

Empirical Research on the Application of a
Structure-Based Software Reliability Model

Jie Zhang, Yang Lu, Ke Shi, and Chong Xu

 Abstract—Reliability engineering implemented early in the
development process has a significant impact on improving
software quality. It can assist in the design of architecture and
guide later testing, which is beyond the scope of traditional
reliability analysis methods. Structural reliability models work for
this, but most of them remain tested in only simulation case
studies due to lack of actual data. Here we use software metrics
for reliability modeling which are collected from source codes of
post versions. Through the proposed strategy, redundant metric
elements are filtered out and the rest are aggregated to represent
the module reliability. We further propose a framework to
automatically apply the module value and calculate overall
reliability by introducing formal methods. The experimental
results from an actual project show that reliability analysis at the
design and development stage can be close to the validity of
analysis at the test stage through reasonable application of metric
data. The study also demonstrates that the proposed methods
have good applicability.
 Index Terms—Algebraic method, reliability evaluation, software
metrics, software reliability.

I. Introduction

THE essence of software reliability engineering lies in
improving software quality, and its role covers all

development stages. Most software reliability studies use
failure data from the test stage, which focuses on predicting
the relatively stable interval of the reliability growth curve and
providing the basis for adjustment of test workload and
software release strategy. Recent research suggests that
reliability evaluation in the early stages has important
implications for avoiding possible revision costs in the middle
and later stages of development, especially for reliability-
sensitive and safety-critical software systems [1]–[4].
Generally, in order to optimize software design, appropriate
methods can be introduced as early as possible to evaluate the
overall reliability of different architectures. Structural
reliability modeling works for this, which takes a component

as a basic granularity and considers interaction modes and
structural styles of component compositions. Typical models
include semi-Markov process (SMP) [5], discrete time
Markov chain (DTMC) [6], and continuous-time Markov
chain (CTMC) [7]. Compared with the traditional reliability
models such as Goel-Okumoto (G-O) [8], they belong to a
Markovian model which is based on a stochastic modeling
method.

Markovian models will be state-explosion-prone when used
in large-scale and complex software. As such, state-free
models are also used to evaluate software system recently.
Zheng et al. [9] present an analytical approach based on
Pareto distribution for performance estimation of unreliable
infrastructure-as-a-service (IaaS) clouds. Li et al. [10] employ
an autoregressive moving average model in time series for
quality-of-service (QoS) prediction of real composite services.
The above method considers the dynamic change in
continuous runtime, but does not focus on the static analysis
of component structure. Xia et al. [11] use a stochastic-Petri-
net to calculate the process-normal-completion probability as
the reliability estimate since Petri-nets are highly capable of
describing complex component-based software. However, this
study still needs experimental data and is not suitable for
software reliability evaluation at early design stage. In
contrast, the structural model represented by DTMC is more
suitable for a reliability assessment at this stage, because it
usually does not require runtime data.

Stochastic modeling is limited in practical applications of
structure-based software reliability analysis. Take the DTMC
model as an example. Its two key parameters required for
modeling, component reliability and control transfer
probability among components, are given by simulated cases
rather than from actual projects [12]. Consensus of previous
research is that a single component can be regarded as a
black-box, and the component parameters tend to be stable in
continuous reuse and iteration. But reliability cannot be the
inherent property of software components because of the
difference in requirements and external environments between
actual projects. Moreover, the state explosion caused by
component-level modeling is also a difficult problem in the
application of large-scale complex software. Recently, more
attention was paid to service/cloud-based software reliability.
Xia et al. [13] present a stochastic model based on a Poisson
arrival process for quality evaluation of IaaS clouds. This
work considers expected request completion time, rejection
probability, and system overhead rate as key metrics, and can
be used to help design and optimize cloud systems. Luo et al.

Manuscript received February 12, 2020; accepted April 2, 2020. This work

was supported by the National Natural Science Foundation of China
(61572167), the National Key Research and Development Program of China
(2016YFC0801804), and the Natural Science Foundation for Anhui Higher
Education Institutions of China (KJ2019A0482). Recommended by Associate
Editor Xin Luo. (Corresponding author: Yang Lu.)

Citation: J. Zhang, Y. Lu, K. Shi, and C. Xu, “Empirical research on the
application of a structure-based software reliability model,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 6, pp. 1153–1162, Jun. 2021.

J. Zhang is with the School of Computer and Information, Anhui Normal
University, Wuhu 241003, China (e-mail: zjzj2526@163.com).

Y. Lu, K. Shi, and C. Xu are with the School of Computer Science and
Information Engineering, Hefei University of Technology, Hefei 230601,
China (e-mail: luyang.hf@126.com; shike@mail.hfut.edu.cn; xu.chong@
mail.hfut.edu.cn).

Digital Object Identifier 10.1109/JAS.2020.1003309

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021 1153

https://doi.org/10.1109/JAS.2020.1003309

[14] propose a scheme to build the ensemble of matrix-
factorization based QoS estimators and achieve an AdaBoost-
based aggregation result. This work presents high estimation
accuracy at low time cost. Furthermore, the authors
incorporate second-order solvers into a latent-factor based
QoS predictor which can achieve higher prediction accuracy
for industrial applications [15]. The above studies come from
actual QoS data and emphasize the role of different measure
factors in software performance analysis and prediction. When
conducting a structural reliability analysis of a software
project, an important revelation is whether the actual software
metrics data can be effectively used. In order to avoid state
explosion, the trade-off of module granularity should be based
on actual project scale and difficulty of obtaining metrics.

Recent reliability empirical studies most use traditional
software-reliability-growth-models (SRGMs) which focus on
failure data from the test stage. Luan and Huang [16] present a
Pareto distribution of faults in large-scale open source projects
for better prediction fitting curve. Sukhwani et al. [17] apply
SRGMs to NASA’s SpaceFlight software to analysis of
relevant experience information in the software development
process and version management. Aversano and Tortorella
[18] propose a reliability evaluation framework for free/open
source projects. It was applied to evaluate quality of an open
source ERP (enterprise resource planning) software based on a
project bug report. Honda et al. [19] discuss the effect of two
types of measurement units — hourly time and calendar
time — in reliability prediction of industrial software systems.
Tamura and Yamada [20] present a hierarchical Bayesian
model based on fault detection rate around a series of open
source solutions and address the impact of conflict behavior of
components when dealing with system reliability. This work
considers structural information at the component-level, but
only takes into account the noise caused by these conflicts in
the early stage of the fault detection curve due to the missing
discussion of the structural analysis.

The above works cannot be employed in the early stage of
development since they require failure data obtained from
software tests. Failure data can be attributed to the scope of
software metrics. Besides, another type of software metrics
has been applied to reliability analysis and defect prediction of
actual projects. Complexity measurement data, which has low
collection cost, can also be utilized in cognitive modeling
[21]. Shibata et al. [22] combine a cumulative discrete-rate
risk model with time-related measurement data, and prove that
the new model is equivalent to a generalized fault detection
process whose goodness of fit and predictive performance are
better than the popular NHPP SRGMs. Kushwaha and Misra
[23] consider the importance of the cognitive measure of
complexity and use it in a more reliable software development
process. Chu and Xu [24] present a general functional
relationship between complexity metrics and software failure
rate, which can be used to predict reliability on exponential
SRGMs. Bharathi and Selvarani [25] calculate the reliability
influence factors separately for several object-oriented design
metrics, and finally, deduce the reliability formula of the
class-level granularity by merging these factors through an
aggregation strategy. This work is a beneficial trial for

evaluating software reliability during the design phase.
D’Ambros et al. [26] compare the performance of several
software defect prediction methods and explain the factors of
threat validity in practical applications. This work is generally
based on static source code metrics and dynamic evolution
metrics. Zhang et al. [27] group existing defect prediction
models based on software metrics into four categories.
Through verification of a large number of open source
projects, they describe how to aggregate these metrics in order
to achieve a significant effect on predictive performance and
recommend the simple and efficient aggregation scheme of
summation.

However, measurement and SRGM-based empirical studies
have several limitations: 1) they cannot calculate the
reliability in the early design stage of software system; 2) they
are not structure-based methods, and cannot assist in
architecture design and optimization. Markovian models such
as DTMC can work for this, but they usually have great
difficulty in practical application due to lack of real data. We
have seen the combination of software metrics with traditional
reliability models and detect-prediction methods [22], [24],
[25]. We aim to incorporate software metrics into early
modeling for software reliability in order to effectively
quantify system performance. Our empirical study focuses on
the following two research questions:

RQ1: From the perspective of early reliability analysis, what
kind of structure granularity is appropriate and how does one
use software metrics?

RQ2: How does one evaluate overall system reliability in
practical engineering?

The remainder of this paper is organized as follows. Section II
introduces the reliability model DTMC and the formal method
we used for model construction and calculation. Section III
describes the experimental methods of this paper, including
object selection, metric data processing and aggregation. The
results of this study are presented in Section IV. We evaluate
the performance of our approach against other models in
Section V, and discuss the threats to validity of our work in
Section VI. Conclusions are drawn and future work is
described in Section VII.

II. Related Work

In this section, we introduce the typical early reliability
model first, and then present the method we utilized to apply
the model.

A. Structure-Based Reliability Model
In the early stage of software development, the traditional

reliability model is not available due to lack of failure data. A
class of structure-based models work for this [1]–[3]. The
most popular one is the DTMC (discrete time Markov chain)
model [6]. Here is an example of the ESA’s (European space
agency) control system software [28]. It contains four main
components (N1 to N4), and the control transfer between
components as shown in Fig. 1.

Correspondingly, we have a one-step stochastic transfer
matrix as follows:

 1154 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021

N1 N2 N3 N4

Q =

N1
N2
N3
N4


0 R1P1,2 0 R1P1,4

R2P2,1 0 R2P2,3 R2P2,4
0 0 0 R3P3,4
0 0 0 0


. (1)

The entry Qi,j represents the transition probability from state
i to j in the Markov process. Here, Qi,j = R1P1,2, reflects the
probability that the system execution state is transferred from
N1 to N2 in one step, which equals to the product of reliability
R1 and the transfer probability P1,2. R1 expresses the
probability of executing N1 successfully. Each component Ni
may fail with the probability 1–Ri, and each component failure
causes system failure. This is a failure independent hypothesis
for this model.

The power Qn of the matrix Q is defined as an n-step
stochastic transfer matrix whose entry Qi,j

n reflects the
transition probability from state i to j in n steps. The Neumann
series of matrix Q is

S = I + Q + Q2 + Q3 + · · · =
∞∑

k=0

Qk (2)

where I is the identity matrix. Let N1 be the starting module
and N4 the ending module. The entry S1,4 in matrix S describes
the transition probability from N1 to N4 through all possible
steps. Then the system reliability can be expressed as the
probability of successfully reaching N4 and successfully
executing N4, which can be calculated by

Rsys = S 1,4R4. (3)
This model emphasizes the influence of structural changes

on overall reliability from the perspective of control flow.
Subsequent improvements have been proposed on this basis.

B. Algebraic Method

⊕ ⊕

The DTMC model is built around the control transfer
relationship between components. However, the reality is that
designers seldom use it to represent the system architecture,
and module developers only generate control flow graphs at
the method-level. For this we have provided an easy-to-use
method in our previous studies [29]. In general, we use an
algebraic paradigm instead of graphical expression for higher
abstraction. The transfer relationship N1→N2 in Fig. 1 is
expressed as N1 N2, where the operator denotes that the
basic control transfers between components are motivated
[30]. So Fig. 1 can be expressed as a set as follows:

{N1⊕N2,N1⊕N4,N2⊕N1,N2⊕N3,

N2⊕N4,N3⊕N4}. (4)
This solves the problem that where the system structure is

too complicated for graphic expressions. Especially, when
components are designed as a coupling substructure, such as
parallel, it is naturally solved by adding an operator in algebra.
We can even express the nesting of structures by bracketing
them.

We propose a parser which left-to-right scan and rightmost
derivate (LR) each expression in the collection as above. The
following functions are used in the parser algorithm:

f̂ : (C× · · ·×C)→ (S× · · ·×S) (5)
C S

f̂
where is a collection of components, is a collection of
state nodes. This series of for different algebraic
expressions are used to generate system state nodes which
contains reliability attributes, and mark them on the transition
matrix Q. The elements in the matrix are constantly updated in
the scan. When the scan is complete, the matrix can be
directly applied to (2).

This formal method can be easily instrumentalized to
facilitate engineers. In the simulation study, it performed well.
We summarize the above method as a process framework, as
shown in Fig. 2.

Expression 1 Generate one-
step stochastic
transfer matrix

Q

Calculate
Rsys

Scan by
LR parserExpression 2

Expression n

......

Expression set

Fig. 2. A framework for automatically applying DTMC.

III. Experimental Design

Properties of the research object and its experimental data
are explained in detail. Some methods are applied to
reasonably preprocess and aggregate metric data. And the
improved framework is used to calculate the overall
reliability.

A. Research Object
We select the open source project jEdit [31] as the research

object. jEdit is a mature programmer’s text editor with
hundreds of person-years of development behind it. It is
written in Java and runs on any operating system with Java
support. This project is in proper scale, and it is representative
for development technology.

The current version is set as jEdit 4.3. It is because that the
metric data of jEdit in the PROMISE repository [32] contains
version 3.2.1 to version 4.3. Although version 4.3 is not the
last stable version, it does not affect the universal property of
this study since there is no fundamental change in higher
versions. We consider ourselves as developers and designers,
so we can get the necessary information of structure from the

R1P1,2

N1

N4

N3

N2

R2P2,1

R2P2,3

R3P3,4R2P2,4 R1P1,4

Fig. 1. The ESA software architecture.

ZHANG et al.: EMPIRICAL RESEARCH ON THE APPLICATION OF A STRUCTURE-BASED SOFTWARE RELIABILITY MODEL 1155

design document or source code. This information includes
packages, files, and classes, as listed in Table I.

Here we define the granularity of structural module analysis
at the package-level, and the corresponding level can be found
in other language environments. It needs to be based on the
previous version when we are seeking detailed module
information at the design stage. It usually works because of
the limited changes in modules between versions. As the
coding continues, we can continuously adjust the changes to
the files and classes of the modules. The final structure
information of version 4.3 is as described in Table I, and the
metrics are based on this.

B. Metric Data Processing
The PROMISE library includes nearly thirty metrics for

jEdit. We use three main categories — traditional metrics,
object-oriented (OO) metrics, and process metrics — to
describe the metric data. The data are summarized at the
method-level, class-level and file-level respectively [33], and
the developer can easily collect them via the specified tools.
At the method-level, the number of lines of code (LOC) and
the cyclomatic complexity (CC) [34] are still suitable for code
analysis inside a class, which existed before object-oriented
programming appeared. The CK set [35] has a wide range of

applications, but there are also metrics that emphasize perspec-
tives such as encapsulation, coupling, etc. [36]. The eight
metrics recommended by Moser et al. [37] have typical proc-
ess characteristics, and are further improved in the MJ set [38].

Simple data sampling is not used in this paper. For early
reliability analysis, the initial metric data needs to be cleaned
to highlight the structural characteristics of the metric
elements. We use the following method:

1) The process metric elements (from Moser and MJ set) do
not apply to static analysis for the target version. This work
only uses traditional metrics and OO metrics.

2) The remaining 20 metrics are divided into five
categories: complexity, coupling, cohesion, inheritance and
size. We use Spearman’s coefficient [39] to measure
correlation in 5 subsets. The data is not required to follow any
particular distribution in the state of Spearman correlation,
and it ranges from –1 to +1 where a larger absolute value
indicates the stronger correlation. Table II shows the
calculation results (e.g., the coupling metrics).

Absolute values of more than 0.5 have relevance and values
of more than 0.8 have high correlation. Observe that there are
redundant metrics that can be removed to further simplify
calculations. According to the CFS algorithm of attribute
selection [40], one metric with relatively high relevance is

TABLE I
The Structural Information of jEdit 4.3

Module Mark Description Files Classes

browser N1 File system browser 10 10

bsh N2 Bean shell 115 106

buffer N3 Buffer event listeners 18 18

bufferio N4 I/O request for buffering 6 6

bufferset N5 Set of buffer 4 4

gui N6 Various GUI controls and dialog boxes 86 88

help N7 Help viewer 8 8

indent N8 Indent rules and actions 9 9

input N9 Input handler 4 4

io N10 Virtual file system and multi-threaded I/O 18 18

menu N11 Menu function 13 13

msg N12 EditBus messages 17 17

options N13 Global options dialog box panes 25 28

pluginmgr N14 Plugin manager 10 10

print N15 Printing 3 3

proto N16 URL protocol handler 2 2

search N17 Search and replace classes 19 19

syntax N18 Syntax highlighting engine 14 14

textarea N19 An API partition for the standalone text area 38 38

visitors N20 Visitor pattern 3 3

util N21 Utility classes that do not depend on jEdit itself 18 18

xml N22 An obsolete and deprecated XML parser 4 4

core N23 jEdit’s core classes 52 52

Total 23 – 496 492

 1156 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021

selected as a main feature in each category. The maximum
cyclomatic-complexity (MAX_CC), coupling between object
classes (CBO), cohesion among methods (CAM), depth of
inheritance tree (DIT), and response for a class (RFC) are
finally selected elements as representative for the five
categories separately. It ensures that subsequent calculations
which can characterize 5 different characteristics instead of
examining correlations across all metrics. Table III lists the
data we actually used in this research when deal with the
browser module in Table I.

TABLE III
The Metric Data Used in This Research

Class name
(Prefix:org.gjt.sp.jedit.

browser.)
MAX
_CC CBO CAM DIT RFC

BrowserCommandsMenu 5 16 0.314 5 56

BrowserIORequest 8 10 0.265 2 29

BrowserListener 1 4 1 1 2

BrowserView 9 28 0.148 5 106

FileCellRenderer 9 15 0.243 6 52

VFSBrowser 21 75 0.114 5 291

VFSDirectoryEntryTable 40 27 0.158 5 144
VFSDirectoryEntryTable-

Model 6 13 0.379 2 47

VFSFileChooserDialog 13 21 0.289 7 110

VFSFileNameField 21 11 0.44 7 57

Avg 13.3 22.0 0.335 4.5 89.4

C. Aggregation Scheme
The metric data are only collected at the class-level. It is

necessary to propose a descriptive scheme to aggregate the
final value of software system reliability. We suggest a two-
step frame and the details are presented as follows.

Step 1: To establish a functional relationship between
metrics and degree of reliability in order to calculate module
reliability value.

We define the degree of reliability influence, which is
similar to the definition in [25]. Let RImi represent influence of
the metric scalar mi. It is calculated by

RImi =

[
1−

(
dpc
mc

)]
×100% (6)

where dpc indicates the number of defect prone classes at mi,
and mc indicates the number of classes contained in one
module. Notice that RI is only calculated in one module, since
the coding style of each module may not be consistent. The

range of scalar mi includes all samples of the specified metric
element. Table IV lists mi, dpc, and RImi of 5 metric elements
in the module browser, when mc = 10.

It is observed from Table IV that dpc is counted for each mi
per elements, and each mi value is a sample of the metric
space. The counting method of dpc is summarized as: If the
class, which is associated with the specific value of mi at one
metric element, a) is submitted with a bug in the previous
version, dpc ← dpc + 1; b) or is newly developed and mi
exceeds threshold, dpc ← dpc + 1.

The thresholds of RFC(222), CBO(24), and DIT(6) refer to
the NASA standard [41]. The threshold of CC(15) is derived
from [34], and the threshold of CAM(0.50) comes from [38].

In general, lower metric value means higher reliability. But
it cannot be concluded that there is a linear correlation
between metric value and reliability influence. We use
polynomial regression to estimate the relationship between the
two, because of changes of software reliability mostly in the
form of curves. As an example, the functional estimation
equations of the browser module are

RIRFC = 102.295−0.127a
RIMAX_CC = 100.652−0.927b+0.017b2

RICAM = 86.622+37.292c−24.085c2

RICBO = 104.712−0.698d+0.007d2

RIDIT = 116.182−18.103e+2.167e2 (7)
where a, b, c, d, e are the independent variables in each fitting
function. According to the average value of metrics listed in
Table IV, the five degree of reliability influence in the
browser module can be calculated as: RIRFC(89.4) = 90.941,
RIMAX_CC(13.3) = 91.330, RICAM(0.335) = 96.414,
RICBO(22.0) = 92.744, RIDIT(4.5) = 78.600.

Aggregation strategy can significantly alter correlations
between software metrics and the defect count. Zhang et al.
[27] indicate that the summation strategy can often achieve
the best performance when constructing models predict defect
rank or count. Although the perspectives of defect prediction
and reliability evaluation are different, they are effectively the
same in terms of the use of metrics. The difference is that the
former focuses on the situation after the current version, and
the latter focuses on the current developing version.
Therefore, in this paper, we use the summation strategy to
calculate the reliability degree of the individual module
according to the reliability influence of each factor. It is
calculated as

Rmodule =
∑

i

(
ri×RImetrici (mi)

)
(8)

where ri is weight of the ith metric element. Since the five
metrics used in this paper are pre-screened to represent a
logical category, they are considered equally important. Let
ri = 1/n = 1/5, where reliability of the browser module is
90.006(%) after the weighted summation.

Step 2: To establish the structural reliability model
according to Rmodule.

In the software design and development phase, reliability
engineering often needs to be carried out by architects and

TABLE II
Correlation of the Coupling Metrics

CBO CA CE IC CBM

CBO – 0.703 0.684 0.157 0.171

CA 0.703 – 0.142 –0.061 –0.049

CE 0.684 0.142 – 0.351 0.363

IC 0.157 –0.061 0.351 – 0.985

CBM 0.171 –0.049 0.363 0.985 –

ZHANG et al.: EMPIRICAL RESEARCH ON THE APPLICATION OF A STRUCTURE-BASED SOFTWARE RELIABILITY MODEL 1157

coders. The module developer calculates Rmodule by counting
the related metrics. One can gather this information of all
modules to aggregate into system reliability.

Here we use the formal method presented in Section II-B to
establish the DTMC reliability model quickly and accurately.
The method is based on algebraic expressions, which can
accurately express the control transfer between modules
instead of using graphical representation. In addition to the
value of Rmodule, module developers are required to submit
related expressions based on their understanding of the
business. For the browser module (N1), the developers need to
submit:

i) RN1= 90.006%;
⊕ii) N1 N21.

⊕Note that the expression N1 N21 replaces the directed arc of
graph to describe the control transfer relationship between N1
and N21. It indicates that further processing of the file system
will go to the utility module (N21).

A module developer can separately submit expressions that
confirm design intent, which formally starts with the
developing module and links all possible next modules in the
control flow. In some cases, architects can also submit or
modify expressions based on overall understanding. As a
description of the structure, algebraic expressions are precise
and unambiguous. They are lightweight and easy to use for
engineers. One can do this at the same time as designing and
coding, without any distractions in describing the whole
system.

⊕

Eventually, an expression set can be collected which
contains two key parameters required for the DTMC model —
 Ri and Pij. Ri comes from the submitted information which is
usually attached to a concrete expression. Transfer proba-
bility Pij, which is indicated by Ni Nj, is equally divided by
all possible transfers from module Ni. The LR parser
presented in Section II-B can calculate Pij automatically
during scanning.

Finally, as an improvement to Fig. 2, the new framework is
proposed as Fig. 3.

Expression 1 Generate one-
step stochastic
transfer matrix

Q

Calculate
Rsys

Scan by
LR parserExpression 2

Expression n

......

Expression Set

MAX_CC

CBO

RFC

Method-level &
Class-level

CAM

DIT

Aggregate
metrics

and
calculate

Ri

per modules

Fig. 3. The improved framework for empirical research.

IV. Results

This section provides our experimental results. We focus on
findings from actual application of methods in Section III, and
answer the research questions presented in Section I.

RQ1: How to determine the appropriate structure
granularity in order to apply the corresponding metrics to
reliability analysis?

In general, software design has the characteristics of
modularization, which is advantageous to the maintenance of
projects and the deployment of resources. Early reliability
analysis can only start with the structure of the software
system. The structural characteristics are represented by the
relationships between modules. This requires selecting the
appropriate module granularity. In this paper, we suggest that
Java OO projects should be analyzed at the package-level. The
corresponding granularity of other types of OO projects can
be found in the directory structure and design documents.

Table I lists the module division of jEdit. Some modules of
version 4.3 do not exist in previous versions, and some have
changed in later versions. However, analysis at the package-
level can cover all relevant metrics collected at the method- or
class-level. Different packages show significant differences in
metrics due to the diversity of functionality and developer. We
randomly choose eight out of 23 modules, and present
boxplots of them under the five selected metrics. As shown in
Fig. 4, the distributions of metric data are obviously different,
and most of them are different from the entire distribution. It
shows that the coding style of each module is different, i.e.,
the quality of each module in the same software is also
different. Furthermore, the life cycle and application scope of
many components (packages in java projects) goes beyond the
project itself. E.g., “util” and “xml”, which are independent of
jEdit’s main business, came from or could be used for other
projects. Therefore, we think that for each different module,
the reliability influence from its metric data should be
analyzed separately. And then the reliability data of all

TABLE IV
The RI Statistics in the Browser Module

Metric element mi dpc RImi mi dpc RImi

RFC

2 0 100 57 0 100

29 0 100 106 1 90

47 1 90 110 1 90

52 0 100 144 1 90

56 0 100 291 1 90

MAX_CC

1 0 100 9 1 90

5 0 100 13 1 90

6 1 90 21 1 90

8 0 100 40 1 90

CAM

0.114 1 90 0.289 1 90

0.148 1 90 0.314 0 100

0.158 1 90 0.379 1 90

0.243 0 100 0.44 0 100

0.265 0 100 1 0 100

CBO

4 0 100 16 0 100

10 0 100 21 1 90

11 0 100 27 1 90

13 1 90 28 1 90

15 0 100 75 1 90

DIT

1 0 100 6 0 100

2 1 90 7 1 90

5 3 70

 1158 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021

modules should be integrated with a specific structural
analysis method.

N1 N2 N6 N12 N14 N19 N21 N23 All

N1 N2 N6 N12 N14 N19 N21 N23 All

N1 N2 N6 N12 N14 N19 N21 N23 All

N1 N2 N6 N12 N14 N19 N21 N23 All

N1 N2 N6 N12 N14 N19 N21 N23 All

75

50

25

0

1.0

0.5

0

8

6

4

2

0

150

100

50

0

(a) DIT (b) CBO

(c) RFC (d) CAM

50

25

0

(e) MAX_CC

Fig. 4. Boxplots of 5 metric values resourced from eight modules and
whole.

RQ2: How to evaluate the reliability of a software?
We calculate the reliability value of a single module based

on (6) and (8). Table V lists the reliability degree for all
modules in 4 versions of the jEdit project. Note that version
4.3 is the last version in PROMISE repository, and it is also
the one set for the current review. The first version 3.2.1 is
discarded because we need to trace back a version for
counting dpc in (6).

Fig. 5 presents the boxplots of the numerical results in Table V.
It shows that statistically, the overall distribution gradually
increases as the version changes. It can be seen from the
diagram that most module reliability values increase as the
version changes. This is in line with the expectation that the
module quality will improve as more bugs are fixed. From the
perspective of structural analysis, we still want to estimate a
specific value to reflect the overall reliability of software.

⊕ ⊕ ⊕
⊕

With version 4.3 as the goal, module developers should
present the relationship between this module and other
modules in addition to Rmodule, which can be described
conveniently by algebraic expressions. Then, the expression
set of {N12 N3, N12 N6, N12 N19, …} can be collected.
Expression N23 C should be added into the collection in order
to facilitate model calculation, which means the requirement
of business termination is only initiated by the core module
N23. C is the ending node and its reliability value is 100%. The

starting module is N12, which means that the message occurs
when the business is coming.

v4.0 v4.1 v4.2 v4.3

100

95

90

85R
el

ia
bi

lit
y

de
gr

ee
 o

f m
od

ul
es

Version

%

Fig. 5. Boxplot of reliability degree in all modules among four versions.

We also set up an expression set for three other versions,
and use the Fig. 3 framework to automate the overall software
reliability calculation. Fig. 6 shows the results. To illustrate
the effectiveness of the proposed method, two traditional
growth models: the classical G-O model [8] and Huang’s test-
effort model [42] are used as comparisons. In this work, we
follow the common practice in empirical research of SRGMs
[16]–[19], where the failure data is extracted from the bug

TABLE V
The Rmodule Values in Different Versions of jEdit

Module
The value of Rmodule (%)

v4.0 v4.1 v4.2 v4.3

browser 86.755 89.104 89.303 90.006

bsh 87.667 88.482 94.358 96.385

buffer 87.567 86.415 92.883 95.812

bufferio – – – 95.521

bufferset – – – 89.871

gui 86.238 85.116 89.552 91.350

help – 86.633 89.569 90.018

indent – – – 97.656

input – – – 98.142

io 89.008 89.664 90.322 97.765

menu – – 94.574 97.161

msg 88.089 89.528 93.147 96.502

options 89.885 91.207 92.422 96.352

pluginmgr 90.125 91.897 95.322 97.151

print 88.252 89.128 91.082 94.056

proto 86.997 85.328 90.998 94.106

search 89.231 90.562 90.484 96.531

syntax 84.003 85.662 88.557 94.481

textarea 84.712 83.563 90.245 92.266

visitors – – – 97.175

util 91.367 91.251 93.699 96.623

xml 90.574 92.236 90.011 95.754

ZHANG et al.: EMPIRICAL RESEARCH ON THE APPLICATION OF A STRUCTURE-BASED SOFTWARE RELIABILITY MODEL 1159

reports. This is under basis of the following assumptions: 1)
Confirmed bugs cause failures; 2) Each failure is independent;
3) Fixing bugs will not introduce new bugs. According to the
reports obtained from the official website of jEdit [31],
version 4.0 has 226 closed bugs within 215 days since the
previous release. The G-O model use a statistical process
based on this failure intensity, and the prediction result at the
release time of jEdit 4.0 is 88.736%. Version 4.1 has 167
closed bugs within 407 days, and the prediction result is
89.413%. The data for versions 4.2 and 4.3 show that there are
106 bugs within 557 days and 12 bugs within 1848 days. The
prediction results are 92.185% and 96.587%,respectively.
Furthermore, as suggested in [42], the cumulative interval is
used here as the test-effort which is available from the detailed
entry of each bug in the report. The prediction results of
Huang model across the four versions are 90.156%, 91.142%,
92.868% and 96.224%, respectively.

Proposed method
G-O model
Huang model

v4.0 v4.1 v4.2 v4.3
Version

98

96

94

92

90

88

86

84

R
el

ia
bi

lit
y

de
gr

ee

%

Fig. 6. Reliability trends on four versions of jEdit.

V. Discussion

A. Characteristics of Early Reliability Modeling
Unlike SRGMs, early reliability modeling only relies on

structural analysis of software system. As mentioned in the
first section, the modeling parameters come from a single
software module and the relationship between modules.
Therefore, it is meaningless to compare the predictive
performance with a class of models based on failure data.
Most reliability-prediction models, such as SRGMs, are
utilized to optimize the release strategy to achieve a balance
between quality and test costs. But the significance of the
early model is to optimize the structure and guide the test.

We show the trend of changes in the results of the proposed
method in Fig. 6, and also use two representative models to
illustrate the correctness. It should be explained that the
calculation of each version of this method can be performed at
the design stage. And based on the framework in Section III-
C, the calculation process is automatically complemented by
tools. This means that the reliability evaluation can be carried
out at any time with structural design changes. It helps
decrease the difficulty of applying the structural reliability
model into practice.

As shown in Fig. 6, the numerical values evaluated by the
proposed method (87.267%, 87.184%, 89.381%, 94.223%)
are lower than by the traditional models. This is because
calculations based on metric data can magnify the impact of
defect-prone classes. For the calculation of defect tendency,
the method of this paper tends to be conservative.
Correspondingly, the SRGMs which are based only on test
data assume that the reliability curve increases with bugs
fixing. Their evaluations are relatively optimistic in general.

B. Sensitivity Analysis
The influence of software local structure on reliability can

be analyzed through sensitivity. This effect can only be
manifested in the computation of the structural reliability
model. As shown here jEdit 4.0 is upgraded to 4.1. The result,
which differs from the traditional models’, appears to be
slightly reduced. By partially fixing pre-existing defects, new
versions can also have reduced reliability with the
introduction of new modules and features (such as N7 in jEdit
4.1).

We use the criticality to analyze sensitivity. It is computed
by the following formula:

Ci =
∆Rsys

∆Ri
(9)

∆ ∆

∆

where Ri is the reliability increment of module Ni, Rsys is
the overall reliability increase corresponding to this increment.
In fact, when the Ri is very small, we use Ci instead of the
partial derivative, i.e., the criticality of module Ni is an
approximate value of the module sensitivity. However, in
terms of computational complexity, computing criticality is
much better than computing sensitivity. The sensitivity
(partial derivative) on Ri can only be solved based on cofactor
expansion, which leads to a geometric increase in
computational time and space when the total number of
modules grows. In contrast, (9) can be calculated
automatically by the proposed framework in Fig. 3.

∆

For jEdit 4.3, we set a small negative increment of 0.005 for
all module reliability. Fig. 7 shows the Ci corresponding to
each change of Ri. It can be seen that the reliability
sensitivity of core module N23 and message module N12 are
significantly higher than others. This conforms to the
expectation of actual control flow at design stage. And this
means that later testing on such modules will help
significantly improve the overall reliability of software.
However, some modules (such as N18) are not considered to
be the important nodes in structure because they only interact
with very few modules. These may not be the goals that
reliability engineering needs to focus on.

VI. Threats to Validity

1) Project Selection: In this work, the open source project
jEdit is selected. In addition to using metrics, we need to
analyze the software structure and apply a complex evaluation
framework. We only discussed one project because of space
constraints.

The threat to our treatment mainly arises from applicability
of our method on other OO projects. Metric data can be

 1160 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021

obtained from public repositories, but also can be directly
calculated from the source code. Structural information can be
analyzed from design documents and source codes. We
believe that the applicability of the proposed method is not a
problem. Furthermore, it is recommended that non-java
projects should be tested using our approach and the results
may be slightly different.

2) Metrics and Techniques Selection: These metrics and its
classification we used are popular and commonly investigated
in defect prediction literature. With the same kind of metrics,
correlation analysis technique is used to eliminate redundant
impacts. A study on more correlation analysis techniques is
required. In addition, the DTMC model used in this paper is
the most important structural analysis model at present. The
proposed framework uses formal techniques to show the
application of this model. Formal techniques have been fully
elaborated and verified in our previous studies. We will
provide an open-source implementation of analytical
algorithms online. Replication studies using different early
reliability models, such as CTMC, to utilize this framework
and may prove fruitful.

VII. Conclusion

Although there are many practical difficulties in reliability
analysis and evaluation of software projects in early
development, the calculation results from the reliability model
can provide reference for the optimization of software
architecture design. By analyzing the software structure, we
find the sensitive modules that affect the overall reliability,
which provides a practical basis for subsequent reliability
distribution and stress testing. Theoretical research of
structure-based software reliability models has been studied
extensively, but the biggest obstacle to its further development
is determining how to apply it to practical projects.

Our main work is to provide a complete solution for early
reliability evaluation. We first give a method for processing
metric data and aggregating it into module reliability. Then we
propose a process framework, which automatically calculates
the overall reliability value based on module parameters and
expression forms. Using a series of different methods, our
research shows the implementation of a structural reliability
model in practical projects. Evaluation of an OO project

shows that we can get an approximating result vs. traditional
models which are based on software failure data. It provides
new ideas and methods for the empirical research of
reliability.

The work is original and operable in the selection and
aggregation of software metric data and the practice of
structural analysis model. The next steps of research will be
continued in two areas:

1) Consider establishing a functional relationship between
metrics and reliability on more metric elements. The fitting
method of the function is not limited to one but also, selects
the appropriate method according to different modules and
developers, such as Stepwise Regression and Ridge
Regression.

2) Defect prediction Technology continues to show new
results. In addition to the traditional methods, a method using
random neural networks (RNN) has recently been proposed,
and the results are good. This prediction model is established
on the time axis and describes the evolution of each software
module. We will consider the use of better-performing
solutions in the prediction of defect-prone classes to improve
the reliability evaluation of modules.

References
 F. Febrero, C. Calero, and M. Á. Moraga, “A Systematic Mapping
Study of Software Reliability Modeling,” Inform. Software Tech.,
vol. 56, no. 8, pp. 839–849, 2014.

[1]

 H. Mei, G. Huang, L. Zhang, and W. Zhang, “ABC: A method of
software architecture modeling in the whole lifecycle,” Science China-
Information Sciences, vol. 44, no. 5, Article No. 564, 2014.

[2]

 A. D. Plessis, K. Frank, M. Saglimbene, and N. Ozarin, “The thirty
greatest reliability challenges,” in Proc. Reliability and Maintainability
Symposium, vol. 94, pp. 1–6, Jan. 2014.

[3]

 T. Dan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and future of
software architectural decisions – A systematic mapping study,” Inform.
Software Tech., vol. 56, no. 8, pp. 850–872, 2014.

[4]

 B. Littlewood, “Software reliability model for modular program
structure,” IEEE Trans. Reliability, vol. R–28, no. 3, pp. 241–246, 1979.

[5]

 R. C. Cheung, “A user-oriented software reliability model,” IEEE
Trans. Software Engineering, vol. SE–6, no. 2, pp. 118–125, 1980.

[6]

 J. C. Laprie, “Dependability evaluation of software systems in
operation,” IEEE Trans. Software Engineering, vol. SE–10, no. 6,
pp. 701–714, 1984.

[7]

 A. L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,” IEEE
Trans. Reliability, vol. R–28, no. 3, pp. 206–211, 1979.

[8]

 W. B. Zheng, M. C. Zhou, L. Wu, Y. N. Xia, X. Luo, S. C. Pang, Q. S.
Zhu, and Y. Q. Wu, “Percentile performance estimation of unreliable
IAAS clouds and their cost-optimal capacity decision,” IEEE Access,
no. 5, pp. 2808–2818, 2017.

[9]

 J. Li, X. Luo, Y. N. Xia, Y. K. Han, and Q. S. Zhu, “A time series and
reduction-based model for modeling and QoS prediction of service
compositions,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 1, pp. 146–163, 2015.

[10]

 Y. N. Xia, X. Luo, J. Li, and Q. S. Zhu, “A Petri-net-based approach to
reliability determination of ontology-based service compositions,” IEEE
Trans. Systems, Man, and Cybernetics: Systems, vol. 43, no. 5,
pp. 1240–1247, 2013.

[11]

 S. S. Gokhale, “Architecture-based software reliability analysis:
overview and limitations,” IEEE Trans. Dependable and Secure
Computing, vol. 4, no. 1, pp. 32–40, 2007.

[12]

 Y. N. Xia, M. C. Zhou, X. Luo, Q, S. Zhu, J. Li, and Y. Huang,
“Stochastic modeling and quality evaluation of Infrastructure-as-a-
Service clouds,” IEEE Trans. Autom. Science and Engineering, vol. 12,
no. 1, pp. 162–170, 2015.

[13]

0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Module

1.809
1.736

1.345

1.221
1.182

0.952
0.987

0.655 0.655
0.576

0.512

0.405
0.345

0.378

0.276 0.289
0.325 0.326

0.112 0.096 0.106

0.489

C
rit

ic
al

ity

N1 N3 N5 N7 N9 N11 N13 N15 N17 N19 N21 N23

Fig. 7. Analysis of reliability sensitivity of modules in jEdit 4.3.

ZHANG et al.: EMPIRICAL RESEARCH ON THE APPLICATION OF A STRUCTURE-BASED SOFTWARE RELIABILITY MODEL 1161

http://dx.doi.org/10.1016/j.infsof.2014.03.006
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1109/TR.1979.5220576
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/TSE.1984.5010299
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1109/TASE.2013.2276477
http://dx.doi.org/10.1016/j.infsof.2014.03.006
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1016/j.infsof.2014.03.009
http://dx.doi.org/10.1109/TR.1979.5220576
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/TSE.1980.234477
http://dx.doi.org/10.1109/TSE.1984.5010299
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TR.1979.5220566
http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1109/TASE.2013.2276477

 X. Luo, M. C. Zhou, Z. D. Wang, Y. N. Xia, and Q. S. Zhu, “An
effective scheme for QoS estimation via alternating direction method-
based matrix factorization,” IEEE Trans. Services Computing, vol.12,
no.4, pp.503–518, 2019.

[14]

 X. Luo, M. C. Zhou, S. Li, Y. N. Xia, Z. H. You, Q. S. Zhu, and H.
Leung, “Incorporation of efficient second-order solvers into latent factor
models for accurate prediction of missing QoS data,” IEEE Trans.
Cybernetics, vol. 48, no. 4, pp. 1216–1228, 2018.

[15]

 S. P. Luan, and C. Y. Huang, “An improved Pareto distribution for
modelling the fault data of open source software,” Software Testing,
Verification and Reliability, vol. 24, no. 6, pp. 416–437, 2014.

[16]

 H. Sukhwani, J. Alonso, K. S. Trivedi, and I. Mcginnis, “Software
reliability analysis of nasa space flight software: A practical
experience,” in Proc. IEEE Int. Conf. Software Quality, Reliability and
Security, vol. 3, pp. 386–397, 2016.

[17]

 L. Aversano, and M. Tortorella, “Analysing the reliability of Open
Source software projects,” in Proc. 10th Int. Joint Conf. Software
Technologies, pp. 348–357, 2016.

[18]

 K. Honda, N. Nakamura, H. Washizaki, and Y. Fukazawa, “Case study:
Project management using cross project software reliability growth
model,” in Proc. IEEE Int. Conf. Software Quality, Reliability and
Security Companion, pp. 41–44, 2016.

[19]

 Y. Tamura and S. Yamada, “Reliability analysis considering the
component collision behavior for a large-scale open source solution,”
Qual. Reliab. Eng. Int., vol. 30, no. 5, pp. 669–680, 2014.

[20]

 L. Fiondella, A. Nikora, and T. Wandji, “Software reliability and
security: challenges and crosscutting themes,” in Proc. IEEE Int.
Symposium Software Reliability Engineering Workshops, pp. 55–56,
2016.

[21]

 K. Shibata, K. Rinsaka, and T. Dohi, “Metrics-based software reliability
models using non-homogeneous poisson processes,” in Proc. Int.
Symposium Software Reliability Engineering, IEEE Computer Society,
pp. 52–61, 2006.

[22]

 D. S. Kushwaha and A. K. Misra, “Cognitive complexity metrics and its
impact on software reliability based on cognitive software development
model,” ACM SIGSOFT Software Engineering Notes, vol. 31, no. 2,
pp. 1–6, 2006.

[23]

 Y. M. Chu and S. Y. Xu, “Exploration of complexity in software
reliability,” Tsinghua Science and Technology, vol. 12, no. S1,
pp. 266–269, 2007.

[24]

 R. Bharathi and R. Selvarani, “A framework for the estimation of OO
software reliability using design complexity metrics,” in Proc. Int. Conf.
Trends in Autom. Communications and Computing Technology, pp.
1–7, 2016.

[25]

 M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4–5, pp. 531–577, 2012.

[26]

 F. Zhang, A. E. Hassan, S. Mcintosh, and Y. Zou, “The use of
summation to aggregate software metrics hinders the performance of
defect prediction models,” IEEE Trans. Software Engineering, vol. 43,
no. 5, pp. 476–491, 2017.

[27]

 K. Goseva-Popstojanova, A. P. Mathur, and K. S. Trivedi, “Comparison
of architecture-based software reliability models,” in Proc. Int.
Symposium Software Reliability Engineering, IEEE Computer Society,
vol. 7, pp. 22–31, 2001.

[28]

 J. Zhang, Y. Lu, and G. L. Liu, “Algebraic approach of software
reliability estimation based on architecture analysis,” Systems
Engineering and Electronics, vol. 37, no. 11, pp. 2654–2662, 2015.

[29]

 H. Q. Zhao and J. Sun, “An algebraic model of Internetware software
architecture,” Science China-Information Sciences, vol. 43, no. 1,
pp. 161–177, 2013.

[30]

 S. Pestov, “JEdit programmer’s text editor (2018),” [Online]. Available:
http://www.jedit.org/main.html, Accessed on: Mar. 16, 2018.

[31]

 G. Boetticher, T. Menzies, and T. Ostrand, “Tera-PROMISE: Welcome
to one of the largest repositories of SE research data (2018),” [Online].
Available: http://openscience.us/repo/index.html, Accessed on: Mar. 22,
2018.

[32]

 D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault
prediction metrics: A systematic literature review,” Information and
Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[33]

 T. J. Mccabe, “A complexity measure,” IEEE Trans. Software
Engineering, vol. SE–2, no. 4, pp. 308–320, 1976.

[34]

 S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Software Engineering, vol. 20, no. 11,
pp. 197–211, 1994.

[35]

 D. P. Darcy and C. F. Kemerer, “OO metrics in practice,” IEEE
Software, vol. 22, no. 6, pp. 17–19, 2005.

[36]

 R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” in Proc. ACM/IEEE Int. Conf. Software Engineering, pp.
181–190, 2008.

[37]

 L. Madeyski and M. Jureczko, “Which process metrics can significantly
improve defect prediction models? An empirical study,” Software
Quality Journal, vol. 23, no. 3, pp. 393–422, 2015.

[38]

 D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 5th ed, Boca Raton, USA: Chapman & Hall/CRC, 2012.

[39]

 D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, and J. Aguilar-Ruiz,
“Attribute selection in software engineering datasets for detecting fault
modules,” in Proc. 33rd EUROMICRO Conf. Software Engineering and
Advanced Applications, pp. 418–423, 2007.

[40]

 G. Brat and A. Venet, “Precise and scalable static program analysis of
NASA flight software,” in Proc. IEEE Aerospace Conf., pp. 1–10,
2005.

[41]

 C. Y. Huang, S. Y. Kuo, and M. R. Lyu, “An assessment of testing-
effort dependent software reliability growth models,” IEEE Trans. on
Reliability, vol. 56, no. 2, pp. 198–211, 2007.

[42]

Jie Zhang received the B.S. degree from Anhui
Normal University, in 2002, the M.S. degree from
Tongji University, in 2009, and the Ph.D. degree in
computer application technology from Hefei
University of Technology, in 2019. He is currently
an Assistant Professor with the School of Computer
and Information, Anhui Normal University. His
research interests include system reliability, system
safety, software reliability, and trust computing.

Yang Lu received the B.S. degree in electronic
engineering from Shanghai Jiao Tong University, in
1988, and Ph.D. degree in computer application
technology from Hefei University of Technology, in
2002. He is currently a Professor with the School of
Computer Science and Information Engineering,
Hefei University of Technology. His research
interests include computer control, system safety,
sensor network, and distributed control system. He
has published over 50 research papers in different

international journals and conferences.

Ke Shi received the M.S. degree from Anhui
University, in 2010. He is currently a Ph.D.
candidate at the School of Computer Science and
Information Engineering, Hefei University of
Technology. His research interests include natural
language processing, information retrieval, and
machine learning.

Chong Xu received the M.S. degree from the School
of Computer Science and Information Engineering,
Hefei University of Technology, in 2013, where he is
currently a Ph.D. candidate. His research interests
include software architecture and process algebraic.

 1162 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 6, JUNE 2021

http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1002/qre.1519
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1109/TSE.2016.2599161
http://www.jedit.org/main.html
http://openscience.us/repo/index.html
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1109/TR.2007.895301
http://dx.doi.org/10.1109/TR.2007.895301
http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1002/qre.1519
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1109/TSE.2016.2599161
http://www.jedit.org/main.html
http://openscience.us/repo/index.html
http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1109/TCYB.2017.2685521
http://dx.doi.org/10.1002/qre.1519
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1007/s10664-011-9173-9
http://dx.doi.org/10.1109/TSE.2016.2599161
http://www.jedit.org/main.html
http://openscience.us/repo/index.html
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1109/TR.2007.895301
http://dx.doi.org/10.1109/TR.2007.895301
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1109/MS.2005.160
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1109/TR.2007.895301
http://dx.doi.org/10.1109/TR.2007.895301

	I Introduction
	II Related Work
	A Structure-Based Reliability Model
	B Algebraic Method

	III Experimental Design
	A Research Object
	B Metric Data Processing
	C Aggregation Scheme

	IV Results
	V Discussion
	A Characteristics of Early Reliability Modeling
	B Sensitivity Analysis

	VI Threats to Validity
	VII Conclusion

