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   Abstract—Reliability  engineering  implemented  early  in  the
development  process  has  a  significant  impact  on  improving
software  quality.  It  can  assist  in  the  design  of  architecture  and
guide  later  testing,  which  is  beyond  the  scope  of  traditional
reliability analysis methods. Structural reliability models work for
this,  but  most  of  them  remain  tested  in  only  simulation  case
studies  due to  lack of  actual  data.  Here  we use  software metrics
for reliability modeling which are collected from source codes of
post  versions.  Through  the  proposed  strategy,  redundant  metric
elements are filtered out and the rest are aggregated to represent
the  module  reliability.  We  further  propose  a  framework  to
automatically  apply  the  module  value  and  calculate  overall
reliability  by  introducing  formal  methods.  The  experimental
results from an actual project show that reliability analysis at the
design  and  development  stage  can  be  close  to  the  validity  of
analysis at the test stage through reasonable application of metric
data.  The  study  also  demonstrates  that  the  proposed  methods
have good applicability.
    Index Terms—Algebraic  method,  reliability  evaluation,  software
metrics, software reliability.
  

I.  Introduction

THE  essence  of  software  reliability  engineering  lies  in
improving  software  quality,  and  its  role  covers  all

development  stages.  Most  software  reliability  studies  use
failure  data  from  the  test  stage,  which  focuses  on  predicting
the relatively stable interval of the reliability growth curve and
providing  the  basis  for  adjustment  of  test  workload  and
software  release  strategy.  Recent  research  suggests  that
reliability  evaluation  in  the  early  stages  has  important
implications for avoiding possible revision costs in the middle
and  later  stages  of  development,  especially  for  reliability-
sensitive  and  safety-critical  software  systems  [1]–[4].
Generally,  in  order  to  optimize  software  design,  appropriate
methods can be introduced as early as possible to evaluate the
overall  reliability  of  different  architectures.  Structural
reliability modeling works for  this,  which takes a component

as  a  basic  granularity  and  considers  interaction  modes  and
structural  styles  of  component  compositions.  Typical  models
include  semi-Markov  process  (SMP)  [5],  discrete  time
Markov  chain  (DTMC)  [6],  and  continuous-time  Markov
chain  (CTMC)  [7].  Compared  with  the  traditional  reliability
models  such  as  Goel-Okumoto  (G-O)  [8],  they  belong  to  a
Markovian  model  which  is  based  on  a  stochastic  modeling
method.

Markovian models will be state-explosion-prone when used
in  large-scale  and  complex  software.  As  such,  state-free
models  are  also  used  to  evaluate  software  system  recently.
Zheng et  al.  [9]  present  an  analytical  approach  based  on
Pareto  distribution  for  performance  estimation  of  unreliable
infrastructure-as-a-service (IaaS) clouds. Li et al. [10] employ
an  autoregressive  moving  average  model  in  time  series  for
quality-of-service (QoS) prediction of real composite services.
The  above  method  considers  the  dynamic  change  in
continuous  runtime,  but  does  not  focus  on  the  static  analysis
of component structure. Xia et al.  [11] use a stochastic-Petri-
net  to  calculate  the  process-normal-completion  probability  as
the  reliability  estimate  since  Petri-nets  are  highly  capable  of
describing complex component-based software. However, this
study  still  needs  experimental  data  and  is  not  suitable  for
software  reliability  evaluation  at  early  design  stage.  In
contrast,  the  structural  model  represented  by  DTMC is  more
suitable  for  a  reliability  assessment  at  this  stage,  because  it
usually does not require runtime data.

Stochastic  modeling  is  limited  in  practical  applications  of
structure-based software reliability  analysis.  Take the DTMC
model  as  an  example.  Its  two  key  parameters  required  for
modeling,  component  reliability  and  control  transfer
probability  among components,  are  given by simulated  cases
rather  than  from  actual  projects  [12].  Consensus  of  previous
research  is  that  a  single  component  can  be  regarded  as  a
black-box, and the component parameters tend to be stable in
continuous  reuse  and  iteration.  But  reliability  cannot  be  the
inherent  property  of  software  components  because  of  the
difference in requirements and external environments between
actual  projects.  Moreover,  the  state  explosion  caused  by
component-level  modeling  is  also  a  difficult  problem  in  the
application  of  large-scale  complex  software.  Recently,  more
attention was paid to service/cloud-based software reliability.
Xia et al.  [13] present a stochastic model based on a Poisson
arrival  process  for  quality  evaluation  of  IaaS  clouds.  This
work  considers  expected  request  completion  time,  rejection
probability, and system overhead rate as key metrics, and can
be used to help design and optimize cloud systems. Luo et al.
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[14]  propose  a  scheme  to  build  the  ensemble  of  matrix-
factorization based QoS estimators and achieve an AdaBoost-
based  aggregation  result.  This  work  presents  high  estimation
accuracy  at  low  time  cost.  Furthermore,  the  authors
incorporate  second-order  solvers  into  a  latent-factor  based
QoS  predictor  which  can  achieve  higher  prediction  accuracy
for industrial applications [15]. The above studies come from
actual  QoS data  and  emphasize  the  role  of  different  measure
factors in software performance analysis and prediction. When
conducting  a  structural  reliability  analysis  of  a  software
project, an important revelation is whether the actual software
metrics  data  can  be  effectively  used.  In  order  to  avoid  state
explosion, the trade-off of module granularity should be based
on actual project scale and difficulty of obtaining metrics.

Recent  reliability  empirical  studies  most  use  traditional
software-reliability-growth-models  (SRGMs)  which  focus  on
failure data from the test stage. Luan and Huang [16] present a
Pareto distribution of faults in large-scale open source projects
for better  prediction fitting curve.  Sukhwani et al.  [17] apply
SRGMs  to  NASA’s  SpaceFlight  software  to  analysis  of
relevant  experience  information  in  the  software  development
process  and  version  management.  Aversano  and  Tortorella
[18]  propose a  reliability  evaluation framework for  free/open
source projects.  It  was applied to evaluate quality of an open
source ERP (enterprise resource planning) software based on a
project bug report. Honda et al. [19] discuss the effect of two
types  of  measurement  units  —  hourly  time  and  calendar
time — in reliability prediction of industrial software systems.
Tamura  and  Yamada  [20]  present  a  hierarchical  Bayesian
model  based  on  fault  detection  rate  around  a  series  of  open
source solutions and address the impact of conflict behavior of
components  when  dealing  with  system  reliability.  This  work
considers  structural  information  at  the  component-level,  but
only takes into account the noise caused by these conflicts in
the early stage of the fault detection curve due to the missing
discussion of the structural analysis.

The above works cannot be employed in the early stage of
development  since  they  require  failure  data  obtained  from
software  tests.  Failure  data  can  be  attributed  to  the  scope  of
software  metrics.  Besides,  another  type  of  software  metrics
has been applied to reliability analysis and defect prediction of
actual projects. Complexity measurement data, which has low
collection  cost,  can  also  be  utilized  in  cognitive  modeling
[21].  Shibata et  al.  [22]  combine  a  cumulative  discrete-rate
risk model with time-related measurement data, and prove that
the  new  model  is  equivalent  to  a  generalized  fault  detection
process whose goodness of fit and predictive performance are
better  than the  popular  NHPP SRGMs.  Kushwaha and Misra
[23]  consider  the  importance  of  the  cognitive  measure  of
complexity and use it in a more reliable software development
process.  Chu  and  Xu  [24]  present  a  general  functional
relationship  between complexity  metrics  and software  failure
rate,  which  can  be  used  to  predict  reliability  on  exponential
SRGMs.  Bharathi  and  Selvarani  [25]  calculate  the  reliability
influence factors separately for several object-oriented design
metrics,  and  finally,  deduce  the  reliability  formula  of  the
class-level  granularity  by  merging  these  factors  through  an
aggregation  strategy.  This  work  is  a  beneficial  trial  for

evaluating  software  reliability  during  the  design  phase.
D’Ambros et  al.  [26]  compare  the  performance  of  several
software defect prediction methods and explain the factors of
threat validity in practical applications. This work is generally
based  on  static  source  code  metrics  and  dynamic  evolution
metrics.  Zhang et  al.  [27]  group  existing  defect  prediction
models  based  on  software  metrics  into  four  categories.
Through  verification  of  a  large  number  of  open  source
projects, they describe how to aggregate these metrics in order
to  achieve  a  significant  effect  on  predictive  performance  and
recommend  the  simple  and  efficient  aggregation  scheme  of
summation.

However, measurement and SRGM-based empirical studies
have  several  limitations:  1)  they  cannot  calculate  the
reliability in the early design stage of software system; 2) they
are  not  structure-based  methods,  and  cannot  assist  in
architecture design and optimization. Markovian models such
as  DTMC  can  work  for  this,  but  they  usually  have  great
difficulty in practical application due to lack of real data. We
have seen the combination of software metrics with traditional
reliability  models  and  detect-prediction  methods  [22],  [24],
[25].  We  aim  to  incorporate  software  metrics  into  early
modeling  for  software  reliability  in  order  to  effectively
quantify system performance. Our empirical study focuses on
the following two research questions:

RQ1: From the perspective of early reliability analysis, what
kind of structure granularity is appropriate and how does one
use software metrics?

RQ2: How  does  one  evaluate  overall  system  reliability  in
practical engineering?

The remainder of this paper is organized as follows. Section II
introduces the reliability model DTMC and the formal method
we  used  for  model  construction  and  calculation.  Section  III
describes  the  experimental  methods  of  this  paper,  including
object  selection,  metric  data processing and aggregation.  The
results of this study are presented in Section IV. We evaluate
the  performance  of  our  approach  against  other  models  in
Section  V,  and  discuss  the  threats  to  validity  of  our  work  in
Section  VI.  Conclusions  are  drawn  and  future  work  is
described in Section VII.  

II.  Related Work

In  this  section,  we  introduce  the  typical  early  reliability
model first,  and then present the method we utilized to apply
the model.  

A.  Structure-Based Reliability Model
In  the  early  stage  of  software  development,  the  traditional

reliability model is not available due to lack of failure data. A
class  of  structure-based  models  work  for  this  [1]–[3].  The
most popular one is the DTMC (discrete time Markov chain)
model [6]. Here is an example of the ESA’s (European space
agency)  control  system  software  [28].  It  contains  four  main
components  (N1 to N4),  and  the  control  transfer  between
components as shown in Fig. 1.

Correspondingly,  we  have  a  one-step  stochastic  transfer
matrix as follows: 
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N1 N2 N3 N4

Q =

N1
N2
N3
N4


0 R1P1,2 0 R1P1,4

R2P2,1 0 R2P2,3 R2P2,4
0 0 0 R3P3,4
0 0 0 0


. (1)

The entry Qi,j represents the transition probability from state
i to j in  the  Markov  process.  Here, Qi,j = R1P1,2,  reflects  the
probability that the system execution state is transferred from
N1 to N2 in one step, which equals to the product of reliability
R1 and  the  transfer  probability P1,2. R1 expresses  the
probability  of  executing N1 successfully.  Each  component Ni
may fail with the probability 1–Ri, and each component failure
causes system failure. This is a failure independent hypothesis
for this model.

The  power Qn of  the  matrix Q is  defined  as  an n-step
stochastic  transfer  matrix  whose  entry Qi,j

n reflects  the
transition probability from state i to j in n steps. The Neumann
series of matrix Q is
 

S = I + Q + Q2 + Q3 + · · · =
∞∑

k=0

Qk (2)

where I is  the  identity  matrix.  Let N1 be  the  starting  module
and N4 the ending module. The entry S1,4 in matrix S describes
the  transition  probability  from N1 to N4 through  all  possible
steps.  Then  the  system  reliability  can  be  expressed  as  the
probability  of  successfully  reaching N4 and  successfully
executing N4, which can be calculated by
 

Rsys = S 1,4R4. (3)
This  model  emphasizes  the  influence  of  structural  changes

on  overall  reliability  from  the  perspective  of  control  flow.
Subsequent improvements have been proposed on this basis.  

B.  Algebraic Method

⊕ ⊕

The  DTMC  model  is  built  around  the  control  transfer
relationship between components. However, the reality is that
designers  seldom  use  it  to  represent  the  system  architecture,
and  module  developers  only  generate  control  flow  graphs  at
the  method-level.  For  this  we  have  provided  an  easy-to-use
method  in  our  previous  studies  [29].  In  general,  we  use  an
algebraic paradigm instead of graphical expression for higher
abstraction.  The  transfer  relationship N1→N2 in Fig. 1 is
expressed  as N1 N2,  where  the  operator  denotes  that  the
basic  control  transfers  between  components  are  motivated
[30]. So Fig. 1 can be expressed as a set as follows: 

{N1⊕N2,N1⊕N4,N2⊕N1,N2⊕N3,

N2⊕N4,N3⊕N4}. (4)
This  solves  the  problem that  where  the  system structure  is

too  complicated  for  graphic  expressions.  Especially,  when
components  are  designed  as  a  coupling  substructure,  such  as
parallel, it is naturally solved by adding an operator in algebra.
We  can  even  express  the  nesting  of  structures  by  bracketing
them.

We propose a parser which left-to-right scan and rightmost
derivate (LR) each expression in the collection as above. The
following functions are used in the parser algorithm:
 

f̂ : (C× · · ·×C)→ (S× · · ·×S) (5)
C S

f̂
where  is  a  collection  of  components,  is  a  collection  of
state  nodes.  This  series  of  for  different  algebraic
expressions  are  used  to  generate  system  state  nodes  which
contains reliability attributes, and mark them on the transition
matrix Q. The elements in the matrix are constantly updated in
the  scan.  When  the  scan  is  complete,  the  matrix  can  be
directly applied to (2).

This  formal  method  can  be  easily  instrumentalized  to
facilitate engineers. In the simulation study, it performed well.
We summarize the above method as a process framework, as
shown in Fig. 2.
 

Expression 1 Generate one-
step stochastic
transfer matrix

Q

Calculate
Rsys

Scan by
LR parserExpression 2

Expression n

......

Expression set

 
Fig. 2.     A framework for automatically applying DTMC.
   

III.  Experimental Design

Properties  of  the  research  object  and  its  experimental  data
are  explained  in  detail.  Some  methods  are  applied  to
reasonably  preprocess  and  aggregate  metric  data.  And  the
improved  framework  is  used  to  calculate  the  overall
reliability.  

A.  Research Object
We select the open source project jEdit [31] as the research

object.  jEdit  is  a  mature  programmer’s  text  editor  with
hundreds  of  person-years  of  development  behind  it.  It  is
written  in  Java  and  runs  on  any  operating  system  with  Java
support. This project is in proper scale, and it is representative
for development technology.

The current version is set as jEdit 4.3. It is because that the
metric data of jEdit in the PROMISE repository [32] contains
version  3.2.1  to  version  4.3.  Although  version  4.3  is  not  the
last stable version, it does not affect the universal property of
this  study  since  there  is  no  fundamental  change  in  higher
versions. We consider ourselves as developers and designers,
so we can get the necessary information of structure from the

 

R1P1,2

N1

N4

N3

N2

R2P2,1

R2P2,3

R3P3,4R2P2,4 R1P1,4

 
Fig. 1.     The ESA software architecture.
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design  document  or  source  code.  This  information  includes
packages, files, and classes, as listed in Table I.

Here we define the granularity of structural module analysis
at the package-level, and the corresponding level can be found
in  other  language  environments.  It  needs  to  be  based  on  the
previous  version  when  we  are  seeking  detailed  module
information  at  the  design  stage.  It  usually  works  because  of
the  limited  changes  in  modules  between  versions.  As  the
coding  continues,  we  can  continuously  adjust  the  changes  to
the  files  and  classes  of  the  modules.  The  final  structure
information of  version 4.3 is  as  described in Table I,  and the
metrics are based on this.  

B.  Metric Data Processing
The  PROMISE  library  includes  nearly  thirty  metrics  for

jEdit.  We  use  three  main  categories —  traditional  metrics,
object-oriented  (OO)  metrics,  and  process  metrics —  to
describe  the  metric  data.  The  data  are  summarized  at  the
method-level,  class-level  and file-level  respectively  [33],  and
the  developer  can  easily  collect  them via  the  specified  tools.
At  the  method-level,  the  number  of  lines  of  code (LOC) and
the cyclomatic complexity (CC) [34] are still suitable for code
analysis  inside  a  class,  which  existed  before  object-oriented
programming appeared. The CK set [35] has a wide range of

applications, but there are also metrics that emphasize perspec-
tives  such  as  encapsulation,  coupling,  etc.  [36].  The  eight
metrics recommended by Moser et al. [37] have typical proc-
ess characteristics, and are further improved in the MJ set [38].

Simple  data  sampling  is  not  used  in  this  paper.  For  early
reliability analysis, the initial metric data needs to be cleaned
to  highlight  the  structural  characteristics  of  the  metric
elements. We use the following method:

1) The process metric elements (from Moser and MJ set) do
not  apply  to  static  analysis  for  the  target  version.  This  work
only uses traditional metrics and OO metrics.

2)  The  remaining  20  metrics  are  divided  into  five
categories:  complexity,  coupling,  cohesion,  inheritance  and
size.  We  use  Spearman’s  coefficient  [39]  to  measure
correlation in 5 subsets. The data is not required to follow any
particular  distribution  in  the  state  of  Spearman  correlation,
and  it  ranges  from –1  to  +1  where  a  larger  absolute  value
indicates  the  stronger  correlation. Table II shows  the
calculation results (e.g., the coupling metrics).

Absolute values of more than 0.5 have relevance and values
of more than 0.8 have high correlation. Observe that there are
redundant  metrics  that  can  be  removed  to  further  simplify
calculations.  According  to  the  CFS  algorithm  of  attribute
selection  [40],  one  metric  with  relatively  high  relevance  is

 

TABLE I  
The Structural Information of jEdit 4.3

Module Mark Description Files Classes

browser N1 File system browser 10 10

bsh N2 Bean shell 115 106

buffer N3 Buffer event listeners 18 18

bufferio N4 I/O request for buffering 6 6

bufferset N5 Set of buffer 4 4

gui N6 Various GUI controls and dialog boxes 86 88

help N7 Help viewer 8 8

indent N8 Indent rules and actions 9 9

input N9 Input handler 4 4

io N10 Virtual file system and multi-threaded I/O 18 18

menu N11 Menu function 13 13

msg N12 EditBus messages 17 17

options N13 Global options dialog box panes 25 28

pluginmgr N14 Plugin manager 10 10

print N15 Printing 3 3

proto N16 URL protocol handler 2 2

search N17 Search and replace classes 19 19

syntax N18 Syntax highlighting engine 14 14

textarea N19 An API partition for the standalone text area 38 38

visitors N20 Visitor pattern 3 3

util N21 Utility classes that do not depend on jEdit itself 18 18

xml N22 An obsolete and deprecated XML parser 4 4

core N23 jEdit’s core classes 52 52

Total 23 – 496 492
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selected  as  a  main  feature  in  each  category.  The  maximum
cyclomatic-complexity  (MAX_CC),  coupling  between  object
classes  (CBO),  cohesion  among  methods  (CAM),  depth  of
inheritance  tree  (DIT),  and  response  for  a  class  (RFC)  are
finally  selected  elements  as  representative  for  the  five
categories  separately.  It  ensures  that  subsequent  calculations
which  can  characterize  5  different  characteristics  instead  of
examining  correlations  across  all  metrics. Table III lists  the
data  we  actually  used  in  this  research  when  deal  with  the
browser module in Table I.
 

TABLE III  
The Metric Data Used in This Research

Class name
(Prefix:org.gjt.sp.jedit.

browser.)
MAX
_CC CBO CAM DIT RFC

BrowserCommandsMenu 5 16 0.314 5 56

BrowserIORequest 8 10 0.265 2 29

BrowserListener 1 4 1 1 2

BrowserView 9 28 0.148 5 106

FileCellRenderer 9 15 0.243 6 52

VFSBrowser 21 75 0.114 5 291

VFSDirectoryEntryTable 40 27 0.158 5 144
VFSDirectoryEntryTable-

Model 6 13 0.379 2 47

VFSFileChooserDialog 13 21 0.289 7 110

VFSFileNameField 21 11 0.44 7 57

Avg 13.3 22.0 0.335 4.5 89.4
 
   

C.  Aggregation Scheme
The  metric  data  are  only  collected  at  the  class-level.  It  is

necessary  to  propose  a  descriptive  scheme  to  aggregate  the
final  value  of  software  system reliability.  We suggest  a  two-
step frame and the details are presented as follows.

Step  1: To  establish  a  functional  relationship  between
metrics  and degree of  reliability  in  order  to  calculate  module
reliability value.

We  define  the  degree  of  reliability  influence,  which  is
similar to the definition in [25]. Let RImi represent influence of
the metric scalar mi. It is calculated by
 

RImi =

[
1−

(
dpc
mc

)]
×100% (6)

where dpc indicates the number of defect prone classes at mi,
and mc indicates  the  number  of  classes  contained  in  one
module. Notice that RI is only calculated in one module, since
the  coding  style  of  each  module  may  not  be  consistent.  The

range of scalar mi includes all samples of the specified metric
element. Table IV lists mi, dpc, and RImi of 5 metric elements
in the module browser, when mc = 10.

It is observed from Table IV that dpc is counted for each mi
per  elements,  and  each mi value  is  a  sample  of  the  metric
space.  The  counting  method  of dpc is  summarized  as:  If  the
class, which is associated with the specific value of mi at one
metric  element,  a)  is  submitted  with  a  bug  in  the  previous
version, dpc ← dpc +  1;  b)  or  is  newly  developed  and mi
exceeds threshold, dpc ← dpc + 1.

The thresholds of RFC(222), CBO(24), and DIT(6) refer to
the NASA standard [41].  The threshold of CC(15) is  derived
from [34], and the threshold of CAM(0.50) comes from [38].

In general, lower metric value means higher reliability. But
it  cannot  be  concluded  that  there  is  a  linear  correlation
between  metric  value  and  reliability  influence.  We  use
polynomial regression to estimate the relationship between the
two,  because  of  changes  of  software  reliability  mostly  in  the
form  of  curves.  As  an  example,  the  functional  estimation
equations of the browser module are
 

RIRFC = 102.295−0.127a
RIMAX_CC = 100.652−0.927b+0.017b2

RICAM = 86.622+37.292c−24.085c2

RICBO = 104.712−0.698d+0.007d2

RIDIT = 116.182−18.103e+2.167e2 (7)
where a, b, c, d, e are the independent variables in each fitting
function.  According  to  the  average  value  of  metrics  listed  in
Table IV,  the  five  degree  of  reliability  influence  in  the
browser  module  can  be  calculated  as: RIRFC(89.4)  =  90.941,
RIMAX_CC(13.3)  =  91.330, RICAM(0.335)  =  96.414,
RICBO(22.0) = 92.744, RIDIT(4.5) = 78.600.

Aggregation  strategy  can  significantly  alter  correlations
between  software  metrics  and  the  defect  count.  Zhang et  al.
[27]  indicate  that  the  summation  strategy  can  often  achieve
the best performance when constructing models predict defect
rank or  count.  Although the perspectives of  defect  prediction
and reliability evaluation are different, they are effectively the
same in terms of the use of metrics. The difference is that the
former  focuses  on  the  situation  after  the  current  version,  and
the  latter  focuses  on  the  current  developing  version.
Therefore,  in  this  paper,  we  use  the  summation  strategy  to
calculate  the  reliability  degree  of  the  individual  module
according  to  the  reliability  influence  of  each  factor.  It  is
calculated as
 

Rmodule =
∑

i

(
ri×RImetrici (mi)

)
(8)

where ri is  weight  of  the ith  metric  element.  Since  the  five
metrics  used  in  this  paper  are  pre-screened  to  represent  a
logical  category,  they  are  considered  equally  important.  Let
ri =  1/n =  1/5,  where  reliability  of  the  browser  module  is
90.006(%) after the weighted summation.

Step  2: To  establish  the  structural  reliability  model
according to Rmodule.

In  the  software  design  and  development  phase,  reliability
engineering  often  needs  to  be  carried  out  by  architects  and

 

TABLE II  
Correlation of the Coupling Metrics

CBO CA CE IC CBM

CBO – 0.703 0.684 0.157 0.171

CA 0.703 – 0.142 –0.061 –0.049

CE 0.684 0.142 – 0.351 0.363

IC 0.157 –0.061 0.351 – 0.985

CBM 0.171 –0.049 0.363 0.985 –
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coders.  The  module  developer  calculates Rmodule by  counting
the  related  metrics.  One  can  gather  this  information  of  all
modules to aggregate into system reliability.

Here we use the formal method presented in Section II-B to
establish the DTMC reliability model quickly and accurately.
The  method  is  based  on  algebraic  expressions,  which  can
accurately  express  the  control  transfer  between  modules
instead  of  using  graphical  representation.  In  addition  to  the
value  of Rmodule,  module  developers  are  required  to  submit
related  expressions  based  on  their  understanding  of  the
business. For the browser module (N1), the developers need to
submit:

i) RN1= 90.006%;
⊕ii) N1 N21.

⊕Note that the expression N1 N21 replaces the directed arc of
graph to describe the control transfer relationship between N1
and N21. It indicates that further processing of the file system
will go to the utility module (N21).

A module developer can separately submit expressions that
confirm  design  intent,  which  formally  starts  with  the
developing module and links all possible next modules in the
control  flow.  In  some  cases,  architects  can  also  submit  or
modify  expressions  based  on  overall  understanding.  As  a
description  of  the  structure,  algebraic  expressions  are  precise
and  unambiguous.  They  are  lightweight  and  easy  to  use  for
engineers. One can do this at the same time as designing and
coding,  without  any  distractions  in  describing  the  whole
system.

⊕

Eventually,  an  expression  set  can  be  collected  which
contains two key parameters required for the DTMC model —
 Ri and Pij. Ri comes from the submitted information which is
usually  attached  to  a  concrete  expression.  Transfer  proba-
bility Pij,  which  is  indicated  by Ni Nj,  is  equally  divided  by
all  possible  transfers  from  module Ni.  The  LR  parser
presented  in  Section  II-B  can  calculate Pij automatically
during scanning.

Finally, as an improvement to Fig. 2, the new framework is
proposed as Fig. 3.
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transfer matrix
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......

Expression Set
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CBO
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Class-level

CAM
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Aggregate
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and
calculate

Ri

per modules

 
Fig. 3.     The improved framework for empirical research.
   

IV.  Results

This section provides our experimental results. We focus on
findings from actual application of methods in Section III, and
answer the research questions presented in Section I.

RQ1: How  to  determine  the  appropriate  structure
granularity  in  order  to  apply  the  corresponding  metrics  to
reliability analysis?

In  general,  software  design  has  the  characteristics  of
modularization, which is advantageous to the maintenance of
projects  and  the  deployment  of  resources.  Early  reliability
analysis  can  only  start  with  the  structure  of  the  software
system.  The  structural  characteristics  are  represented  by  the
relationships  between  modules.  This  requires  selecting  the
appropriate module granularity. In this paper, we suggest that
Java OO projects should be analyzed at the package-level. The
corresponding  granularity  of  other  types  of  OO  projects  can
be found in the directory structure and design documents.

Table I lists the module division of jEdit. Some modules of
version 4.3  do not  exist  in  previous versions,  and some have
changed  in  later  versions.  However,  analysis  at  the  package-
level can cover all relevant metrics collected at the method- or
class-level. Different packages show significant differences in
metrics due to the diversity of functionality and developer. We
randomly  choose  eight  out  of  23  modules,  and  present
boxplots of them under the five selected metrics. As shown in
Fig. 4, the distributions of metric data are obviously different,
and most of them are different from the entire distribution. It
shows  that  the  coding  style  of  each  module  is  different,  i.e.,
the  quality  of  each  module  in  the  same  software  is  also
different. Furthermore, the life cycle and application scope of
many components (packages in java projects) goes beyond the
project itself. E.g., “util” and “xml”, which are independent of
jEdit’s  main  business,  came  from or  could  be  used  for  other
projects.  Therefore,  we  think  that  for  each  different  module,
the  reliability  influence  from  its  metric  data  should  be
analyzed  separately.  And  then  the  reliability  data  of  all

 

TABLE IV  
The RI Statistics in the Browser Module

Metric element mi dpc RImi mi dpc RImi

RFC

2 0 100 57 0 100

29 0 100 106 1 90

47 1 90 110 1 90

52 0 100 144 1 90

56 0 100 291 1 90

MAX_CC

1 0 100 9 1 90

5 0 100 13 1 90

6 1 90 21 1 90

8 0 100 40 1 90

CAM

0.114 1 90 0.289 1 90

0.148 1 90 0.314 0 100

0.158 1 90 0.379 1 90

0.243 0 100 0.44 0 100

0.265 0 100 1 0 100

CBO

4 0 100 16 0 100

10 0 100 21 1 90

11 0 100 27 1 90

13 1 90 28 1 90

15 0 100 75 1 90

DIT

1 0 100 6 0 100

2 1 90 7 1 90

5 3 70
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modules  should  be  integrated  with  a  specific  structural
analysis method.
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Fig. 4.     Boxplots  of  5 metric  values resourced from eight  modules and
whole.
 

RQ2: How to evaluate the reliability of a software?
We calculate  the reliability  value of  a  single module based

on  (6)  and  (8). Table V lists  the  reliability  degree  for  all
modules  in  4  versions  of  the  jEdit  project.  Note  that  version
4.3  is  the  last  version  in  PROMISE repository,  and  it  is  also
the  one  set  for  the  current  review.  The  first  version  3.2.1  is
discarded  because  we  need  to  trace  back  a  version  for
counting dpc in (6).

Fig. 5 presents the boxplots of the numerical results in Table V.
It  shows  that  statistically,  the  overall  distribution  gradually
increases  as  the  version  changes.  It  can  be  seen  from  the
diagram  that  most  module  reliability  values  increase  as  the
version  changes.  This  is  in  line  with  the  expectation  that  the
module quality will improve as more bugs are fixed. From the
perspective  of  structural  analysis,  we  still  want  to  estimate  a
specific value to reflect the overall reliability of software.

⊕ ⊕ ⊕
⊕

With  version  4.3  as  the  goal,  module  developers  should
present  the  relationship  between  this  module  and  other
modules  in  addition  to Rmodule,  which  can  be  described
conveniently  by  algebraic  expressions.  Then,  the  expression
set  of  {N12 N3, N12 N6, N12 N19, …}  can  be  collected.
Expression N23 C should be added into the collection in order
to  facilitate  model  calculation,  which  means  the  requirement
of  business  termination  is  only  initiated  by  the  core  module
N23. C is the ending node and its reliability value is 100%. The

starting module is N12,  which means that  the message occurs
when the business is coming.
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Fig. 5.     Boxplot of reliability degree in all modules among four versions.
 

We  also  set  up  an  expression  set  for  three  other  versions,
and use the Fig. 3 framework to automate the overall software
reliability  calculation. Fig. 6 shows  the  results.  To  illustrate
the  effectiveness  of  the  proposed  method,  two  traditional
growth models: the classical G-O model [8] and Huang’s test-
effort  model  [42]  are  used  as  comparisons.  In  this  work,  we
follow the common practice in empirical research of SRGMs
[16]–[19],  where  the  failure  data  is  extracted  from  the  bug

 

TABLE V  
The Rmodule Values in Different Versions of jEdit

Module
The value of Rmodule (%)

v4.0 v4.1 v4.2 v4.3

browser 86.755 89.104 89.303 90.006

bsh 87.667 88.482 94.358 96.385

buffer 87.567 86.415 92.883 95.812

bufferio – – – 95.521

bufferset – – – 89.871

gui 86.238 85.116 89.552 91.350

help – 86.633 89.569 90.018

indent – – – 97.656

input – – – 98.142

io 89.008 89.664 90.322 97.765

menu – – 94.574 97.161

msg 88.089 89.528 93.147 96.502

options 89.885 91.207 92.422 96.352

pluginmgr 90.125 91.897 95.322 97.151

print 88.252 89.128 91.082 94.056

proto 86.997 85.328 90.998 94.106

search 89.231 90.562 90.484 96.531

syntax 84.003 85.662 88.557 94.481

textarea 84.712 83.563 90.245 92.266

visitors – – – 97.175

util 91.367 91.251 93.699 96.623

xml 90.574 92.236 90.011 95.754
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reports.  This  is  under  basis  of  the  following  assumptions:  1)
Confirmed bugs cause failures; 2) Each failure is independent;
3) Fixing bugs will not introduce new bugs. According to the
reports  obtained  from  the  official  website  of  jEdit  [31],
version  4.0  has  226  closed  bugs  within  215  days  since  the
previous  release.  The  G-O  model  use  a  statistical  process
based on this failure intensity, and the prediction result at the
release  time  of  jEdit  4.0  is  88.736%.  Version  4.1  has  167
closed  bugs  within  407  days,  and  the  prediction  result  is
89.413%. The data for versions 4.2 and 4.3 show that there are
106 bugs within 557 days and 12 bugs within 1848 days. The
prediction  results  are  92.185% and  96.587%,respectively.
Furthermore,  as  suggested  in  [42],  the  cumulative  interval  is
used here as the test-effort which is available from the detailed
entry  of  each  bug  in  the  report.  The  prediction  results  of
Huang model across the four versions are 90.156%, 91.142%,
92.868% and 96.224%, respectively.
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Fig. 6.     Reliability trends on four versions of jEdit.
   

V.  Discussion
  

A.  Characteristics of Early Reliability Modeling
Unlike  SRGMs,  early  reliability  modeling  only  relies  on

structural  analysis  of  software  system.  As  mentioned  in  the
first  section,  the  modeling  parameters  come  from  a  single
software  module  and  the  relationship  between  modules.
Therefore,  it  is  meaningless  to  compare  the  predictive
performance  with  a  class  of  models  based  on  failure  data.
Most  reliability-prediction  models,  such  as  SRGMs,  are
utilized  to  optimize  the  release  strategy  to  achieve  a  balance
between  quality  and  test  costs.  But  the  significance  of  the
early model is to optimize the structure and guide the test.

We show the trend of changes in the results of the proposed
method  in Fig. 6,  and  also  use  two  representative  models  to
illustrate  the  correctness.  It  should  be  explained  that  the
calculation of each version of this method can be performed at
the design stage. And based on the framework in Section III-
C,  the  calculation  process  is  automatically  complemented  by
tools. This means that the reliability evaluation can be carried
out  at  any  time  with  structural  design  changes.  It  helps
decrease  the  difficulty  of  applying  the  structural  reliability
model into practice.

As  shown  in Fig. 6,  the  numerical  values  evaluated  by  the
proposed  method  (87.267%,  87.184%,  89.381%,  94.223%)
are  lower  than  by  the  traditional  models.  This  is  because
calculations  based  on  metric  data  can  magnify  the  impact  of
defect-prone  classes.  For  the  calculation  of  defect  tendency,
the  method  of  this  paper  tends  to  be  conservative.
Correspondingly,  the  SRGMs  which  are  based  only  on  test
data  assume  that  the  reliability  curve  increases  with  bugs
fixing. Their evaluations are relatively optimistic in general.  

B.  Sensitivity Analysis
The  influence  of  software  local  structure  on  reliability  can

be  analyzed  through  sensitivity.  This  effect  can  only  be
manifested  in  the  computation  of  the  structural  reliability
model. As shown here jEdit 4.0 is upgraded to 4.1. The result,
which  differs  from  the  traditional  models’,  appears  to  be
slightly reduced. By partially fixing pre-existing defects, new
versions  can  also  have  reduced  reliability  with  the
introduction of new modules and features (such as N7 in jEdit
4.1).

We use the criticality to analyze sensitivity.  It  is  computed
by the following formula:
 

Ci =
∆Rsys

∆Ri
(9)

∆ ∆

∆

where Ri is  the  reliability  increment  of  module Ni, Rsys is
the overall reliability increase corresponding to this increment.
In fact,  when the Ri is  very small,  we use Ci instead of  the
partial  derivative,  i.e.,  the  criticality  of  module Ni is  an
approximate  value  of  the  module  sensitivity.  However,  in
terms  of  computational  complexity,  computing  criticality  is
much  better  than  computing  sensitivity.  The  sensitivity
(partial derivative) on Ri can only be solved based on cofactor
expansion,  which  leads  to  a  geometric  increase  in
computational  time  and  space  when  the  total  number  of
modules  grows.  In  contrast,  (9)  can  be  calculated
automatically by the proposed framework in Fig. 3.

∆

For jEdit 4.3, we set a small negative increment of 0.005 for
all  module  reliability. Fig. 7 shows  the Ci corresponding  to
each  change  of Ri.  It  can  be  seen  that  the  reliability
sensitivity  of  core  module N23 and  message  module N12 are
significantly  higher  than  others.  This  conforms  to  the
expectation  of  actual  control  flow  at  design  stage.  And  this
means  that  later  testing  on  such  modules  will  help
significantly  improve  the  overall  reliability  of  software.
However,  some  modules  (such  as N18)  are  not  considered  to
be the important nodes in structure because they only interact
with  very  few  modules.  These  may  not  be  the  goals  that
reliability engineering needs to focus on.  

VI.  Threats to Validity

1) Project  Selection: In  this  work,  the  open  source  project
jEdit  is  selected.  In  addition  to  using  metrics,  we  need  to
analyze the software structure and apply a complex evaluation
framework.  We  only  discussed  one  project  because  of  space
constraints.

The threat to our treatment mainly arises from applicability
of  our  method  on  other  OO  projects.  Metric  data  can  be
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obtained  from  public  repositories,  but  also  can  be  directly
calculated from the source code. Structural information can be
analyzed  from  design  documents  and  source  codes.  We
believe that  the applicability of the proposed method is not a
problem.  Furthermore,  it  is  recommended  that  non-java
projects  should  be  tested  using  our  approach  and  the  results
may be slightly different.

2) Metrics and Techniques Selection: These metrics and its
classification we used are popular and commonly investigated
in defect prediction literature. With the same kind of metrics,
correlation  analysis  technique  is  used  to  eliminate  redundant
impacts.  A  study  on  more  correlation  analysis  techniques  is
required.  In  addition,  the  DTMC model  used  in  this  paper  is
the  most  important  structural  analysis  model  at  present.  The
proposed  framework  uses  formal  techniques  to  show  the
application of  this  model.  Formal  techniques  have been fully
elaborated  and  verified  in  our  previous  studies.  We  will
provide  an  open-source  implementation  of  analytical
algorithms  online.  Replication  studies  using  different  early
reliability  models,  such  as  CTMC,  to  utilize  this  framework
and may prove fruitful.  

VII.  Conclusion

Although  there  are  many  practical  difficulties  in  reliability
analysis  and  evaluation  of  software  projects  in  early
development, the calculation results from the reliability model
can  provide  reference  for  the  optimization  of  software
architecture  design.  By  analyzing  the  software  structure,  we
find  the  sensitive  modules  that  affect  the  overall  reliability,
which  provides  a  practical  basis  for  subsequent  reliability
distribution  and  stress  testing.  Theoretical  research  of
structure-based  software  reliability  models  has  been  studied
extensively, but the biggest obstacle to its further development
is determining how to apply it to practical projects.

Our  main  work  is  to  provide  a  complete  solution  for  early
reliability  evaluation.  We  first  give  a  method  for  processing
metric data and aggregating it into module reliability. Then we
propose a process framework, which automatically calculates
the  overall  reliability  value  based  on  module  parameters  and
expression  forms.  Using  a  series  of  different  methods,  our
research  shows  the  implementation  of  a  structural  reliability
model  in  practical  projects.  Evaluation  of  an  OO  project

shows that  we can get  an approximating result  vs.  traditional
models  which  are  based  on  software  failure  data.  It  provides
new  ideas  and  methods  for  the  empirical  research  of
reliability.

The  work  is  original  and  operable  in  the  selection  and
aggregation  of  software  metric  data  and  the  practice  of
structural  analysis  model.  The  next  steps  of  research  will  be
continued in two areas:

1)  Consider  establishing  a  functional  relationship  between
metrics  and  reliability  on  more  metric  elements.  The  fitting
method of  the  function  is  not  limited  to  one  but  also,  selects
the  appropriate  method  according  to  different  modules  and
developers,  such  as  Stepwise  Regression  and  Ridge
Regression.

2)  Defect  prediction  Technology  continues  to  show  new
results. In addition to the traditional methods, a method using
random  neural  networks  (RNN)  has  recently  been  proposed,
and the results are good. This prediction model is established
on the time axis and describes the evolution of each software
module.  We  will  consider  the  use  of  better-performing
solutions in the prediction of defect-prone classes to improve
the reliability evaluation of modules.
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Fig. 7.     Analysis of reliability sensitivity of modules in jEdit 4.3.
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