> (116)
Inequality (112) is rewritten as
k 1
V(o) < V- =
® Z rn 2k2
7511 /lmmWT (l‘) ([) ’yL" /lmmWT (t)
X W, (t)+ D, (117)
212
where D, = sup{D,(r)} and D, (¢) = l"g" ” Ly Ama" wT f(x,,)
>0

x EoY 2 an cn &
W, () + 845 4 L2 (WL (0)S ).
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Denote 7,0 = n, 7t/ kin, then (117) can be rewritten as

V(t) < Evi_

~ Yen
2

Let ¢, =min{m,o/ry, k-1, ycn/lgq;; YCn/lglj:}a
becomes

k%” 77n0 s k

[INS
p— 2k2 - —)/l +D,

76"

/lmm Wan(t)Wan(t) - /lg“;:W LW, (1), (118)

then (118)

V<-cV+D. (119)
Let ¢ = minj<;<, {c;} and D = 3.7 | D;. Then, (119) becomes

V(1) < V(tp)e U710 + (120)

From (120), it follows that there exists 7 = maxj<j<, {7},
when t>T, |si< V2Dy/cu, ||Wai®)| < V2Du/cn, and
HVVci(t)H < V2D,/c, (i=1,..,n). Clearly, the reduction of
V2D, /c, can be achieved by increasing c¢, or decreasing D,,.
Therefore, the parameter ¢, can be chosen to be large enough
to render the tracking error and |s;(?)|, HWa,(t)“ and ||WC,(t)||
sufﬁmently small. Then, we can obtain that Wa,(t), WC,(t),

W, s(t), and X; are bounded, and from Theorem 1, x; is UUB
and |x;| <k i(i=1,...,n).

IV. SIMULATION EXAMPLE
In this section, an example will be used to test the
effectiveness of the proposed controller. Consider the
following strict-feedback nonlinear systems as:
X1(t) = x2(¢) — sin(2x1) cos(2x1)
i) = (1 — (2 +sin(x;) cos(x2))? + u
where x(f) and x;(f) € R are the system states and u; € R
represents the saturation form of the control input. The

reference signal is given as y, = 2.5sin(r—2) + 1.
Then, the state observer is designed as

2100 = 220 - W] (S p(21)+4(- )
X(t) =
$ =23

Letting Q = I and solving (4), we can get a positive-definite
matrix

W3 1S 2,7(R1, 22) + h(u) +8(y - )

[ 149 -05
| -05 0.1567 |

In the auxiliary dynamic system (87), the parameter k = 5.
The design parameters of &(z) (26), u(r) (96), Wy (9), Wei
(29), W1 (30), Wea (99), and W,» (100) are chosen as 77, = 80,
1m =20, 771 =58, o =4.75, kp1 =8, kpo =22, r1 =20, rp =25,
Ya1 =5, ¥e1=0.5, vo2 =17, v2=2, nw1 =05, nw2=0.2,
pw1 =15, pwa =7, p=5. The constrained boundaries are
kcl =4 and kcz =20.

The initial values are set as x(0) = —0.3, Wcl(O) =[1,1,1,
1,117, W,1(0) =10.1,0.1,0.1,0.1,0.117, Wo(0) =[1,1,1,1,1]7,
Wa(0) = [2,2,2,2,2]7, W (0) = [0.2,0.2,0.2,0.2,0.2]7,
Wr2(0) =10.5,0.5,0.5,0.5,0.5]7, A(0)= -1, and other initial
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values are zeros.

The simulation results are shown by Figs. 1-8. Fig. 1 shows
the control output y and the reference signal y,, it is clear that
an ideal tracking performance can be obtained. Figs. 2 and 3
show the trajectories of states x; and their estimates
Xi, (i=1,2) along with |x{| < k. and |x| < ke, respectively.
Figs. 4-6 profile the 2-norm of the weights for the critic, actor

20 .

W)
15} - ==y | 1
10} )l

WD), y(1)

Fig. 1.  The trajectories of y and y,.

x1(0), %,(2)

t(s)
Fig. 2. The trajectories of x; and %;.

40 T T T

X(0)

30r - - = %0

1) U U U U U g

x,(1), £(1)
o

_10 L 4
720 e e e e e e i m i em tm  E— E— o E— E—— o
=30 ]
740 I I I
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t(s)

Fig. 3. The trajectories of x, and %».
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Fig. 4.  The trajectories of NN weights ||I7Va1 || and ||Wa2||
— Wl
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Fig. 5.  The trajectories of NN weights ||Wc1 || and ||Wcz||
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Fig. 6.  The trajectories of NN weights ||Wf1 || and ||Wf2||

and observer NN; Figs. 7 and 8 display the trajectories of
controller # without input saturation and with input saturation,
respectively.

It can be clearly observed from the simulation results that
the proposed control method ensures all signals in the closed-
loop system are UUB, that the system output y can track the
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Fig. 7. The trajectory of controller u(¢) without input saturation.

50 T T T T T T T T T

40 1
30+ 1
20+ 1
10 1

= 0T~ T~ T~

2 4 6 8 100 12 14 16 18 20
L(s)

Fig. 8.  The trajectory of controller u(¢) with input saturation.

given reference signal, and that all the system states are
ensured not to violate any constraints.

V. CONCLUSION

In this paper, an optimal control has been developed based
on the backstepping technique using a simplified RL for a
class of uncertain nonlinear systems with unmeasured states,
input saturation and state constraints. The immeasurable states
were approximated by the state-observer. At the same time,
the tan-type BLF has been introduced to vary the constraint
boundary. Meanwhile, the control design can also release the
condition of persistent excitation. Based on the Lyapunov
method, it was proven that the proposed adaptive NN optimal
controller can ensure that the closed-loop system is UUB. In
addition, the tracking error of the system converges to a small
neighborhood of the origin and all states did not violate their
constraints. Finally, the simulation further demonstrated the
effectiveness of the proposed control method. One possible
research point for future research is to extend the SISO system
in this work to the MIMO case with milder assumptions.
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