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   Abstract—This  article  addresses  the  finite-time  boundedness
(FTB)  problem  for  nonlinear  descriptor  systems.  Firstly,  the
nonlinear descriptor system is represented by the Takagi-Sugeno
(T-S)  model,  where  fuzzy  representation  is  assumed  to  be
appearing not only in both the state and input matrices but also in
the  derivative  matrix.  By  using  a  descriptor  redundancy
approach,  the  fuzzy  representation  in  the  derivative  matrix  is
reformulated into a linear one. Then, we introduce a fuzzy sliding
mode  control  (FSMC)  law,  which  ensures  the  finite-time
boundedness (FTB) of closed-loop fuzzy control systems over the
reaching  phase  and  sliding  motion  phase.  Moreover,  by  further
employing  the  descriptor  redundancy  representation,  the
sufficient  condition  for  designing  FSMC  law,  which  ensures  the
FTB of the closed-loop control systems over the entire finite-time
interval,  is  derived in terms of  linear matrix inequalities  (LMIs).
Finally,  a  simulation  study  with  control  of  a  photovoltaic  (PV)
nonlinear system is given to show the effectiveness of the proposed
method.
    Index Terms—Finite-time  boundedness  (FTB),  fuzzy  sliding  mode
control (FSMC), Takagi-Sugeno (T-S) fuzzy descriptor system.
  

I.  Introduction

THE  fuzzy  control  algorithm  consists  of  a  set  of  fuzzy
logic, fuzzy sets, and heuristic control rules [1]–[3], and it

has been used for the effective handling of control of complex
nonlinear  systems  including  robotic  teleoperations  [4],
surgical  robotics  [5],  and  multiple  robots  [6].  Among  these
fuzzy  control  methods,  Takagi-Sugeno  (T-S)  fuzzy  model
uses  linear  equations  to  represent  each  local  system
corresponding  to  their  local  rules,  and  then  employs  fuzzy
reasoning  to  blend  local  linearity  for  implementing  total
nonlinearity. Nowadays, the T-S model has been very popular
in  the  control  society  because  of  its  ability  to  provide  good
approximation.  Therefore,  over  the  past  few  decades,  the

problems of stability analysis and control synthesis have been
investigated for the T-S fuzzy model more frequently [7]–[9].
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Sliding  mode  control  (SMC)  has  been  regarded  as  one  of
the  most  powerful  nonlinear  control  methods,  and  has  been
widely used due to its quick response and strong robustness in
practical  applications.  The  essence  of  SMC  is  to  drive  state
trajectories  toward  the  switching  manifold.  Such  motion  is
motivated  by  imposing  disruptive  control  actions,  commonly
in  the  form  of  switching  control  strategies.  An  ideal  sliding
mode exists only when the system state satisfies the dynamic
equation  that  governs  the  sliding  mode  for  all  time.  This
requires an infinite switching, in general, to ensure the sliding
motion.  The  past  decades  have  witnessed  the  successfully
practical application of SMC in several areas (see [10]–[13]).
In  addition,  descriptor  systems  are  referred  to  as
implicit/singular  systems,  which  enable  describing  a  larger
class  of  systems  than  the  normal  model  representation  [14].
More  recently,  stability  results  of  fuzzy  descriptor  systems
using  the  SMC  method  have  been  reported  in  [15]–[17].
However,  note  that  the  aforementioned  works  only
highlighted  the  asymptotic  behavior  of  the  fuzzy  control
system  over  an  infinite  working  time  interval,  and  all
aforementioned works of the SMC consider system dynamics
within  a  sufficiently  long  time  interval.  In  fact,  in  many
practical  applications,  a  finite-time  stability  (FTS)  may  be
required  when  facing  the  prescribed  restraints  on  transient
dynamics,  such  as,  for  example,  dual-arm  robots  [18],  [19],
input-delay  systems  [20],  Markovian  jump  cyber-physical
systems [21], multi-input and multi-output (MIMO) nonlinear
systems  [22],  [23],  and  nonlinear  systems  with  positive
powers of odd rational numbers [24]. Both FTS and practical
stability  (PS)  have  a  similar  definition  for  stability  analysis,
and  they  work  on  the  boundary  of  state  trajectories  starting
from  a  desired  initial  region.  However,  the  main  distinction
between  FTS  and  PS  is  that  FTS  works  with  a  finite  period
while  PS  works  for  an  infinite  amount  of  time  [25].  When
taking  into  account  norm  bounded  disturbances,  the  concept
should  be  changed  from  FTS  to  finite  time  boundedness
(FTB). FTB ensures FTS, but its converse is not true [26]. We
are  aware  that  the  finite-time  SMC  of  fuzzy  descriptor
systems  is  of  the  wide  practical  applicability.  However,  few
works studied the FTB of the FSMC descriptor system in both
the  reaching  phase  and  the  sliding  one.  It  reflects  the
following two important control problems. One is determining
how  to  partition  the  specified  finite  time S into  two
subintervals  and , which ensures the FTB of the
corresponding  FSMC  descriptor  system  over  the  reaching
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phase and sliding motion phase. The other is determining how
to design the FSMC law via linear matrix inequalities (LMIs),
which  ensure  the  FTB  of  the  closed-loop  fuzzy  descriptor
system over the whole finite-time interval .
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Motivated by the aforementioned considerations, this paper
proposes  a  novel  fuzzy  sliding  mode  control  strategy  for
nonlinear descriptor systems using a FTB method. Firstly, the
nonlinear  descriptor  system is  represented by the  T-S model,
where  fuzzy  representation  is  assumed  to  be  appearing  not
only  in  both  the  state  and  input  matrices  but  also  in  the
derivative matrix, and the derivative matrix is assumed to not
always  be  nonsingular.  By  using  a  descriptor  redundancy
formulation,  the fuzzy representation in the derivative matrix
is reformulated into one that is linear. Then, we introduce the
fuzzy  sliding  mode  control  (FSMC)  law,  which  ensures  the
FTB  of  the  closed-loop  fuzzy  control  systems  through  the
reaching  phase  and  sliding  motion  phase.  Moreover,  by
employing  the  descriptor  redundancy  reformulation,  it  is
shown  that  a  sufficient  condition  for  designing  FSMC  law,
which  ensures  the  FTB  of  the  closed-loop  control  systems
through  the  entire  finite-time  interval,  is  derived  in  terms  of
LMIs.  Finally,  a  simulation  study  for  the  control  of  the
photovoltaic  (PV)  nonlinear  system  is  provided  to  show  the
effectiveness of the proposed method. The main contributions
of  this  paper  are  summarized  as  follows:  1)  For  a  specified
time interval , we partition it into two subintervals 
and ,  where  the  proposed  FSMC law ensures  the  FTB
of  the  corresponding  FSMC  descriptor  system  over  reaching
phase  and  sliding  motion  phase.  2)  Sufficient  conditions  for
designing the proposed FSMC law, which ensures the FTB of
the fuzzy descriptor system over the whole finite-time interval

, are derived in terms of LMIs.
ℜn

ℜn×m n×m A+AT

AT ∥A∥ =
√
λmax
[
AT A
]

AT A. In n×n m×n
m×n N [0,1, . . .]

m×n
A ∈ ℜn×n,

A−1 {· · ·}
∥x∥

⋆

Notations:  is  the n-dimensional  Euclidean  space  and
 is  the  set  of  matrices.  Sym{A}  denotes ,

where  is the transpose of the matrix A. 
denotes  the  square-root  of  the  maximum  eigenvalue  of  the
matrix   denotes  the  identity  matrix  and  0
denotes  the  zero  matrix.  is  the  set .  The
subscripts n and  are deleted when their size is irrelevant
or  can  be  inferred  from  the  context.  For  a  matrix 

 denotes  the  inverse  of  the  matrix A.  diag  is  a  block-
diagonal matrix. The notation  denotes its Euclidean vector
norm, and the notation  is its symmetric term.  

II.  Problem Formulation and Preliminaries

Descriptor  systems  are  referred  to  as  implicit/singular
systems, which enables us to describe a larger class of systems
with normal model representation [14]. This paper considers a
class of nonlinear descriptor systems
 

E (ζ(t)) ẋ(t) = A (ζ(t)) x (t)+B (ζ(t))u(t)+D (ζ(t))ω(t) (1)
x(t) ∈ ℜnx u(t) ∈ ℜnu , ω(t) ∈ ℜnω

ζ(t) {E (ζ(t)) , A (ζ(t)) ,
B (ζ(t)) , D (ζ(t))}

where ,  and  are  the  system
state, the control input, and the external disturbance, respecti-
vely;  denotes the measurable variables; 

 are the system matrices.
Currently,  the  most  attention  is  given  to  nonlinear  systems

with “sector  nonlinearities” [8].  Thus,  the  considered
nonlinear  system (1)  can be  described by the  following form

of the T-S model:
 

E(h)ẋ(t) = A(µ)x (t)+B(µ)u(t)+D(µ)ω(t) (2)
E(h) E(h) :=

∑re
s=1 hs[

ζ(t)
]
Es

∑re
s=1 hs

[
ζ(t)
]
= 1 A(µ) :=

∑r
l=1 µl

[
ζ(t)
]
Al

B(µ) :=
∑r

l=1 µl
[
ζ(t)
]
Bl
∑r

l=1 µl
[
ζ(t)
]
= 1; re

hs
[
ζ(t)
]

µl
[
ζ(t)
]

where  is  nonsingular  and  satisfies  that 
,  where ; ,

,  and r represent
the number of inference rules in the left- and right-hand sides,
respectively;  and  are normalized membership
functions, which satisfy the following conditions:
 

hs
[
ζ(t)
]

:=

g∏
ϕ=1

hsϕ
[
ζϕ(t)
]

re∑
ς=1

g∏
ϕ=1

hςϕ
[
ζϕ(t)
] ≥ 0,

re∑
s=1

hs
[
ζ(t)
]
= 1

µl
[
ζ(t)
]

:=

g∏
ϕ=1
µlϕ
[
ζϕ(t)
]

r∑
ς=1

g∏
ϕ=1
µςϕ
[
ζϕ(t)
] ≥ 0,

r∑
l=1

µl
[
ζ(t)
]
= 1 (3)

hsϕ
[
ζϕ(t)
]

µlϕ
[
ζϕ(t)
]

hs := hs
[
ζ(t)
]

µl := µl
[
ζ(t)
]
.

where  and  are  the  grade of  membership.
For  simplicity  of  narration,  we  will  define  and

E(h)Remark  1: Since  is  nonsingular,  we  can  perform  its
inverse  operation  in  the  descriptor  fuzzy  system  (2).  In  this
case, the descriptor fuzzy system can be transformed into one
that is nominal (nondescriptor).  As pointed out in [27], when
considering  the  T-S  descriptor  representation,  the  number  of
fuzzy inference rules will decrease so that the number of LMIs
to controller design is remarkably reduced.

[t1, t2] ,

Here,  without  loss  of  generality,  we  only  consider  that  the
class of norm-bounded square integrable disturbance acts over
the time interval  which is defined as below [28]:
 

W[t1,t2],δ ≜
{
ω ∈ L2 [t1, t2] :

w t2

t1
ωT (s)ω(s)ds ≤ δ

}
(4)

δwhere  is a positive scalar.
Before  moving  on,  we  extend  the  definition  of  the  FTB in

[29]–[33] to the fuzzy descriptor system (2) as follows:
[t1, t2]

c1,c2 0 < c1 < c2,

R > 0 u(t) = 0
c1,c2, [t1, t2],R,W[t1,t2],δ

Definition  1: For  a  time  interval ,  and  two  scalars
 subject  to  the  symmetrical  matrix  satisfies
.  Then,  the  fuzzy  descriptor  system  (2)  with  is

the FTB subject to ( ), if it satisfies
 

xT (t1)Rx (t1) ≤ c1 =⇒ xT (t2)Rx (t2) < c2

∀t ∈ [t1, t2] ω (t) ∈W[t1,t2],δ. for all 

c1,c2, [0,S ],R,W[0,S ],δ

This paper aims at to design a FSMC law, which can drive
the  system  trajectories  of  the  considered  fuzzy  descriptor
model  into  the  sliding  surface  function  within  a  finite  time,
where  the  FTB  subject  to  ( ).  Further-
more, sufficient conditions for designing the proposed FSMC
law is derived in the form of LMIs.  

III.  Design of FSMC Law Based on FTB

In  this  section,  for  the  specified  finite  time  and  the  initial
state, we will perform the FTB of the FSMC descriptor system
in both the reaching and sliding phases, and it  will  be shown
that  sufficient  conditions  for  designing  the  proposed  FSMC
law is given in the form of LMIs.  
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A.  Model Transformation

Firstly,  motivated  by  [27]  we  can  rewrite  the  T-S  fuzzy
descriptor model in (2) as below:
 

Ē ˙̄x(t) = Ā(h,µ)x̄(t)+ B̄(µ)u(t)+ D̄(µ)ω(t) (5)

where
 

x̄(t) =
 x(t)

ẋ(t)

 , Ē =
 I 0

0 0


Ā(h,µ) =

re∑
s=1

r∑
l=1

hsµlĀsl, Āsl =

 0 I
Al −Es


B̄(µ) =

r∑
l=1

µlB̄l, B̄l =

 0
Bl


D̄(µ) =

r∑
l=1

µlD̄l, D̄l =

 0
Dl

 . (6)

Remark  2: Note  that,  by  using  a  descriptor  redundancy
approach, the fuzzy representation in the derivative matrix (2)
is  reformulated  into  the  linear  approach  as  shown  in  (5).  In
that case, it is easy to choose the Lyapunov matrix as below:
 

P̄ =
 P1 0

P2 P3


0 < PT

1 = P1 ∈ ℜnx×nx , {P2,P3} ∈ ℜnx×nx

ĒT P̄ = P̄T Ē ≥ 0.
where  ,  and  it  is
easy to see that 
  

B.  Design of FSMC Law

Firstly,  based  on  the  fuzzy  descriptor  system  (5),  an
integral-type  sliding  surface  function  is  constructed  as  below
[15]:
 

s(t) = ḠĒ x̄(t)−
w t

0
Ḡ
[
Ā(h,µ)+ B̄(µ)K̄(µ)

]
x̄(s)ds (7)

Ḡ ḠB̄l

B̄(µ) =
∑r

l=1 µlB̄l, B̄l =

[
0
Bl

]
, K̄(µ) =∑r

l=1 µlK̄l K̄l =
[

Kl 0
]
, Kl

where  is  a  specified  matrix,  which  ensures  that  is

the  nonsingular  matrix, 

,  where  is  the  fuzzy  controller
gain to be determined.

u(t)
s(t) = 0

S ∗ ≤ S

A framework figure on the fuzzy sliding mode control of T-
S fuzzy descriptor system is shown in Fig. 1. In the following,
based on the sliding surface function (7),  we design a FSMC
law , which can drive the system trajectories of the fuzzy
descriptor system (5) into the sliding surface function 
in a finite time .

S ∗ ≤

Theorem 1: For a specified finite time S, the reachability of
the sliding surface function (7) can be satisfied within a finite
time   S by using the FSMC law
 

u(t) = ub(t)+uc(t) (8)

with
 

ub(t) =
r∑

l=1

µlK̄l x̄(t)

uc(t) = −
r∑

l=1

µl
[
ḠB̄l
]−1
ρ̄ (t)sgn (s(t)) (9)

K̄l =
[

Kl 0
]
, Kl

ρ̄(t) =
ϱ̄+
∥∥∥∑r

l=1 µlḠD̄l
∥∥∥∥ω(t)∥∑r

l=1
∑r

p=1 µlµpλmin
(
ḠB̄l[ḠB̄p]−1) , ϱ̄ ≥ 1

S

∥∥∥ḠĒ x̄(0)
∥∥∥ (⋆)

where   is  the  fuzzy  controller  gain,

, and sgn

denotes the switching sign function.
Proof: Based on the relations (7)–(9), we have

 

sT (t)ṡ(t) = − sT (t)ḠB̄(µ)
r∑

l=1

µl
[
ḠB̄l
]−1
ρ̄ (t)sgn (s(t))

+ sT (t)ḠD̄(µ)ω(t)

≤ −
r∑

l=1

r∑
p=1

µlµpλmin

(
ḠB̄l
[
ḠB̄p
]−1
)
ρ̄(t)∥s(t)∥

+

∥∥∥∥∥∥∥
r∑

l=1

µlḠD̄l

∥∥∥∥∥∥∥∥ω(t)∥∥s(t)∥

= − ϱ̄∥s(t)∥ . (10)
Now, let us define

 

V1 (t) =
1
2

sT (t)s(t). (11)

It has
 

V̇1 (t) ≤ −ϱ̄∥s(t)∥ = −
√

2ϱ̄
√

V1 (t). (12)
Based on the virtue of [34], it yields

 

S ∗ ≤
√

2
ϱ̄

√
V1 (0). (13)

Besides, it follows from (11) that:
 

V1 (0) =
1
2
∥s(0)∥2 . (14)

After substituting (14) into (13), we have
 

S ∗ ≤ 1
ϱ̄

∥∥∥ḠĒ x̄(0)
∥∥∥ . (15)

ϱ̄ ≥ 1
S

∥∥∥ḠĒ x̄(0)
∥∥∥It follows from  in (9) that:

 

S ∗ ≤ S (16)

 

u(t)
T-S fuzzy descriptor system 

Fuzzy sliding mode controller

Fuzzy rule generator

ω(t)

x(t)

 
Fig. 1.     Fuzzy sliding mode control of T-S fuzzy descriptor system.
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s(t) = 0 S ∗ ≤ S

which  implies  that,  the  FSMC  law  (8)  can  drive  the  system
trajectories  of  the  fuzzy  descriptor  model  (5)  into  the  sliding
surface function  within a finite time . ■

uc(t) = 0
u(t) = K̄ x̄(t)

Remark 3: Note that  the FSMC law in (8)  becomes a  non-
sliding-mode  fuzzy  controller  when .  Moreover,  it
tends  to  become a  linear  controller  when  further
ignoring the fuzzy premise variables.  

[0,S ∗]C.  Reaching Phase of FTB Within 
[0,S ∗]

s(t) ,

During the finite-time interval  of the reaching phase,
the  system  trajectories  are  outside  of  the  sliding  surface
function (7), that is   0. After substituting the FSMC law
(8)  into  (5),  the  resulting  closed-loop  control  system  is
obtained as below:
 

Ē ˙̄x(t) =
re∑

s=1

r∑
l=1

r∑
p=1

hsµlµpĀslp x̄(t)+
r∑

l=1

µlD̄lω(t)

−
r∑

l=1

r∑
p=1

µlµpB̄l
[
ḠB̄p
]−1
ρ̄ (t)sgn (s(t)) (17)

Āslp = Āsl+ B̄lK̄p.where 

ρ̃(t) = ρ̄ (t) (s(t)) ϱ̃ = ϱ̄∑r
l=1
∑r

p=1 µlµpλmin
(
ḠB̄l[ḠB̄p]−1) ,

ε =
∑r

l=1 µl∥ḠD̄l∥∑r
l=1
∑r

p=1 µlµpλmin
(
ḠBl[ḠBp]−1) s(t) ,

Define sgn , 

and . Due to   0, we have
 

ρ̃2(t) = ρ̄2 (t) =
[
ϱ̃+ε∥ω(t)∥]2

= ϱ̃2+2ϱ̃ε∥ω(t)∥+ε2 ∥ω(t)∥2

≤
(
1+ε2

)
ϱ̃2+
(
1+ε2

)
∥ω(t)∥2 . (18)

[0,S ∗]

In  the  following,  a  sufficient  condition  for  the  FTB  of  the
closed-loop control system (17) within the finite-time interval

 is established as below.

c1
c∗, [0,S ∗],R,W[0,S ∗],δ

X̄ ∈ ℜn2x×n2x ,0 < XT
1 = X1 ∈ ℜnx×nx , {X2,X3} ∈ ℜnx×nx

K̃l ∈ ℜnu×2nx

{c1,c∗,c2,η} ,c1 < c∗ < c2 s ∈ {1,
2, . . . ,re}

Theorem  2: For  the  specified  finite  time S,  the  resulting
closed-loop  control  system  in  (17)  is  the  FTB  toward ( ,

),  if  there  exist  the  matrices
 ,  and

the  controller  gain ,  and  the  positive  scalars
,  such  that  for  all  the  index 

 the following LMIs hold:
 

Θ̄sll < 0, 1 ≤ l ≤ r (19)
 

Θ̄slp+Θ̄spl < 0, 1 ≤ l < p ≤ r (20)
where
 

Θslp =


Θ

(1)
slp D̄l −B̄l

[
ḠB̄p
]−1

⋆ −ηI 0
⋆ ⋆ −ηI


Θ

(1)
slp = Sym

{
ĀslX̄+ B̄lK̃p

}
−ηĒX̄, X̄ =

 X1 0
X2 X3

 . (21)

Furthermore, the bounding is calculated as below:
 

σ̄P1c1+
(
ηS ϱ̃2+ηδ

) (
1+ε2

)
+ηδ

e−ηSσP1
< c∗. (22)

Proof: Consider  the  Lyapunov  function  in  the  descriptor-

system domain,
 

V2 (t) = x̄T (t)ĒT P̄x̄(t),∀t ∈ [0,S ∗] (23)
P̄ ∈ ℜ2nx×2nx ĒT P̄ = P̄T Ē ≥ 0.where  and 

Along the state trajectory of the fuzzy control  system (17),
we have
 

V̇2 (t) = 2
[
Ē ˙̄x(t)

]T
P̄x̄(t)

= 2

 re∑
s=1

r∑
l=1

r∑
p=1

hsµlµpĀslp x̄(t)


T

P̄x̄(t)

−2

 r∑
l=1

r∑
p=1

µlµpB̄l
[
ḠB̄p
]−1
ρ̃ (t)


T

P̄x̄(t)

+2
r∑

l=1

µl
[
D̄lω(t)

]T
P̄x̄(t). (24)

An index function is introduced as below:
 

J1 (t) = V̇2 (t)−ηV2 (t)−ηωT (t)ω(t)−ηρ̃2(t) (25)
ηwhere  is a positive scalar.

Based on the relations (24) and (25), we have
 

J1 (t) = 2

 re∑
s=1

r∑
l=1

r∑
p=1

hsµlµpĀslp x̄(t)


T

P̄x̄(t)

−2

 r∑
l=1

r∑
p=1

µlµpB̄l
[
ḠB̄p
]−1
ρ̃(t)


T

P̄x̄(t)

+2
r∑

l=1

µl
[
D̄lω(t)

]T
P̄x̄(t)−ηx̄T (t)ĒT P̄x̄(t)

−ηωT (t)ω(t)−ηρ̃2(t)

=

re∑
s=1

r∑
l=1

r∑
p=1

hsµlµpχ
T (t)Θslpχ (t) (26)

where
 

χ (t) =
[

x̄T (t) ωT (t) ρ̃T (t)
]T

Θslp =


Θ

(1)
slp P̄T D̄l −P̄T B̄l

[
ḠB̄p
]−1

⋆ −ηI 0
⋆ ⋆ −ηI


Θ

(1)
slp = Sym

{
P̄T Āsl+ P̄T B̄lK̄p

}
−ηP̄T Ē. (27)∑re

s=1
∑r

l=1
∑r

p=1 hsµlµpΘslp < 0To  cast  the  inequality  into
LMIs, we have
 

P̄−1 = X̄ =
 X1 0

X2 X3

 (28)

0 < X1 = XT
1 ∈ ℜnx×nx , {X2,X3} ∈ ℜnx×nx

ĒT P̄ = P̄T Ē ≥ 0
where .  It  is  easy  to
see that the inequality  holds.

Γ =
{
X̄,I,I

}
K̃l = K̄lX̄,∑re

s=1
∑r

l=1
∑r

p=1 hsµlµpΘ̄slp < 0
Γ.

Now,  we  define  diag ,  and  and  use  a
congruent transformation to  by

 After  extracting  the  fuzzy  premise  variables,  the
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inequalities in (19) and (20) can be directly obtained.
J1 (t) < 0,It  can  be  seen  from  (19)  and  (20)  that  which

implies that
 

V̇2 (t) < ηV2 (t)+ηωT (t)ω(t)+ηρ̃2(t). (29)
e−ηt

t ∈ [0,S ∗]

Pre-  and  post-multiplying  both  sides  of  (29)  by  and
integrating  the  successive  inequality  from  0  to t,  where

, we have
 

e−ηtV2 (t) < V2 (0)+η
w t

0
e−ηsρ̃2(s)ds

+η
w t

0
e−ηsωT (s)ω(s)ds

≤ x̄T (0)ĒT P̄x̄(0)+ηS
(
1+ε2

)
ϱ̃2

+η
(
1+ε2

)
δ+ηδ. (30)

In addition, it follows from (23) that:
 

e−ηtV2 (t) ≥ e−ηS x̄T (t)ĒT P̄x̄(t) (31)
which implies that
 

e−ηS x̄T (t)ĒT P̄x̄(t) < x̄T (0)ĒT P̄x̄(0)+ηS
(
1+ε2

)
ϱ̃2

+η
(
1+ε2

)
δ+ηδ. (32)

P̄Furthermore, we specify the matrix  as follows:
 

P̄ =
 P1 0

P2 P3

 (33)

0 < PT
1 = P1 ∈ ℜnx×nx , {P2,P3} ∈ ℜnx×nx

ĒT P̄ = P̄T Ē ≥ 0.
where  ,  and  it  is  ea-
sy to see that 

x̄(t) =
[

x(t)
ẋ(t)

]
,Now, due to  it follows from (30)–(33) that:

 

e−ηS xT (t)P1x(t) < xT (0)P1x(0)+ηS
(
1+ε2

)
ϱ̃2

+η
(
1+ε2

)
δ+ηδ. (34)

0 < RT
1 = R1 ∈ ℜnx×nxNow,  we  introduce  the  matrix ,  and

define
 

c1 = xT (0)R1x(0)

σ̄P1 = λmax

(
R
− 1

2
1 P1R

− 1
2

1

)
, σP1 = λmin

(
R
− 1

2
1 P1R

− 1
2

1

)
. (35)

Based on the relationship (34) and (35), we have
 

xT (t)R1x(t) <
σ̄P1c1+

(
ηS ϱ̃2+ηδ

) (
1+ε2

)
+ηδ

e−ηSσP1
. (36)

c1,c∗, [0,S ∗],R,W[0,S ∗],δ

From Definition 1, the fuzzy descriptor system in (17) is the
FTB subject to ( ). ■  

[S ∗,S ]D.  Sliding Motion Phase of FTB Within 
[S ∗,S ]

ṡ(t) = 0
ueq(t)

During  the  finite-time  interval  of  the  sliding  phase,
we will  derive the sufficient  conditions to ensure the FTB of
the  FSMC  descriptor  system.  When  the  system  trajectories
arrive  at  the  sliding  surface,  it  has  that .  Thus,  the
equivalent controller  is obtained as below:
 

ḠB̄(µ)ueq(t) = ḠB̄(µ)K̄(µ)x̄(t)− ḠD̄(µ)ω(t) (37)
Ḡ ḠB̄(µ)where  is a given matrix so that  is nonsingular.

Motivated by [35], [36], by augmenting the system (5) and
the equivalent controller (37), it yields
 

Ẽ ˙̃x(t) = Ã(h,µ)x̃ (t)+ D̃(µ)ω(t) (38)
where
 

Ẽ =


Ē 0 0
0 0 0
0 0 0

 , x̃ (t) =


x̄ (t)

x̄ (t)

ueq(t)


D̃(µ) =


D̄(µ)

0
−ḠD̄(µ)


Ã(h,µ) =


0 Ā(h,µ) B̄(µ)
I −I 0

ḠB̄(µ)K̄(µ) 0 −ḠB̄(µ)

 . (39)

Remark  4: Here,  by  further  employing  the  descriptor
redundancy representation we can avoid the inverse operation
in the equivalent controller (37).

[S ∗,S ]

In  the  following,  we  will  derive  a  sufficient  condition  to
ensure the FTB of the FSMC descriptor system (38) within the
finite-time interval .

c∗,c2, [S ∗,S ],R,W[0,S ],δ
X1 = XT

1 ∈ ℜnx×nx , {X2,X3} ∈ ℜnx×nx ,
{
X(21),X(22)

} ∈ ℜ2nx×2nx{
X(23),X(24)

} ∈ ℜnu×2nx ,X(25) ∈ ℜnu×nu

K̃l ∈ ℜnu×2nx {c∗,η}
s ∈ {1,2, . . . ,re}

Theorem  3: For  the  specified  finite  time S,  the  resulting
closed-loop  control  system  in  (38)  is  the  FTB  toward
( ),  if  there  exist  the  matrices  0  <

,
,  and  the  controller  gain

,  and the  positive  scalars ,  such that  for  all
the index  the following LMIs hold:
 

Φ̄sll < 0, 1 ≤ l ≤ r (40)
 

Φ̄slp+Φ̄spl < 0, 1 ≤ l < p ≤ r (41)
where
 

Φ̄slp =

 Sym
(
Φslp(1)

)
−ηẼX̃ D̃l

⋆ −ηI


X̃ =


X̄ 0 0

X(21) X(22) 0
X(23) X(24) X(25)

 , X̄ =
 X1 0

X2 X3



Φslp(1) =


Φslp(11) Φslp(12) B̄lX(25)

X̄−X(21) −X(21) 0
Φlp(31) −ḠB̄lX(24) −ḠB̄lX(25)


Φslp(11) = ĀslX(21)+ B̄lX(23)

Φslp(12) = ĀslX(22)+ B̄lX(24)

Φlp(31) = ḠB̄lK̃p− ḠB̄lX(23). (42)
Furthermore, the bounding is calculated as below:

 

σ̄P1c∗+ηδ
e−ηSσP1

< c2. (43)

Proof: Consider the following Lyapunov function:
 

V3 (t) = x̃T (t)ẼT P̃x̃(t), ∀t ∈ [S ∗,S ] (44)
ẼT P̃ = P̃T Ẽ ≥ 0.where 
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Along the trajectory of system (38), we have
 

V̇3 (t) = 2
[
Ã(h,µ)x̃ (t)+ D̃(µ)ω(t)

]T
P̃x̃(t). (45)

An index function is introduced as follows:
 

J2 (t) = V̇3 (t)−ηV3 (t)−ηωT (t)ω(t) (46)
ηwhere  is a positive scalar.

It follows from (44)–(46) that:
 

J2 (t) = 2
[
Ã(h,µ)x̃ (t)+ D̃(µ)ω(t)

]T
P̃x̃(t)

−ηx̃T (t)ẼT P̃x̃(t)−ηωT (t)ω(t)

= χ̃T (t)Φ(h,µ)χ̃ (t) (47)

χ̃ (t) =
[

x̃T (t) ωT (t)
]T
,where  and

Φ(h,µ) =
[
Sym
(
ÃT (h,µ)P̃

)
−ηẼT P̃ P̃T D̃(µ)

⋆ −ηI

]
.

Φ(h,µ) < 0,
J2 (t) < 0.

It  is  easy  to  see  that  which  implies  that
 Now,  by  extracting  the  fuzzy  premise  variables,  it

yields
 

Φsll < 0, 1 ≤ l ≤ r (48)
 

Φslp+Φspl < 0, 1 ≤ l < p ≤ r (49)
where
 

Φslp =

 Sym
(
ÃT

slpP̃
)
−ηẼT P̃ P̃T D̃l

⋆ −ηI


Ãslp =


0 Āsl B̄l

I −I 0
ḠB̄lK̄p 0 −ḠB̄l

 . (50)

To cast the conditions (48) and (49) into LMIs, we define
 

P̃−1 = X̃ (51)

P̃ =

 P̄ 0 0
P(21) P(22) 0
P(23) P(24) P(25)

 P̄ =
[

P1 0
P2 P3

]
where , ,

X̃ =

 X̄ 0 0
X(21) X(22) 0
X(23) X(24) X(25)

 X̄ =
[

X1 0
X2 X3

]
,0 < P1 = PT

1 ∈

ℜnx×nx , 0 < X1 = XT
1 ∈ ℜnx×nx , {P2,P3,X2,X3} ∈ ℜnx×nx {P(21),

P(22),X(21),X(22)} ∈ ℜnx×nx ,
{
P(23),P(24),X(23),X(24)

} ∈ ℜnu×nx{
P(25),X(25)

} ∈ ℜnu×nu

, 

. 
 ,

.
Γ =

{
X̃,I
}
Γ.

Now,  we  define  diag ,  and  use  a  congruent
transformation to (48) and (49) by  The inequalities in (40)
and (41) can be directly obtained.

J2 (t) < 0In addition,  implies that
 

V̇3 (t) < ηV3 (t)+ηωT(t)ω(t). (52)
e−ηt

S ∗

t ∈ [S ∗,S ]

Pre-  and  post-multiplying  both  sides  of  (52)  by  and
integrating  the  successive  inequality  from  to t with

, we have
 

e−ηt V3 (t) < V3
(
S ∗
)
+η

w t

S ∗
e−ηsωT (s)ω(s)ds

≤ x̃T (S ∗)ẼT P̃x̃(S ∗)+ηδ

= xT (S ∗)P1x(S ∗)+ηδ < σ̄P1c∗+ηδ. (53)
In addition, it can be seen from (44) that

 

e−ηtV3 (t) ≥ e−ηS x̃T (t)ẼT P̃x̄(t)

= e−ηS xT (t)P1x(t)

> e−ηSσP1xT (t)R1x(t) (54)
which implies that
 

xT (t)R1x(t) <
σ̄P1c∗+ηδ
e−ηSσP1

. (55)

From Definition 1, the fuzzy descriptor system in (17) is the
FTB. ■  

K̄lE.  Design of Controller Gain 
K̄lIn the following, we will design the controller gain  in the

sliding  surface  function  (7),  which  guarantees  that  the
conditions  in  Theorems  2  and  3  are  feasible  synchronously.
The corresponding result can be summarized as follows.

c1,c2, [0,S ],R,W[0,S ],δ 0 < X1 = XT
1 ∈

ℜnx×nx , {X2, X3} ∈ ℜnx×nx ,
{
X(21), X(22)

} ∈ ℜ2nx×2nx , {X(23),

X(24)} ∈ ℜnu×2nx , X(25) ∈ ℜnu×nu K̃l ∈
ℜnu×2nx η

s ∈ {1,2, . . . ,re}

Theorem  4: Consider  the  T-S  fuzzy  descriptor  system  (7)
and  the  FSMC  law  (8).  For  the  specified  finite  time S,  the
resulting  FSMC  descriptor  system  is  the  FTB  toward
( ), if there exist matrices 

 
,  the  controller  gain 

, and the positive scalars , such that for all the index
 the following LMIs hold:

 

Θsll < 0, 1 ≤ l ≤ r (56)
 

Φ̄sll < 0, 1 ≤ l ≤ r (57)
 

Θslp+Θspl < 0, 1 ≤ l < p ≤ r (58)
 

Φ̄slp+Φ̄spl < 0, 1 ≤ l < p ≤ r (59)

where
 

Θslp =


Θ

(1)
slp D̄l −B̄l

[
ḠB̄p
]−1

⋆ −ηI 0
⋆ ⋆ −ηI


Θ

(1)
slp = Sym

{
ĀslX̄+ B̄lK̃p

}
−ηĒX̄, X̄ =

 X1 0
X2 X3


Φ̄slp =

 Sym
(
Φslp(1)

)
−ηẼX̃ D̃l

⋆ −ηI


X̃ =


X̄ 0 0

X(21) X(22) 0
X(23) X(24) X(25)

 , D̃l =


D̄l

0
−ḠD̄l


Φslp(1) =


Φslp(11) Φslp(12) B̄lX(25)

X̄−X(21) −X(21) 0
Φlp(31) −ḠB̄lX(24) −ḠB̄lX(25)


Φslp(11) = ĀslX(21)+ B̄lX(23)

Φslp(12) = ĀslX(22)+ B̄lX(24)

Φlp(31) = ḠB̄lK̃p− ḠB̄lX(23). (60)

Furthermore, the controller gain can be obtained as below: 
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K̄l = K̃lX̄−1. (61)
  

F.  Design Procedure for the FTB Algorithm
The  detailed  calculation  steps  of  the  proposed  FTB

algorithm for the FSMC descriptor system are summarized as
follows:

1)  Use  the  T-S  fuzzy  model  method  to  describe  the
nonlinear  descriptor  system  as  shown  in  (1),  and  rewrite  the
T-S fuzzy descriptor model as shown in (5).

Ḡ, ḠB̄(µ)
Kl.

x(0)
u(t)

2) Choose a suitable matrix  so that  is nonsingular,
and  solve  Theorem 4  to  obtain  the  controller  gain  Given
the  initial  state ,  and  the  finite-time S,  and  construct  a
FSMC law  as shown in (8) and (9);

R1 c1
c∗

c2

3) Given the matrix  and calculate the bounding . Solve
Theorem 2 to obtain the bounding , and solve Theorem 3 to
obtain the bounding .

Ḡ η

Remark 5: It  is easy to see from (56)–(59) that treating the
matrix  and  the  scalar  as  constant  parameters,  (56)–(59)
become a set of LMIs.

Ḡ ḠB̄(µ)∥∥∥ḠB̄l
∥∥∥

uc(t)
uc(t)

∥∥∥ḠB̄l
∥∥∥
η

c∗

Remark 6: It is noted that  can be chosen so that  is
nonsingular, and it is easy to see from (9) that a smaller 
can enhance the effect on .  However, oppositely, we can
ignore  if  a  sufficient  large  is  chosen.  Moreover,
one can find an appropriated scalar  by the  linear  searching
so that the obtained boundary  is the minimum.  

IV.  Simulation Study

C0

The  PV  systems  are  built  to  transform  sun  irradiance  into
electrical  power.  However,  building  such  systems  come  at  a
relatively high cost. All work done in the published literature
focuses  on  increasing  the  efficiency  of  such  systems  and
decreasing their cost. In order to show the effectiveness of the
proposed  control  method,  we  consider  a  maximum  power
point tracking (MPPT) problem for a solar PV power system
using  a  DC/DC  boost  converter  as  shown  in Fig. 2,  which
consists of a solar PV array, an inductor L, a capacitor , and
a load. Its dynamic model can be represented by the following
differential equations [37]:
 Lϕ̇pv = − (1−u)vdc+ vpv

C0v̇dc = (1−u)ϕpv−ϕ0
(62)

u ∈ [0,1] ϕpv vdc
ϕ0

v0

where  represents the duty ratio;  and  stand for
the inductor current and the capacitor voltage, respectively; 
and  denote  the  load  current  and  the  load  voltage,
respectively. It should be noted that the duty ratio u carries out
the switching action by using PWM.

In order to maximize the efficiency of PV power-generation
systems, the electric characteristic of PV arrays is considered
as follows [37]:
 ϕpv = npIph−npIrs

(
eγvpv −1

)
Ppv = ϕpvvpv

(63)

np ns
γ = q/(nsϕKH) q =

1.6×10−19 K = 1.3805×10−23 J/◦K
Iph Irs

Ppv vpv

where  and  are the number of the parallel and series cells,
respectively;  with  the  electronic  charge 

 C, Boltzmann’s constant  ,
cell temperature H;  and  are the light-generated current
and  the  reverse  saturation  current,  respectively.  Here,  series
resistances  and  their  intrinsic  shunt  are  neglected.  According
to the representation of array power in (63) and by taking the
partial  derivative  of  with  respect  to  the  PV  voltage ,
one gets [37]
 

dPpv

dvpv
= ϕpv−npγIrsvpveγvpv . (64)

dPpv
dvpv
= 0

x (t) =
[
ϕpv vdc Ppv

]T
ζ1 =

vpv
ϕpv
, ζ2 =

ϕ0
vdc
, ζ3 =

vpv
Ppv

eγvpv , ζ4 = vdc, ζ5 = ϕpv

ω(t)
vdc,

L = 0.015 C0 = 0.01 np = 36 γ = 0.3863, Irs = 4.

ζ1 = (5,7.6923) , ζ2 = (0.25,0.50) ζ3 =
(23.8040,49.4831) , ζ4 = (10,16) ζ5 = (1.56,2)

1)  Here,  we  let  for  obtaining  the  MPPT  perform-
ance,  and  define ,  and  choose

   and   as fuzzy
premise variables. Now, assume that the disturbance  acts
on  the  output  voltage  and  the  system  parameters  are

 H,  F, ,  We
further linearize the above mentioned nonlinear system around
the  operation  points  , 

 ,  and . Then, the
nonlinear  PV  system  (62)  with  the  MPPT  problem  (64)  is
represented by the following T-S fuzzy descriptor model:
 

Eẋ(t) = A(µ)x (t)+B(µ)u(t)+Dω(t) (65)
A(µ) :=

∑32
l=1 µl[ζ(t)]Al B(µ) :=

∑32
l=1 µl[ζ(t)]Bl {E,A1∼31,

B1∼31,D}
where , , 

 is listed in Appendix A.
The  normalized  membership  functions  are  given  in Fig. 3,

and  we  rewrite  the  T-S  fuzzy  descriptor  model  of  the
nonlinear PV system as below:
 

Ē ˙̄x(t) = Ā(µ)x̄(t)+ B̄(µ)u(t)+ D̄ω(t) (66)

 

u

D
Vdc Load

L
PV array

ϕpv

ϕdc

ϕ0

vpv

DC/DC boost converter

C0

+

−
v0

 
Fig. 2.     A solar PV power with DC/DC boost converter.
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Fig. 3.     Normalized membership functions.
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where
 

x̄(t) =
 x(t)

ẋ(t)

 , Ē =
 I 0

0 0

 , Ā(µ) =
 0 I

A(µ) −E


B̄(µ) =

 0
B(µ)

 , D̄ =
 0

D

 .
Ḡ =
[

0 1 −1 0 1 0
]

η = 0.3
2)  Choose  a  suitable  matrix ,

,  and solve Theorem 4 to obtain the desired controller
gains, which are listed in Appendix B.

ω(t) = 0.5sin500t,
x(0) =

[
−8 1 2

]T
ϱ̄ = 2,

ρ̄(t) = 2+∥ω(t)∥
0.9

Given  the  finite  time S =  1  s,  and  the
initial  state .  We  calculate  and

.  Now,  we  construct  the  fuzzy  sliding  mode
controller as follows:
 

u(t) = ub(t)+uc(t) (67)
with
 

ub(t) =
r∑

l=1

µlK̄l x̄(t)

uc(t) = −
r∑

l=1

µl
[
ḠB̄l
]−1 2+ ∥ω(t)∥

0.9
sgn (s(t))

(⋆)where the sgn  is a switching sign function.
R1 = {1,1,1} ,

c1 = 69
c∗ > 3.9033×106

c2 > 2.0521×1011

3)  Given  the  matrix  diag  and  calculate  the
bounding .  Solve  Theorem  2  to  obtain  the  bounding

,  and  solve  Theorem  3  to  obtain  the
bounding .

S = 0.3

S = 0.05

With the above solution, the response of the sliding surface
function is shown in Fig. 4. It is easy to see that the proposed
FSMC can force PV system states  around the sliding surface
within  s,  which  is  less  than  the  pre-specified  finite
time S =  1  s.  The  responses  of  PV  system  states  by  the
proposed FSMC control strategy are shown in Fig. 5. It can be
seen that the approximated MPPT of the PV nonlinear system
can  be  achieved  within  s.  Moreover,  we  further
compare  with  non-fuzzy  sliding  mode  control,  and  the
corresponding  results  are  respectively  given  in Fig. 6.  It  is
easy  to  see  that  the  proposed  fuzzy  sliding  mode  control
achieves  better  control  performance in  comparison with  non-
fuzzy sliding mode control.  Note that  the state trajectories of

xT (t)Rx(t)

x(t)
u(t)

open-loop PV system are unbounded. However, the proposed
FSMC  control  strategy  ensures  the  state  trajectories
boundness,  and  the  comparison  of  between  the
open-loop  system and  the  closed-loop  one  is  given  in Fig. 7.
Responses of the derivative of the state  and control input

 are respectively given in Figs 8 and 9.
Remark 7: It is worth to point out that the proposed FSMC
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Fig. 4.     Response of the sliding surface function.
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Fig. 5.     State responses for the fuzzy SMC system.
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Fig. 6.     State responses for the linear SMC system.
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in  (67)  carries  the  advantages  of  both  the  fuzzy  method  and
the  sliding  mode  technique  at  the  same  time.  The  fuzzy
method  can  be  regarded  as  a  powerful  and  flexible
approximator, and the main feature of sliding mode approach
is  its  fast  response  and  robustness  against  uncertainties  or
disturbances. Figs. 5 and 6 have  shown  that  the  proposed
FSMC  achieves  fast  response  against  disturbances  in
comparison with non-fuzzy sliding mode control.

3.52×10−4

3.05×10−4

Remark  8: It  is  noted  that  all  computations  in  the  sequel
were  done in  MATLAB R2018b running under  Windows 10
PC.  The  computer  used  was  equipped  with  Intel  Xeon  E-
2276M  2.8  GHz  CPU  and  16  GB  RAM.  First,  the  desired
SMC  controller  gains  are  solved  off-line.  The  computational
time using the FSMC design proposed in Theorem 4 is 218.5 s
while  the times using the linear  SMC result  are  within 2.8 s.
Then,  after  the  off-line  controller  gains  are  obtained,  for  the
considered  fuzzy  system,  the  SMC  is  implemented  on-line.
The computational time of the FSMC is  s in each
iteration  while  the  computational  time  of  the  linear  SMC  is

 s.  Moreover,  the  number  of  total  decision
variables using the FSMC design in Theorem 4 is 205 but the
number of total decision variables on the linear SMC result is
116.  Therefore,  it  is  a  trade-off  between  design  complexity
and  desired  control  performance  when  considering  with  the

applications of the FSMS and linear SMC.
Remark 9: Note that the choices of fuzzy premise variables

and  fuzzy  rules  have  a  great  impact  on  control  performance
and computational  complexities.  Since  the  authors  have  tried
different rules for this example, the selected premise variables
are  5  and  the  selected  fuzzy  rules  are  32,  which  have  taken
into account both the control  performance and computational
complexities. Thus, it will avoid the overfitting problem.  

V.  Conclusions

This  paper  proposes  a  novel  fuzzy  sliding  mode  control
strategy to T-S fuzzy descriptor systems using a FTB method.
By  using  a  descriptor  redundancy  approach,  the  fuzzy
representation  in  the  derivative  matrix  is  reformulated  into  a
linear  one.  We  introduce  a  fuzzy  sliding  mode  control
(FSMC)  law,  and  it  is  shown  that  the  proposed  FSMC  law
ensures the FTB of the closed-loop fuzzy control systems over
the  reaching  phase  and  sliding  motion  phase.  Sufficient
conditions for designing the proposed FSMC law is derived in
terms  of  LMIs.  The  simulation  study  shows  that  the  MPPT
control  of  the  PV nonlinear  system can be achieved within  a
specified finite time.  

APPENDIX A

 

E =


0.015 0 0

0 0.01 0

0 0 1


A1 =


5 −1 0
1 −0.25 0

1 0 −1324.1


A2 =


5 −1 0

1 −0.25 0

1 0 −2752.6


A3 =


5 −1 0
1 −0.5 0
1 0 −1324.1


A4 =


5 −1 0
1 −0.5 0
1 0 −2752.6


A5 =


7.6923 −1 0

1 −0.25 0
1 0 −1324.1


A6 =


7.6923 −1 0

1 −0.25 0
1 0 −2752.6


A7 =


7.6923 −1 0

1 −0.5 0
1 0 −1324.1


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A8 =


7.6923 −1 0

1 −0.5 0

1 0 −2752.6


B1 =


10

−1.56

0

 , B9 =


16

−1.56

0



B17 =


10

−2

0

 , B25 =


16

−2

0

 , D =


0

1

0


A1 = A9 = A17 = A25,A2 = A10 = A18 = A26

A3 = A11 = A19 = A27,A4 = A12 = A20 = A28

A5 = A13 = A21 = A29,A6 = A14 = A22 = A30

A7 = A15 = A23 = A31,A8 = A16 = A24 = A32

B1 = B2 = B3 = B4 = B5 = B6 = B7 = B8

B9 = B10 = B11 = B12 = B13 = B14 = B15 = B16

B17 = B18 = B19 = B20 = B21 = B22 = B23 = B24

B25 = B26 = B27 = B28 = B29 = B30 = B31 = B32.
  

APPENDIX B
 

K1 =
[
−1727.3 −190.5 −245.8

]
K2 =

[
−1629.3 −179.7 −235.5

]
K3 =

[
−1901.7 −209.7 −260.7

]
K4 =

[
−1720.9 −189.8 −249.1

]
K5 =

[
−1729.6 −190.7 −243.1

]
K6 =

[
−1721.2 −189.8 −246.6

]
K7 =

[
−1743.1 −192.2 −244.2

]
K8 =

[
−1742.8 −192.2 −252.4

]
K9 =

[
−1211.2 −133.6 −173.7

]
K10 =

[
−1206.2 −133.0 −174.2

]
K11 =

[
−1177.5 −129.9 −167.0

]
K12 =

[
−1171.9 −129.3 −170.7

]
K13 =

[
−1234.6 −136.1 −176.3

]

 

K14 =
[
−1229.2 −135.5 −179.4

]
K15 =

[
−1214.7 −133.9 −171.4

]
K16 =

[
−1211.7 −133.6 −177.8

]
K17 =

[
−1642.2 −181.1 −232.6

]
K18 =

[
−1656.3 −182.7 −237.0

]
K19 =

[
−1697.9 −187.3 −238.5

]
K20 =

[
−1692.4 −186.6 −244.3

]
K21 =

[
−1633.2 −180.1 −228.4

]
K22 =

[
−1623.8 −179.1 −230.9

]
K23 =

[
−1722.3 −189.9 −240.0

]
K24 =

[
−1715.6 −189.2 −246.8

]
K25 =

[
−1179.7 −130.1 −168.6

]
K26 =

[
−1171.5 −129.2 −169.6

]
K27 =

[
−1141.7 −125.9 −161.5

]
K28 =

[
−1137.1 −125.4 −166.0

]
K29 =

[
−1200.5 −132.4 −170.7

]
K30 =

[
−1194.3 −131.7 −173.8

]
K31 =

[
−1232.8 −135.9 −172.1

]
K32 =

[
−1242.5 −137.0 −193.3

]
.
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