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   Abstract—Transparency  is  a  widely  used  but  poorly  defined
term within the explainable artificial intelligence literature. This is
due,  in  part,  to  the  lack  of  an  agreed  definition  and the  overlap
between the connected — sometimes used synonymously — con-
cepts  of  interpretability  and  explainability.  We  assert  that
transparency  is  the  overarching  concept,  with  the  tenets  of
interpretability, explainability, and predictability subordinate. We
draw  on  a  portfolio  of  definitions  for  each  of  these  distinct
concepts  to  propose  a  human-swarm-teaming  transparency  and
trust  architecture  (HST3-Architecture).  The  architecture  rein-
forces  transparency  as  a  key  contributor  towards  situation
awareness,  and  consequently  as  an  enabler  for  effective
trustworthy human-swarm teaming (HST).
    Index Terms—Artificial  intelligence,  explainability,  human-swarm
teaming  (HST),  interpretability,  predictability,  swarm  shepherding,
transparency.
  

I.  Introduction

R ECENT  technological  advances  in  artificial  intelligence
(AI)  have  made  the  realisation  of  highly  autonomous

artificial  agents  possible.  Contemporary  robotic  systems
demonstrate  their  increased  capability  in  tasks  that  were
previously  exclusive  for  humans,  such  as  planning  and
decision making. The advent of swarm robotics furthered the
potential of robot systems through the utilisation of a group of
relatively simple robots to achieve complex tasks that  cannot
be  achieved  by  a  single,  sophisticated  robot  [1]–[3].  For
example, the distributed nature of a swarm of robots gives the
swarm an ability to be in different locations at the same time,
something  a  single  robot  cannot  do.  This  could  be  useful  in
moving a large object or simultaneous sensing of a large area.

Taking  inspiration  from  biological  swarms,  robot  swarms
use  local  sensing  and/or  communication  and  simple  agent-
logic  to  achieve  global,  swarm-level  behaviours  [4],  [5].  A
swarm  offers  more  advantages  including  physically  and
computationally smaller robots, robustness against failure, and
flexibility.  In  general,  robot  swarms  can  be  categorised  by

three broad properties of being flexible, robust, and scalable [6].
Swarm systems are still lacking the human-like intelligence

abilities  required  to  manage  novel  contexts  [7].  The
performance of fully autonomous swarms is more sensitive to
environmental  conditions  than  human-swarm  teams  [8].  For
the  foreseeable  future,  involving  the  human  element  into
swarm  operations  is  deemed  necessary  [9].  Nonetheless,  the
integration  of  such  highly  autonomous  entities  brings  new
requirements  beyond  those  present  in  classic  master-slave
design-philosophy  where  a  machine  was  to  execute  only
commands issued by its human operator [10].

One of the main requirements that enables task delegation in
such  team  settings  is  trust  [11].  Trust  was  shown  to  be  an
influential variable with a causal effect on human reliance on
swarm [12]. Previous findings suggest that when trust is based
only  on  swarm  capability,  humans  run  the  risk  of  over-
reliance on swarm [13]. Meanwhile, when human trust is also
based  on  an  understanding  of  swarm  operation,  this  trust
enables  proper  task  delegation  without  dismissing  human
ability  to  intervene  with  swarm  operation  in  case  of  errors
[13]. These experimental results demonstrate transparency as
the  necessary  base  ingredient  for  trust,  with reliability
providing  the  ability  to  improve  trust  over  time,  which  is
consistent  with  well-recognised  models  for  human  trust  in
automation  (e.g.,  [14],  [15]).  Trust  will  likely  be  vital  for
ensuring  effective  collaboration  in  human-swarm  teaming
(HST) systems.

This  paper  proposes  a  trust-enabled  transparency  architec-
ture  for  HST,  we  call:  human-swarm-teaming  transparency
and trust architecture (HST3-Architecture). The architecture is
based  on  the  hypothesis  that  maintaining  a  high  level  of
situational  awareness  (SA)  is  an  enabler  for  human  decision
making [16]  and a  facilitator  of  appropriate  trust  [13],  which
in turn is essential for effective HST. As such, we decompose
transparency  into  three  tenets,  which,  when  applied,  support
the  human  in  improving  their  SA  of  swarm  actions,
behaviours and state information. Transparency in the human-
machine  systems  literature  has  commonly  been  situated  in
collaborative  team  settings,  hence  its  direct  relation  to  trust
and  improved  joint  performance  [17].  We  present  the
architecture  in  the  context  of  HST,  where  the  cooperative
attributes  of  the  interaction  are  highlighted.  Nonetheless,  the
architecture  can  be  equally  employed  in  other  HST  settings
(e.g.,  [9])  and  under  different  degrees  of  cooperation  where
the  resulting  transparency  might  or  might  not  be  utilised  for
shared human-swarm goals.
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The  HST  literature  is  still  in  its  infancy.  The  tenets  for
transparency have been discussed in other  fields  that  we will
refer  to  as  HxI,  such  as  Human-Swarm  Interaction,  Human-
Robot  Interaction,  Human-Autonomy  Interaction,  and
Human-Computer  Interaction.  We  will  more  often  in  this
literature review draw on the literature in HxI to put forward
the requirements for effective HST.

We begin by conducting a review and critique of the current
literature,  covering  HST  and  the  fundamental  tenets  for
transparency  of  interpretability,  explainability,  and  predic-
tability,  contained  within  Section  II.  Following  this,  Section
III  introduces  our  proposed  architecture  to  realise  transpa-
rency for  HST,  intending to  promote  higher  SA.  We demon-
strate the use of this architecture for a specific case of swarm
control,  shepherding  a  flock  of  sheep  through  the  use  of  a
drone, known as Sky Shepherding in Section IV. We then pre-
sent  critical  areas  of  open  research  for  the  proposed  archi-
tecture in Section V and conclude the paper in Section VI.  

II.  Literature Review
  

A.  Transparency
AI systems are generally categorised into two types: black-

box and white-box. Black-box refers to a system in which the
inputs  and  outputs  can  be  easily  identified,  but  how  the
outputs  are  derived  from  the  inputs  is  unknown.  White-box
(also  known  as  glass-box)  refers  to  a  system  whose  internal
algorithmic  components  and/or  its  generated  model  can  be
directly  inspected  to  understand  the  system’s  outputs  and/or
how it  reaches those outputs [18].  Examples of  such systems
include decision trees [19], rule-based systems [20], [21], and
sparse linear models [22]. The white-box category is generally
accepted as more transparent than the black-box one.

Transparency  is  an  essential  element  for  HxI,  yet  is  also  a
concept  with  significant  variations  in  definition,  purpose  and
application  [23].  For  example,  in  ethics,  transparency  is  the
visibility  of  behaviours,  while  in  computer  science,  it  often
refers  to  the  visibility  of  information  [24].  For  agent-agent
interactions,  transparency  is  used  to  assist  with  decision
making  [25].  For  an  autonomous  agent,  be  it  biological  or
artificial,  transparency  has  attracted  the  interest  of  many
researchers  due  to  its  facilitation  role  in  team  collaboration
[17], [25], [26].

However,  there  is  little  research  focusing  on  swarm
transparency, due in part to the recent emergence of HST as a
distinctive area. Additionally, the unique challenges of swarm
systems may have impaired further research advancement for
swarm  transparency  [27].  One  of  the  main  challenges  is  the
decision  of  whether  transparency  is  needed  on  a  micro  or  a
macro  level.  Micro-level  transparency  exposes  information
about the state of each swarm member, which can be useful in
identifying  failed  or  erroneous  entities  [28].  However,  for
large-sized  swarms,  micro-level  transparency  could  impose
significant bandwidth requirements beyond what is reasonably
possible  [29].  Also,  the  amount  and  level  of  information  can
overwhelm a human, limiting their capability to keep track of
what is going on [30].  Macro-level transparency is useful for
offering  an  aggregate  picture  for  the  state  of  the  swarm,  but

comes at a cost in opacity, obscuring many low-level details.
Within  the  literature,  experimental  results  are  divergent  for
which  transparency  level  is better,  even  for  basic  swarm
behaviours [30].

A further challenge for swarm transparency stems from the
fact that global swarm behaviours emerge from the actions of
its  individual  members,  with  knowledge  and  behaviours  of
swarm  individuals  being  locally  focused.  Typically,  swarm
members are assumed to be unaware of the global state of the
swarm [4], and hence, of whether their behaviours align with
the  desired  collective  swarm  state.  Consequently,  swarm
members  might  not  be  able  to  provide  satisfactory
explanations  for  their  actions,  the  collective  behaviour  of  the
swarm, or importantly understand their role or task within the
collective.

Another  challenge  for  transparency  is  to  consider  how  to
support  everyday  interactions  between  human-machine.  In
[11],  the  authors  proposed  using  cyber  to  support  such
interactions,  leading  to  the  possibility  of  swarms  existing
beyond  the  physical.  The  adaptability,  robustness,  and
scalability  of  swarm  systems  are  also  inspiring  research  into
abstract  modelling  of  cyber-physical  systems  to  support
understanding  complex  problems  [31],  [32].  Swarms  and
swarm  behaviour  can  exist  in  both  the  physical  and  cyber
realm  [27]  and  will  require  varying  levels  of  human
interaction.

The  physical  state  of  swarm  individuals  such  as  position,
battery  level,  and  damage,  can  be  aggregated  to  give  a
simplified  view  of  a  swarm  member’s  physical  state.  What
remains less clear is how the virtual state of swarm members,
for example, confidence levels [33] or intra-swarm trust [34],
can  be  communicated  without  overloading  the  human.  In
collective  decision-making  problems,  calculating  a  mere
average of the confidence levels does not provide an answer to
which  members  influence  the  decision  making  process  or
whether the swarm is expected to converge on a correct final
decision.

Transparency  has  received  a  great  deal  of  researchers’
interest  across  various  fields.  The  quest  for  transparency
entails the answer to two questions: 1) What are the desirable
aspects  of  transparency?  And,  2)  How  to  achieve  these
aspects?  Endsley’s  SA  model  [35]  defines  what  levels  of
knowledge  a  human  should  maintain  to  enable  successful
interaction with their automation teammate. Chen’s model for
agent  transparency  (SAT)  maps  these  levels  into
corresponding aspects  of  transparency that  are  required to  be
exhibited  by  the  automation.  Each  level  consists  of  similar
goals to [35] to enable transparently shared understanding [36]
by  articulating what information  should  be  conveyed  at  each
level.

When  using  the  SAT  model  to  assess  trust  factors  of
transparency and reliability, Wright et al. [37] found that SAT
was able to support human decision making regardless of the
reliability of the autonomous agent. However, the human was
unable  to  reconcile  trust  after  observing  erratic  behaviour  by
the  autonomous  agent,  regardless  of  SAT  level  used  during
task completion. Consequently, while the SAT model supports
transparent  decision  making,  it  is  unable  to  support  trust

 1282 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 7, JULY 2021



relationships  in  moments  of  unreliability  due  to  its  emphasis
on  the “what” rather  than  the “how” to  design  a  transparent
system.

The  SAT  model  is  thus  helpful  in  defining  what  sort  of
information  is  necessary  for  each  transparency  aspect  and
when each aspect should be made available. Interpretability is
key  for  understanding,  explainability  is  needed  for
comprehension, while predictability is required for projection.
These are the three tenets of transparency required to support
SA and SAT. However, the SAT model does not specify how
to engineer these tenets which is the gap our architecture aims
to address.

Unfortunately, there is inconsistency in using these concepts
in  the  literature.  The  remainder  of  this  literature  review
section is structured around each of these three concepts. We
aim  to  reduce  the  inconsistency  around  the  multiple,  often
used  synonymously,  confusing  definitions  for  transparency.
The literature survey considered work in technological fields,
including  robotics,  computer  science,  and  swarm  research.
When  further  grounding  of  terms  is  necessary  to  reduce
ambiguity,  we  draw  on  psychology,  linguistics,  and  human
factors. We organise the remainder of this section according to
the  three  tenets  of  transparency,  being  interpretability,
explainability, and predictability.  

B.  Interpretability
Interpretability in artificial intelligence is a broad and poorly

defined  term.  Moreover,  the  present  state  of  the
interpretability  literature  in  the  context  of  swarms  is  limited.
Generally speaking,  to  interpret  means to  extract  information
of some type [38].

The  literature  differentiates  two  types  of  interpretability,
being  algorithmic  and  model.  Algorithmic  interpretability  is
the  ability  to  inspect  the  structure  and  hyper-parameters  of  a
system to  understand  how it  works.  This  is  useful  to  answer
questions about the algorithmic component of AI systems, i.e.,
does  the  algorithm  converge?  Does  it  provide  a  unique
decision? Is the role of its hyper-parameters well-understood?
Model interpretability is related more to the model learned by
the algorithmic component and used to map inputs to outputs.
Several non-mathematical definitions exist in the literature for
model  interpretability,  such  as  Miller  who  states  that
“interpretability  is  the  degree  to  which  an  observer  can
understand the cause of a decision” [39, p.8]. Kim et al. who
states  that “a  method  is  interpretable  if  a  user  can  correctly
and  efficiently  predict  the  method’s  results” [40,  p.7],  and
Biran and Cotton who state “systems are interpretable if their
operations  can  be  understood  by  a  human,  either  through
introspection  or  through  a  produced  explanation” [41,  p.1].
These  definitions  convolute  the  concept  of  interpretability,
causality,  explainability,  reasoning,  predictability,  and
anticipation.

Only  a  few  studies  in  the  literature  have  investigated
interpretability  concepts  in  the  context  of  swarming  systems.
In  this  regard,  interpretability  is  used  to  express
communication  among  agents.  For  example,  Sierhuis  and
Shum [42]  developed  a  conversational  modelling  tool  that  is
used  in  realistic  analogue  simulations  of  collaboration

between humans on Earth and robots  on Mars,  referred to as
Mars-Earth  scientific  collaboration.  Lazaridou et  al.  [43]
investigated interpretability in scenarios where agents learn to
interact  with  each  other  about  images.  Das et  al.  [44]
examined  interpretability  in  his  study  where  agents  interact
and  communicate  in  natural  language  dialogue  on  a
cooperative  image  guessing  game.  The  agents  recognise  the
contents of images and communicate that understanding to the
other  agents  in  a  natural  language.  These  communicating
agents  can  invent  their  communication  protocol  and  start
using specific symbols to ask and/or answer certain patterns in
an  image.  The  agents  then  leverage  a  human-supervised  task
to  structure  the  learned  interaction  in  an  understandable  way
for  human  supervisors.  Andreas et  al.  [45]  also  examine
messages  exchanged  between  agents  using  learned
communication  policies.  A  strategy  is  developed  to  translate
these messages into natural language based on the underlying
facts  inferred  from the  messages.  St-Onge et  al.  [46]  studies
the expressiveness of swarm motion as a way to convey high-
level  information  to  a  human operator.  The  swarm motion is
tuned  to  share  different  types  of  information.  Swarm
aggregation, graph formation, cyclic pursuit, and flocking are
examples  of  motions  used  to  express  different  information.
Suresh  and  Martínez  [47]  developed  an  interpreter,  an
interface  between  the  human  and  the  swarm,  that  takes  in
high-level input from a human operator in the form of drawn
shapes  and  translates  it  into  low-level  swarm  control
commands  using  shape  morphing  dynamics  (SMD).  Further,
the interpreter is also used for translating feedback to a human
operator.

The  work  on  interpretability  characterises  the  behaviour  of
AI  systems  in  terms  of  their  architecture  (or  algorithmic
components),  learned  computational  models,  goals,  and
actions. Despite the extensive work done in this regard, these
definitions  do  not  explicitly  account  for  the  capabilities  and
characteristics  of  the  observer  agent  and  its  capacity  to
recognise  and  synthesise  the  interpretations  provided.  An
agent’s  behaviour  may  be  uninterpretable  when  it  does  not
comply with the assumptions or the cognitive capabilities (i.e.,
knowledge representation, computational model, or expertise)
of the observing agent [48].  

C.  Explainability
Explainability  is  required  for  trust,  interaction,  and

transparency [49], although knowing precisely what is needed
for a good explanation remains unclear [50]. As Minsky notes,
humans  find  it  hard  to  explain  meaning  in  things  because
meaning itself depends on the environment and context, which
is  distinct  for  every  person  [51].  We  reason  on  human-
understandable features of the inputs (data), which is a critical
step  developing the  chain  of  logic  of  how or  why something
has happened or a decision was made [52]. Humans can learn
through  a  variety  of  methods  and  transfer  experiences  and
understanding from one situation to another develop heuristic
short-cuts,  like  common  sense,  along  the  way.  Complex
chains of  reasoning with ill-defined elements  tend to make it
difficult to explain and justify decisions [49]. An explanation
can  be  developed  dynamically  after  the  fact,  becoming
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communicated  through  a  story  from  a  mental  model
developed  in  the  mind  of  the  person  communicating  the
explanation [53].

Many  definitions  for  explainability  have  been  published,
overwhelmingly  without  the  precision  of  a  mathematical
accompaniment.  Explainability  definitions  vary  substantially
in terms of length, ambiguity, and context. Many are relatively
short  yet  insightful,  such  as  Josephson  and  Josephson  who
state  that “an  explanation  is  an  assignment  of  causal
responsibility” [54, p.14] or that “an explanation is the answer
to  a  why-question” [p.7].  The  Defense  Advanced  Research
Agency  (DARPA)  explainable  artificial  intelligence  (XAI)
program  indicates  that  XAI “seeks  to  enable  third-wave  AI
systems,  developing  machines  with  an  enhanced
understanding of the context and environment for which they
operate in” [55, p.1], although without bounding the problem
space further.

Miller states that “explanation is thus one mode in which an
observer  may  obtain  understanding,  but  clearly,  there  are
additional modes that one can adopt, such as making decisions
that  are  inherently  easier  to  understand  or  via  introspection”
[p.8]  or  from  the  perspective  of  cognitive  architectures
“information  is  a  linguistic  description  of  structures
observable in a given data set” [56, p.3].

The previous definitions are generally considered too broad
or  ill-defined  to  enable  adoption  of  a  formal  architecture.
Application of such definitions as those selected here requires
an  implicit  input  from  the  user,  particularly  their  expertise,
preferences, and environmental context [57].

Nyamsuren  and  Taatgen  [58]  argue  that  human  general
reasoning  skill  is  inherently “a  posteriori” inductive,  or
probabilistic.  They base  this  on  two key points:  1)  deductive
reasoning, in its classical form, states that what is not known
to be true — is false, which therefore assumes a closed world;
and 2)  humans  have  shown to  use  an  inductive,  probabilistic
reasoning process even when seemly reasoning with deductive
arguments. This world view can be on a local- or global-level,
described  as  either  micro  or  macro  from  the  systems
perspective.  Local  explainability  refers  to  the  ability  to
understand  and  reason  about  an  individual  element  of  the
system, such as a particular input, output, hyper-parameter, or
algorithmic  component  if  the  system  consists  of  more  than
one.  Several  definitions  exist  for  explainability  that  can  be
categorised  as  a  local  explanation,  such  as  Miller  [39]  who
state  that  local  explanations  detail  a  particular  decision  of  a
model to determine why the model makes that decision. This
is  commonly  achieved  by  revealing  casual  relations  between
the  inputs  and  outputs  to  the  model.  Biran  and  Cotton  state
that a justification “explains why a decision is a good one, but
it  may  or  may  not  do  so  by  explaining  exactly  how  it  was
made. Unlike introspective explanations, justifications can be
produced for non-interpretable systems [41, p.1].” Global exp-
lainability  often  describes  an  overall  understanding  of  how a
system  functions  or  an  understanding  of  the  entire  modeled
relationship between inputs and outputs [59]. A system is said
to be globally explainable if its entire decision-making process
can  be  simulated  and  reasoned  about  by  an  external  agent,
who is a target for the explanation [60].

Long  standing  questions  around  how  to  produce  an
explanation, if a process should be explainable [61] and what
should  be  required  for  an  explanation  to  be  considered
sufficient  [50]  remain  open  within  the  literature.  These
notions follow from what Searle described as within the realm
of strong-AI [62], noting that machines must simulate not only
the abilities of a human but also replicate the human ability to
understand  a  story  and  answer  questions.  A  desire  for
machines  to  imitate  and  learn  like  humans  is  not  a  new
concept [63].

While  reasoning  presents  itself  as  a  method  for  a  logical
explanation,  fundamental  questions  of What, Who, Which,
When, Where, Why, and How,  i.e.,  the “wh”-clauses,  of
explainability  require  careful  consideration.  Rosenfeld  and
Richardson [64]  highlight  the  interconnecting nature  of  these
questions and assert the motivation for the system itself has a
direct  bearing  on  the  overall  reason  or  reasons  the  system
must  be  explainable.  Whether  the  system  is  designed  as
human-centric,  built  to  persuade  the  human  to  choose  a
specific  intention,  action,  or  outcome;  or,  agent-centric,  to
convince  the  human  of  the  correctness  of  their  intention,
action or outcome, the explanation provided should contribute
to  the  overall  transparency  of  the  system  — including  the
human.  Explaining  is  far  more  effective  when  a  co-adaptive
process is employed [65], which Lyons [66] discusses through
an  HxI  lens  as  robot-to-human  and  robot-of-human  factors.
Only then can one determine What explanations are required,
Who the explanations are directed toward, Which explanation
method  suits, When the  information  should  be  presented  or
inducted, Where they  should  be  presented  or  inducted, Why
explainability is needed in the system, and How objective and
subjective measures can be used to evaluate the system [64].

There  are  many  swarm  system  control  mechanisms  and
architectures  that  have  been  developed  and  introduced,  but
insufficiently address understanding for supervisory control of
such  systems,  particularly  for  the  human  interaction  with
various levels of swarm autonomy [67]. Previous research has
investigated  the  principles  of  swarm  control  that  enable  a
human  to  exert  influence  and  direct  large  swarms  of  robots.
What  has  been  lacking  is  the  inclusion  of  bi-directional,
interpretable  communication  between  the  supervisor  and  the
swarm.  This  has  limited  the  development  of  a  shared
understanding as to why or how either the human or swarm is
making decisions. Addressing such information asymmetry is
essential to realise HST [68] fully. Such asymmetry manifests
during  HST  where  some  actions  or  behaviours  may  not  be
immediately apparent to the human if a swarm behaviour does
not  align  to  the  human’s  expectations  [68].  The  swarm  may
assess  that  this  behaviour  is  optimal  to  achieve  the  goal,  but
requires  explaining  to  the  human  in  order  to  ensure  that
confidence in the swarm is maintained. Previous HST studies
have  noted  the  importance  of  appropriate  and  consistent
swarm  behaviours,  although  lack  a  method  to  provide
feedback  to  the  human  [69].  This  asymmetry  of  information
highlights  the  difference  between  human-to-swarm  and
swarm-to-human  communication,  which  is  an  essential
element  to  consider  for  facilitating  teaming.  Swarms  are
commonly  used  to  support  a  human’s  actions  in  HST  [69].
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However, without an ability to query how the swarm chooses
a future state,  human team members may not be confident in
action  being  taken  by  the  swarm.  In  such  situations,
interrogation  of  the  swarm  to  generate  explanations  could
alleviate  such  issues  of  confidence,  increase  shared
understanding, and build trust for HST.  

D.  Predictability
The  Cambridge  Dictionary  defines  the  word  predict  as “to

say what you think will  happen in the future” [70].  The term
“predict” has  been  used  by  researchers  to  refer  to  not  only
forecasting  future  events  but  also  estimating  unknown
variables  in  cross-sectional  data  [71].  Similarly,  the  term
“predictability” is  used  to  denote  different  notions  including:
the ease of making predictions [72], behavior consistency [73],
and the variance in estimation errors [74].

An  agent’s  predictability  has  received  significant  attention
in HxI due to its significant impact on interaction and system-
level  performance.  Agent  predictability  has  been  defined  as
the  degree  to  which  an  agent’s  future  behaviours  can  be
anticipated  [14].  The  term  has  also  been  commonly  used  to
reflect the consistency of an agent’s behaviour over time (e.g.,
[75]–[77]). Coupling predictability and consistency implicitly
assumes  that  making  future  predictions  about  an  agent  is
completely  performed  by  the  agent’s  teammate  (or  observer)
and that these predictions are heavily based on historical data
and/or pre-assumed knowledge.

The ability to predict an agent’s future actions and states is a
crucial feature that facilitates the collaboration between agents
in  a  team  setting  [78].  In  highly  interdependent  activities,
predictability becomes a key enabler for successful plans [78].
Also,  predictability  is  an  essential  factor  that  facilitates  trust
by ensuring the matching between the expected and received
outcomes  [79].  Previous  research  utilised  predictability  to
achieve  effective  collaboration  in  various  HxI  applications
including  industry  [80],  space  exploration  [81],  and
rehabilitation  [82].  Depending  on  the  requirements  and  the
issues  present  in  these  domains,  agent  predictability  was
aimed to serve different purposes that can be grouped into the
following  areas:  mitigating  the  effects  of  communication
delays,  allowing  humans  to  explore  possible  courses  of
actions,  enabling  synchronous  operations  and  coordination,
and planning for proactive collision avoidance.

Remote  interaction  between  agents  can  be  severely
impacted  by  considerable  communication  delays  that  impede
their  collaboration.  This  is  particularly  the  case  for  space
operations  where  the  round  trip  communication  delay  is
several  seconds  [83].  Such  a  delay  was  shown  to  be
detrimental as it negatively affects mission efficiency and the
stability  of  control  loop  [84].  One  of  the  earliest  and  most
widely  used  solutions  to  mitigate  the  effects  of  significant
communication  delays  is  the  use  of  predictive  displays.  A
predictive  display  uses  a  model  of  the  remote  agent,  its
operation environment, and its response to input commands to
estimate  the  state  of  the  mission  based  on  the  historical  data
recently  received  from  the  agent.  This  enables  predictive
displays  to  provide  an  estimation  of  the  current  state  of  the
agent  that  has  not  been  received  and  to  provide  timely

feedback  on  the  predicted  future  agent’s  response  to  input
commands that is yet to be received by the agent. This allows
for  smooth  teleoperation  as  compared to  the  inefficient  wait-
and-see  strategy  [85].  Past  studies  show  that  predictive
displays  can  maintain  mission  performance  [86]  and
completion  time  [87]  at  levels  similar  to  no  delay.  Previous
findings  also  demonstrate  the  effectiveness  of  predictive
displays  in  enhancing  the  concurrency  between  remotely
interacting agents under variable time delays [88].

Robot  predictability  is  the  main  subject  of  investigation  in
studies  involving  predictive  displays  that  are  either  used  to
account  for  communication  delays  [87]  or  to  facilitate
exploring  action  consequences  [80].  Likewise,  robot
predictability  is  the  focus  when  people  are  assumed  the
responsibility for avoiding collision with the robot [89]. As for
systems where a human executes a physical activity that needs
to  be  synchronised  with  robot  actions,  human  predictability
becomes an enabler  for  successful  operation.  This can be the
case  for  some  industrial  applications  [90]  or  rehabilitation
scenarios [82], [91]. While predictive displays are mainly used
to enable effective interaction in the presence of considerable
time delays, the same concept has been used to allow for the
exploration  of  the  consequences  of  user  commands  without
actually  executing  them.  Several  studies  proposed  the  use  of
predictive  displays  to  predict  robot  responses  to  human
commands for training [80], validation [83], and planning [92]
purposes. In such cases, human input commands are sent only
to  the  virtual  (simulated)  robot  and  not  to  the  actual  robot.
This  enables  people  to  explore  how  their  actions  affect  the
state  of  the  remote  robot  without  causing  its  state  to  change.
Once the  human is  satisfied  with  the  predicted  consequences
of a command (or a sequence of commands) and the command
passes  the  essential  safety  checks,  it  can  be  committed  and
sent to the remote robot to execute.

Another crucial purpose for agent predictability is to enable
the  synchronisation  and  coordination  between  collaborating
agents.  Action synchronisation can be critical  for  the success
of highly interdependent tasks. For instance, there are studies
which  investigate  the  utility  of  using  predictions  about
humans’ intended  future  actions  to  enable  the  operation  of
assistive and rehabilitation robots [82]. These predictions can
then  be  used  to  calculate  the  optimal  forces  a  robotic  limb
should  apply  to  help  the  human  perform  the  intended
movement without over-relying on the robot [91].

Collision avoidance is also an area that benefits significantly
from  agent  predictability.  While  operating  within  an
environment shared with other moving objects, an agent needs
to ensure collision-free navigation to avoid possible damages
or safety accidents. A fundamental way proposed to use agent
predictability for collision avoidance was to require the agent
to  announce  its  planned  trajectory  so  that  other  agents  can
plan  their  motion  accordingly  to  avoid  it  [89].  Other
approaches  focus  on  equipping  the  agent  with  the  ability  to
detect  the  motion  and  predict  the  future  positions  of  other
moving  objects  so  that  the  agent  can  actively  act  to  avoid  a
collision.  The  agent  may  not  be  able  to  plan  a  complete
collision-free  path  from  the  onset.  Instead,  the  agent  can
continuously  monitor  its  vicinity  and  predict  whether  the
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motion of the other agents will intersect with its planned path
causing possible collisions [93], [94]. This allows the agent to
proactively  avoid  collision  by  re-planning  its  path  according
to  its  updated  prediction,  or  wait  till  the  path  is  clear  if
necessary.

Swarm predictability has been the focus of only three papers
[86], [95], [96]; all of which report on the same experimental
study. In that study, the predicted state of swarm members is
used to enable human control  of  the swarm under significant
time  delays.  Besides  predicting  agents  performing  the  task,
task  success  can also  necessitate  predicting the  state  of  other
agents  or  objects  that  share  the  same  operating  environment.
For instance, human bystanders are the agents to be predicted
in  systems  where  the  robot  has  to  ensure  collision-free
navigation in its path planning [93], [94].  

III.  Human-Swarm-Teaming Transparency and Trust
Architecture (HST3-Architecture)

  

A.  Design Philosophy
Autonomous systems will continue to increase their level of

smartness and complexity. These desirable features, necessary
for autonomy in complex environments, bring the undesirable
effects  of  making  their  teaming  with  humans  significantly
more complex. As we expand the teaming arrangements from
a  single  autonomous  system  to  a  swarm  of  autonomous
systems, the cognitive load of the humans involved increases
significantly;  thus  leading  to  unsuccessful  teaming
arrangements. Two design principles are needed to reduce the
cognitive  overload  from  their  teaming  with  a  swarm.  First,
transparency  in  swarm  operations  is  required  to  enhance
contextual  awareness  by  understanding  changes  in  priorities
and  performance.  Second,  two-way  interaction  between  a
human  and  swarm offers  the  ability  for  a  human  operator  to
ask questions and receive answers during swarm operations at
different  points  in  time  to  revise  goals,  beliefs,  and  update
operating conditions.

HST3-Architecture  promotes  swarm  transparency,  while
integrating  two-way  interaction  in  HST  systems.  HST3-
Architecture  leverages  the  proposed  tenets  of  transparency
and  Endsley’s  SA  model  [35]  to  develop  a  generic
transparency  system  to  maintain  a  mutual  and/or  shared
understanding  of  the  current  status,  plans,  performance
history,  and  intentions  between  human  operators  and  the
swarm.

In contrast to the focus on the what in the SAT model [25],
we propose an architecture that is focused on how by adopting
a  systems  engineering  approach  to  fuse  together
interpretability,  explainability,  and  predictability.  By  linking
the  tenets  to  transparency  together,  we  can  design  for  both
transparency assurance, as well as diagnosis for failure tracing
in  a  system.  We  first  focus  on  a  functional  definition  of  the
three  tenets  of  transparency:  interpretability,  explainability,
and predictability.

Interpretability allows for shared knowledge of the situation
and  outcomes  [97].  Interpretability  supports  transparency  by
ensuring that knowledge is transferred properly among agents.
Interpreting  [98]  is  the  process  of  mapping  spoken  words

between two languages. Consequently, interpretability enables
transparency  by  facilitating  communication  between  agents
using  a  knowledge  set  that  includes  language  and  processes.
Interpretability  could  be  seen  as  a  form  of  translation  to
convey original  meaning [98],  could include sentiments [99],
and capture cognitive behaviours such as emotions [100].

While  some  authors  use  the  terms  explainability  and
interpretability interchangeably, we contend that the two terms
must  be  differentiated.  By  positioning  interpretability  as  a
functional  layer  between  the  system’s  ability  to  explain  and
the  agents  a  system  is  interfacing  with,  we  eliminate
ambiguities  and  achieve  a  modular  design  for  autonomous
systems  that  separate  the  two  functions.  Explainability
augments interpretability with deeper insights into sentiments
and an agent’s cognitive and behavioural states by expanding
the  causal  chain  that  led  to  the  state  that  is  subjected  to
interpretability.  Explainability  assigns  understanding  to  an
observer’s knowledge base by providing the causal chain that
enables  the  observer  to  comprehend  the  environment  and
context  it  is  embedded  within.  Comprehension  of  the
environment  allows  the  observer  to  improve  their  SA  and
support robust decision making [16].

Interpretability and explainability together offer an observer
with  understanding  and  comprehension  of  a  situation.  The
sequence  of  transmission  of  meaning  to  an  observer  affords
the  observer  with  necessary  updates  in  the  observer’s  know-
ledge  base.  These  knowledge  updates  are  necessary  for  the
observer  to  infer  whether  or  not  the  sequence  of  decisions  is
expected.  The updates  allow agents  to  deduce consistency of
rationale and induce or anticipate future actions. Such consis-
tencies promote mutual understanding of an outcome [101].

The  knowledge  updates  achieved  through  interpretability
and  explainability  form  the  basis  for  predictability.  As  a
necessary component for joint activity [78] and team success,
mutual predictability becomes an engineering design decision
facilitated  through  explicitly  defined  procedures  and
expectations. Predictability among agents brings reliability [79]
to  transparency.  By  using  transparency  as  the  basis  of  our
architecture, and enabling reliability by design, we present an
architecture that supports human-swarm teaming and offers a
modular design to inform trust calibration.

Fig. 1 presents a conceptual diagram of the architecture. The
direct line of communication to the swarm is through the user-
interface, and therefore becomes the focal point of the outputs
produced  by  the  interpretability,  explainability  and
predictability  modules.  For  efficient  HST,  the  system  should
only exchange with external actors through the interpretability
module.  System  explanation  and  prediction  information  are
parsed  to  the  interface  once  mapped  into  a  human
interpretable  format  by  the  interpretability  module.
Additionally,  the  user  module  can  query  the  system,  through
the  interface,  at  any  time  for  state  information,  explanations,
and/or prediction requests.  

B.  Disambiguating the Tenets of Transparency
The literature review has demonstrated the confusion in the

existing  literature  on  appropriate  definitions  for  the  tenets  of
transparency. Before we are able to present an architecture for
transparency that encompasses these tenets, it is pertinent that
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we  disambiguate  these  concepts  by  presenting  concise
definitions.

Aw• : A worker agent whose logic is required to be interpre-
ted to another agent.

Ao
Aw

• : An observer agent that synthesises the behaviour of a
working agent ( ) to understand its logic.

E
Aw Ao

• : The environment that provides a common operating con-
text for both agents  and .

S (t)
t

• : The state of the mission (i.e., overall aim the human
and the swarm aim to achieve together) at time .

S w(t)
t

• : The state of the mission as perceived by the worker
agent at time .

S o(t)
t

• : The state of the mission as perceived by the obser-
ver agent at time .

Lw• : Algorithmic components of the working agent.
Mw

E
• : The computational model learned by the worker agent

through interactions within .
Mo• : The computational model of the observing agent.
K• : A knowledge set.
α γ•  and : internal decisions made by an agent.
≺• : A partial order operator.
Ω• : A decision that has been made internally and expressed

externally by an agent.
Definition 1: Interpretability, I,  is  a  mapping of  a  system’s

behaviour  in  terms  of  its  algorithmic  components,  computa-
tional model and mission state, to a knowledge set K in a form
appropriate  for  observing  agent  to  integrate  with  its  internal
knowledge (i.e.,  context,  goals,  intentions, and computational
capabilities of the observing agent).
 

I : (Lw,Mw,S w(t))→ K. (1)
EDefinition  2: Explainability, ,  defined  as  a  sequence  of

expressions  in  one  language  that  coherently  connects  the

inputs to the outputs, the causes to the effects, or the sensorial
inputs to an agents’ actions.
 

E : (Lw,Mw,S w(t),Ω)→ α ≺ γ ≺ · · · →Ω. (2)
Definition  3: Predictability, P,  is  an  estimation  of  the  next

state of a mission given previously observed mission states by
an agent.
 

P : (Lw,Mw,S w(t : t−τ))→ S (t+1). (3)
  

C.  The Architecture
Fig. 2 illustrates  the  architecture  for  the  proposed  trans-

parency  and  trust  architecture.  HST3-Architecture  follows  a
three-tier  architecture  and  is  typically  composed  of  an  agent
knowledge tier (lower layer), an inference engine tier (middle
layer), and a communication tier (top layer).

The  lower  layer  of  HST3-Architecture  contains  state
information  on  task-specific  knowledge  and  the  learning
processes used by the agent. The middle layer consists of two
primary  modules  being  explanation  and  prediction.  The
explanation module presents to the operator’s the causal chain
of events and state-changes that led to the current state of both
individual  swarm  members  and  the  swarm  as  a  whole.  The
predictability  module  supports  projection  and  anticipation
functions  by informing the  swarm’s  future  states  and what-if
analysis. The top layer is a bidirectional communication layer
that  interprets  messages  exchanged  between  the  human
operator  and  the  swarm.  It  interprets  the  swarm’s  state
information, reasoning process, and predictions in a language
and framing calibrated to  the human operator.  It  also maps a
human  operator’s  requests  into  appropriate  representations
commensurate  with  the  swarm  internal  representations,
knowledge, and processes for explanation and predictability.

In the remainder of this section, we will expand on each of
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Fig. 1.     The generalised HST3-Architecture.
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these modules.
1)  Interpretation  Module: The  interpretability  module  acts

as the interface with external entities to the swarm and offers
bidirectional  communication  capabilities  between  the  swarm
and external human and non-human actors. According to (1),
interpretability  should  account  for  the  computational  models
for both the working and observing agents, the shared context
between  both  parties,  and  maintains  a  knowledge
representation method accepted for them. The interpretability
module relies on three types of services.

a)  Language  services: Different  ontologies,  taxonomies,
parsing,  representations  and  transformations  need  to  exist  to
allow  the  interpretability  module  to  offer  bi-direction
communication capabilities. In heterogenous swarms, it could
be necessary to communicate in different languages within the
swarm, as well as to the actors the swarm is interfacing with.

b)  Fusion  services: The  ability  to  aggregate  and
disaggregate  information  is  key  for  the  success  of  the
interpretability  module.  The swarm need to  be  able  to  take  a
request for a swarm-level state information and decompose it
into  primitive  state  information  that  needs  to  be  fused  to
deliver  the  information  on  the  swarm  level.  These  fusion
services need to be bi-directional; that is, they are aggregation
and de-aggregation operators.

c) Trust services: The ability of the interpretation module to
respond to  bi-directional  communication  requests  rests  on  its
ability  to  represent  which  information  types  and contents  are

permissible  by  the  swarm,  allowed  for  sharing  to  whom,  in
which  context,  and  by  which  member  of  the  swarm.  The
challenges  as  well  as  opportunities  in  a  swarm are  that  these
trust services could de-centralised. All members in the swarm
need  to  have  the  necessary  minimum  information  needed  to
allow them to perform trust services during interpretation.

2)  Explanation  Module: Explainability  provides  the
inference  and  real-time  reasoning  engines,  as  well  as  the
knowledge  base  within  HST3-Architecture.  It  generates  the
causal chain output in response to a particular request through
the interpretability module as shown in Fig. 2. The role of the
explainability module is to deliver a service to the user; thus,
the  actor  the  swarm  is  interacting  with  is  a  central  input  to
how  the  swarm  should  calibrate  its  ability  to  explain  to  be
suitable for that particular actor.

While  the  explainability  module  responds  to  a  request  that
arrived  through  the  interpretability  module,  the  output  of  the
explainability  module  needs  to  go  back  through  the
interpretability  module  to  be  communicated  to  the  actor(s)
interacting  with  the  swarm.  The  unification  of  the
representation  and  inferencing  mechanisms  within  the
explainability  module  offers  an  efficient  mode  of  operations
for  transparency.  For  example,  a  single  neural  network  to
operate,  metaphorically  a  single  brain,  while  allowing  the
swarm,  through  the  interpretability  module,  to,
metaphorically, speak in different languages.

The  explainability  module  offers  the  user  with
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understanding of the behavioural decisions, past, present, and
future, of the swarm through the single-point of explainability.
The  user  receives  an  explanation  of  the  current  state  of  the
swarm,  answering  questions  such  as:  what  are  the  swarm
members  doing?  Why  are  they  doing  it?  What  will  they  do
next?  That  is,  the  type  and  level  (micro  vs  macro)  of  the
explanation  information  will  be  driven  extrinsically  by  user
inquiries  and  intrinsically  by  trust  and  teaming  calibration
requirements.

3)  Predictability  Module: Predictability  is  a  bi-directional
concept.  First,  the  swarm  needs  to  be  able  to  share  their
information to eliminate surprises for the human. Second, the
swarm  needs  to  be  able  to  anticipate  human  states  and
requirements. The simplest requirement for predictability is to
respond  to  questions  requiring  projection  of  past  and  current
states into a future state. Such a requirement can be achieved
in its basic form through classic prediction techniques.

The  performance  of  the  predictability  module  relies  on  a
few services  to  deliver  mutual  predictability  in  the  operating
environment;  these  are:  contextual-awareness  services,
prediction  services,  anticipation  and  what-if  services,  and
theory-of-mind services.

Mutual  predictability  requires  the  swarm  to  maintain
situation  awareness  on  the  context;  that  is,  the  state  of  itself,
other  actors,  and  their  relationship  to  the  overall  objectives
that  need  to  be  achieved  in  this  environment.  The
decentralised  nature  of  the  swarm  means  that  the  context  is
distributed  and  needs  to  be  aggregated  from  the  information
arriving  through  the  interpretability  and  explainability
modules.  The  contextual-awareness  services  depend  on
prediction  services,  anticipation  and  what-if  services,  and
theory-of-mind services.

The  anticipation  and  what-if  services  simulate  in  the
background  the  evolution  of  the  swarm  and  human-swarm
interaction to anticipate physical and cognitive state variables.
These  simulations  run  in  a  fast-time  mode,  projecting  future
evolutionary  trajectories  of  the  system  to  identify  what  is
plausible. The emphasis of anticipation is more on plausibility
and  less  on  prediction.  Meanwhile,  the  prediction  services
focuses  more  on  prediction.  These  services  are  more  data-
driven than model-driven and simulation-driven. They rely on
past and current state-information to estimate future states.

Mutual  predictability  requires  an  agent  to  have  a  model  of
itself  and  other  agents  in  the  environment.  These  models  are
offered in our  architecture using the theory-of-mind services,
which model  other  agents  in  the  environment  with  an aim to
anticipate  their  future  needs  of  information  to  ensure  these
pieces  of  information  are  communicated  to  improve  mutual
predictability.

Human’s  form  their  internal  mental  models  based  on
observations  and  previous  knowledge  of  different  situations
[102]. A mental model, as defined in the cognitive psychology
literature,  is  a  representation  of  how  a  user  understands  a
system.  In  the  context  of  swarm  transparency,  state
information, explanations, and predictability on the micro and
macro  level  help  to  form  and  update  more  accurate  and
complete mental models of the system [103], and the complex
algorithmic  decision-making  processes  embedded  within  the

actors [104].
The  formation  of  mental  models  comes  at  a  cost−an

increase  in  cognitive  load.  The  cognitive  load  required  to
build  a  mental  model  is  dependent  on  the  type  of  mental
model,  the  complexity,  amount,  and  level  of  information
presented  to  the  user  for  processing  [103].  The  four  distinct
functional  abilities  Langley et  al.  [105]  further  developed
from Swartout  and  Moore’s  description  [50],  can  be  directly
applied to HST through Lyons’s four transparency models [66].
At  the  highest  level,  building  an  intentional  mental  model
allows  the  human  to  understand  the  intent  or  purpose  of  the
swarm.  Once  this  is  understood,  the  user  can  begin  to  build
swarm task mental  models.  To achieve this,  the  system must
explain which actions the swarm executed and why, the plans
and goals the swarm adapted, or inferences the swarm made to
the user.

The  predictability  module  has  two  modes  of  operation,
being  an  autonomic-mode  and  an  on-request  mode.  The
autonomic-mode  perform  self-assessment  of  self-needs  and
the  needs  of  other  actors  in  the  environment,  then  acts
accordingly.  The  default  mode  can  also  be  set  to  send
predicted  risks  that  can  disrupt  swarm  operations.  The  on-
request  user  inquiry  mode  seeks  to  provide  dynamic
predictions,  for  instance,  to  answer  a  question  arriving  from
external  entities  to  the  predictability  module  and  user-
questions such as “where will the swarm be in five minutes?”
or “what  is  the  predicted  battery  level  of  a  particular  swarm
member  at  some  specified  time  in  the  future?”.  That  is,  the
type and level  (micro vs macro)  of  the predicted information
will be driven by external and user inquires.

The  adaptability  needs  to  adhere  to  human  cognitive
constraints  by  presenting  only  the  main  predicted  state
variables  while  also  communicating  granular  predictions  as
per user needs. The theory-of-mind services play a crucial role
in the assurance of this requirement.  

D.  Objectifying Transparency
It is less productive to discuss transparency in a technology

purely  from  a  qualitative  perspective,  without  offering
designers  and  practitioners  appropriate  concrete  guidelines
and  metrics  to  guide  and  diagnose  their  designs.  The  core
motivation  for  transparency  in  HST  is  to  improve  the
efficiency  and  effectiveness  of  the  overall  system-of-systems
composed  of  the  swarm  and  all  other  actors,  including
humans, involved in the delivery of the overall solution.

While  providing  a  measure  of  transparency  is  essential  for
the user, what also must be considered is the accountability of
this  answer.  Determining  the  contribution  each  of
interpretability,  explainability,  and  predictability  to  situations
where the provided information does not  satisfy the needs of
human  operations  is  an  important  consideration.  Moreover,
the measurement and reporting of transparency must consider
the  level  of  granularity  required  against  human  operators
cognitive capacity to ingest, process, and use the information.

The HST3-Architecture offers an advantage through design,
by considering the level and type of information presented to
the  user,  per Fig. 1.  The  measurement  and  evaluation  of  the
HST3-Architecture  is  an  essential  element,  which  enhances
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transparency  by  decreasing  or  eliminating  all  together  any
level  of  opaqueness.  Transparency leads  to  an increased user
SA, and ultimately system reliability [106].

β

The  measurement  and  evaluation  of  transparent  systems
have  been  previously  identified  as  a  research  gap  to
understand  the  user-based  measures  [57],  and  how  both
objective  and  subjective  measures  can  be  used  to  evaluate  a
system  designed  to  be  transparent  [64].  We  assert  that  to
measure  and  evaluate  a  level  of  transparency,  indicators  for
each  of  the  transparency  tenets  must  be  measurable.  Each
tenet  of  transparency  in  HST3-Architecture  could  then  be
evaluated  using  a  multitude  of  metrics  in  the  literature.  For
example,  several  existing  objective  and  subjective  measures
and meta-categories have been proposed in the literature [57],
[106]–[108].  Interpretability  could  be  evaluated  using  a
questionnaire,  by  asking  the  user  whether  the  message
arriving from the swarm is easy to understand or not. We will
use  to indicate a function that outputs one of three levels for
each tenet in achieving its intent, where

β0
β0(I)

a) ,  indicating  that  one  of  the  tenets  is  either  absent  or
non-functional.  For  example,  indicates  that  the  system
does  not  have  an  interpretability  module  that  is  functioning
properly.

β1

β1(I)

b) ,  indicating  that  one  of  the  tenets  is  functioning  at  a
level  deems  to  be  fit-for-purpose  for  the  task.  We  do  not
assume,  or  aim  for,  perfection  due  to  the  fact  that  every
technology  is  evolving  in  its  performance  as  the  context  and
environment continues to evolve. For example,  indicates
that  the  system  has  an  interpretability  module  that  has  been
assessed to be functioning properly and is communicating in a
language appropriate for other agents to understand.

βθc) ,  indicating  that  one  of  the  tenets  is  functioning  but
there  is  a  level  of  dissatisfaction  with  its  performance.  This
could  be  a  low,  medium  or  high  dissatisfaction.  We  do  not
differentiate between the different levels of satisfaction in this
paper as they all indicate that a level of intervention is needed
to improve this particular tenets.

β#(E)

β!0(I)
βθ(I)

β1(I)

The  tenets  of  transparency  are  not  additive.  As  we  will
explain  below,  a  system  that  has  a  functional  explainability
and  predictability  modules  will  be  considered  a  black-box
system if the interpretability module is dysfunctional. We will
use a wildcard symbol (#) to indicate a do not care match. For
example, ,  indicates that we do not care about the level
of explainability in this system; that is,  regardless of whether
it  is  absent  all  together,  partially  functional,  or  a  fit-for-
purpose,  explainability  has  no impact  on transparency in  this
particular  scenario.  When  a  particular  state  is  excluded,  we
use  the  exclamation  mark  as  a  negation;  that  is, 
indicates  that  the  interpretability  module  is  either  or

.

I E
P

We can now define nine distinct cases of transparency using
its  three  tenets:  interpretability  ( ),  explainability  ( ),  and
predictability ( ). The nine cases are listed in Table I.

The  first  case,  opaque  transparency,  is  when  the  interpre-
tability module is absent or not functioning at all. In this case,
regardless of whether the swarm possesses internal abilities to
reason  or  has  predictability  abilities,  the  swarm  is  unable  to
communicate  any  of  these  capabilities  with  external  actors.

The external actors could observe the swarm’s behaviour, and
may develop  a  level  of  trust  if  the  swarm performs well  and
they  can  anticipate  its  behaviour,  but  the  lack  of
interpretability  makes  the  swarm  unable  to  communicate  to
other entities. In other words, the interacting agent is unable to
harness  any  of  the  tenets  that  support  transparency.  Such
opaque  swarm  may  be  understood  post  analysis  [18];
however, real-time interaction will be problematic.

The  second  case,  confusing  transparency,  occurs  when  the
interpretability module is making mistakes. The explainability
and  predictability  modules  could  be  functioning  perfectly  or
generating mistakes on their own, confusing the messages the
swarm is communicating even further.

βθ

The  third  to  fifth  cases  occur  when  the  interpretation
modules is functioning, even partially, and at least one of the
explainability or predictability modules are not functioning. In
the  case  when  none  of  them  is  functioning,  the  swarm  can
communicate  state  information  to  other  actors  in  the
environment,  albeit  it  may  break  down  from  time  to  time  if
interpretability  is  evaluated  as .  While  a  level  of  mutual
understanding  among  the  swarm  and  humans  may  evolve,  it
will  likely  be  limited,  which  will  hinder  the  situation
awareness  of  the  agent.  An  example  of  this  system  is
presented  in  [109].  If  the  explainability  or  predictability
modules function, the case of transparency is called rationally
and socially communicative, respectively.

The sixth to eighth cases of transparency mimics the third to
fifth  cases,  except  that  the  interpretability  module  is  fit-for-
purpose,  thus,  it  delivers  intended  meaning  consistently.  We
label  this  case  as  an  articulate  swarm.  When  either  the
explainability  or  predictability  module  are  functioning,  the
case is labelled rationally and socially articulate, respectively.

The last case of transparency is when all three modules are
functioning at  a  level  appropriate  for  the human-swarm team
to  operate  effectively  and  efficiently.  This  a  fit-for-purpose
transparency.

It  might  be  worth  separating  an  overlapping  case  that  we
call  Misaligned transparency,  when the predictability  module
is absent, while the interpretability and explainability modules
are functional, albeit they may break-down from time to time.
In this  case,  the system is  able to communicate its  states and
causal  chains  for  its  decision,  but  it  can  not  anticipate  the
states and/or rationale of the actors it is interacting with; thus,

 

TABLE I 

Cases of Transparency

Case Transparency case I E P

1 Opaque 0 # #

2 Confusing θ !0 !0
3 Communicative !0 0 0

4 Rationally communicative !0 !0 0

5 Socially communicative !0 0 !0

6 Articulate 1 0 0

7 Rationally articulate 1 !0 0

8 Socially articulate 1 0 !0

9 Fit-for-purpose 1 1 1
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the  communication  will  likely  get  misunderstood  sometimes
and  a  level  of  inefficiency  will  continue  to  exist  in  this
system’s  ability  to  communicate  with  other  actors  in  the
environment.  

IV.  A Case Study on Sky Shepherding

We  present  a  case  study  that  describes  how  our  proposed
architecture  could  be  applied  to  a  real-world  situation.  The
scenario we use is  that  of shepherding,  which is  a method of
swarm  control  and  guidance.  We  consider  an  environment
with  three  agent  types,  being  a  cognitive  agent  (the  human
shepherd),  the  herding  agent  (a  human  drone  pilot),  and  the
constituent swarm member agents (sheep in a flock).

The  Sky  Shepherd  case  is  a  live  example  of  our  current
work,  where  we  employ  the  HST3-Architecture  to  guide  the
design of the system, replacing the human pilot and the drone
with  a  smart  autonomous  drone  guiding  the  swarm  and
teaming with the farmer in a transparent manner.

In this scenario, our shepherd provides a general direction to
the drone pilot. The pilot interprets this direction and begins to
plan their  tasks,  sub-goals,  path,  and consider  the reaction of
the flock, employing the agreed knowledge base to understand
what future states may look like. After making an assessment
and  determining  the  optimal  behaviour  profile  to  meet  the
shepherd’s  intent,  the  drone  pilot  commences  their  sequence
of  behaviours  towards  the  sheep  and  begins  shepherding.
During the task, the drone pilot agent receives communication
from  the  human  shepherd  to  change  their  path  due  to  a
deviation  from  the  predicted  flock  behaviour,  identifying  a
need  for  understanding  of  the  human  pilot  behaviours.  The
new  direction  from  the  shepherd  is  based  on  their
understanding of the drone pilot and the response of the sheep.

The  levels  of  desired  transparency  are  set  by  the
shepherding  agent,  and  is  based  on  an  agreed  semantic  map
between the shepherd agent and the drone pilot agent, minimal
explanations  from  the  drone  pilot  agent  (derived  from  the
semantic  map)  and  inferred  by  macro  and  micro-behaviours
exhibited  by  the  swarm.  Consequently,  the  communicative
transparency  in  this  system  is  asymmetric  and  based  on  the
shepherd  agent’s  understanding,  with  minimal  consideration
of the drone pilot or a swarm agent context.

The  operationalisation  of  the  transparency  tenets  is
described  through  the  cases  in  Section  III-D.  The  first
interaction  between  the  system  agents  commences  with  the
confusing  transparency  case,  where  insufficient  interpreta-
bility  creates  a  knowledge-gap  due  to  misunderstanding
between  the  shepherd  and  the  pilot.  As  the  agents  develop  a
mature semantic map, their level of interpretability increases.
This  results  in  a  baseline  level  of  general  information
exchange that is used as the basis to build from, moving to a
case of communicative transparency.

As the cognitive  agents  within the system gain experience,
they refine the language used and employ explanations based
on  what  has  been  observed,  a  case  of  rationally
communicative  agents,  which  in  turn  develops  a  shared
understanding of behaviour and states. When a sufficient level
of  information  symmetry  has  been  obtained  between  agents,
agents  develop  mutual  predictability,  switching  between  the

rationally  communicative  case  and  the  socially  communi-
cative case.

The  interaction  could  evolve  in  multiple  directions,  where
interpretability,  explainability  and  predictability  continue  to
evolve and improve,  until  the three tenets  are mature enough
to  become  fit-for-purpose,  resulting  in  a  functionally  fit-for-
purpose transparency.

As  we  evolve  the  system,  the  case  of  transparency  will
change from one case to another. For example, the change of a
command  from “move  to  the  right  quickly” to “proceed  45
degrees to the right at  speed 10” by the shepherd to the pilot
may  be  to  detail  the  desired  state  explicitly.  This  may  not
increase the explainability  or  predictability  for  the pilot  as  to
why the action is  being taken, however,  enhances the system
interpretability through the refinement of the semantic map. A
qualified command that  may increase more than one tenet  of
transparency,  such  as “proceed  45  degrees  to  the  right  at
speed 10 in order  to  move the flock away from the tree line”
provides the command refined for interpretability, as well as a
more granular  intent  of “why”.  This  qualified command now
allows  the  pilot  to  develop  goal-  and  path-planning  states
while working within the prescriptive constraints issued by the
shepherd. Providing a more granular intent of “why” increases
the  amount  of  communication  between  agents  and  may
increase  the  cognitive  load  required  to  support  task
completion [16].

To  support  the  shepherd  agent  in  future  tasks,  an  HST
interface  that  supports  decision  making,  and  is  based  on
HST3-Architecture,  would  enable  the  shepherd  not  only  to
understand  the  system  but  also  identify  when  improvements
are required and where. This would be possible due to the fact
the  HST3-Architecture  provides  symmetry  of  information
understanding.  In  doing  so,  when  the  swarm  is  evolving,  or
human  and  swarm  co-evolving,  transparency  tenets  can
support  effective  communication  and  collaboration.  The
HST3-Architecture can improve SA, leading to better decision
making by the human. In this situation, the HST3-Architecture
can enhance control of the flock through projected influence,
as  the  shepherd  is  better  able  to  articulate  what  has  occurred
within the system, what they are intending on doing, and how
they  will  achieve  the  desired  goals.  Using  the  HST3-
Architecture,  we provide transparency to the shepherd within
the system. This agent can interrogate the drone pilot agent to
discover  answers  such  as  why  are  you  positioning  yourself
there? Why are you transitioning into this state? Why are you
returning to the base? How will you achieve the (immediate or
future) goal?  

V.  Open Research Questions

The  HST  literature  and  proposed  HST3-Architecture  have
identified  significant  challenges  and  opportunities  for  future
research proposed for human-swarm teaming.  In this  section,
we  will  highlight  a  few  of  what  we  have  assessed  as  most
pertinent challenges in this area.

The  first  challenge  is  related  to  a  few design  decisions  for
the  interpretability  module.  One  decision  is  related  to  the
internal  representation  and  language  the  swarm  use  to
communicate  with  each  other.  This  language  could  be  pre-
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designed with a particular lexicon based on a detailed analysis
of  the  possible  information  that  the  swarm members  need  to
exchange.  However,  in  situations  where  the  swarm  needs  to
operate  in  a  novel  environment,  and  for  a  longer  period  of
time,  the  lexicon,  ontology,  and  language  need  to  be  learnt,
adapted  and  allowed  to  evolve.  To  design  an  open-ended
language for swarm is challenging, both in terms of our ability
to  manage  the  exponential  growth  in  complexity  that
accompanies such a design, and the difficulty to interpret the
continuously  evolving  swarm  language  to  an  external  actor,
such as a human.

It  has  been  established  that  a  loss  of  trust  is  an  influential
variable with a causal effect for human reliance on a swarm [12].
Moreover,  there  is  a  risk  for  humans  on  over-relying  on  a
swarm  when  their  trust  is  based  only  on  the  known
capabilities  of  the  swarm  [13].  In  environments  where  the
swarm  is  evolving,  or  human  and  swarm  co-evolving,
transparency  must  be  an  essential  element  to  facilitate
effective  communication  and  collaboration.  Addressing  this
research  question  will  ensure  that  oversight  and  shared
understanding  can  be  maintained  during  phases  of  evolution,
maintaining  higher  trust  and  reliability  in  a  swarm  which  is
otherwise not possible with opaque systems. Nevertheless, the
non-stationary  nature  of  the  internal  language  within  each  of
these actors due to its evolving abilities will create significant
complexity  in  interpreting  the  language  to  external  actors,
who could also be evolving their  own language.  It  is  hard to
conceive  how  to  overcome  this  challenge  without  allowing
heavy  communications  to  occur  between  the  swarm  and  the
human  to  exchange  changes  in  their  lexicons,  syntax  and
semantics.

A  main  explainability  challenge  in  a  swarm  is  the
decentralised  nature  of  reasoning.  In  a  homogeneous  swarm,
the  reasoning  process  within  each  agent  are  the  same.  While
the agents may accumulate different experiences due to them
encountering  different  states  in  the  environment,  thus,  they
may  be  holding  heterogenous  knowledge,  over  a  larger
operational  time-horizon,  it  would  be  expected  that  they
converge  on  similar  knowledge.  Nevertheless,  the  human  is
not  observing  necessarily  every  member  of  the  swarm.
Instead,  the  human  is  observing  some  or  all  members
simultaneously and needs the aggregate causal chain that led a
swarm to reach a particular state or perform a particular set of
collective  actions.  The  shepherding  research  offers  a
mechanism  to  overcome  this  challenge  by  making  the
requirement  of  explanation  the  responsibility  of  a  few
members of agents (the sheepdogs).

A number of previous studies identify meta-categories [107],
measures [108], and tenets for consideration [106] to evaluate
system transparency. A broad architecture at the system level
remains  yet  to  be  developed  with  the  ability  to  increase
context-dependent  SA  through  enhanced  transparency.
However,  little  research  is  available  that  investigates  the
success  or  failure  of  a  swarm’s  transparency.  The  HST3-
Architecture  offers  a  design  where  more  research  could  be
conducted  on  the  individual  tenets  of  transparency  and  to
isolate  the  effects  of  each  tenet  on  system  performance  and
agent’s trust.  

VI.  Conclusion

We  have  proposed  a  portfolio  of  definitions  for  the  vital
concept  of  transparency,  and  its  tenets  interpretability,
explainability,  and  predictability,  within  the  setting  of  HST.
These measures describe these constituent elements, and their
contribution  to  designing  transparency  in  HST  settings,
essential  elements  for  human  trust.  Our  work  addresses  the
need  within  the  literature  to  clearly  define  these  terms  and
present  cases  that  differentiate  how  they  are  used.  The
proposed  architecture  answers  the  question  of “how” to
develop  transparency  in  HST,  providing  a  systems  approach
to enabling SAT. Within HST3-Architecture, reliability can be
measured  and  evolved  by  leveraging  the  tenet  of
predictability.

Our  architecture  has  general  applicability,  particularly  in
situations  where  a  shared  understanding  is  required,  to  help
practitioners  and  researchers  realise  transparency  for  HST.
Example fields for application include security and emergency
services where operational assurance and decision traceability
are  required,  or  as  importantly  agricultural  settings  where
tasks may be outsourced to increase productivity.
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