

Learning Convex Optimization Models
Akshay Agrawal, Shane Barratt, and Stephen Boyd, Fellow, IEEE

 Abstract—A convex optimization model predicts an output
from an input by solving a convex optimization problem. The
class of convex optimization models is large, and includes as
special cases many well-known models like linear and logistic
regression. We propose a heuristic for learning the parameters in
a convex optimization model given a dataset of input-output pairs,
using recently developed methods for differentiating the solution
of a convex optimization problem with respect to its parameters.
We describe three general classes of convex optimization models,
maximum a posteriori (MAP) models, utility maximization
models, and agent models, and present a numerical experiment
for each.
 Index Terms—Convex optimization, differentiable optimization,
machine learning.

I. Introduction

A. Convex Optimization Models

y ∈ Y x ∈ X
D = {(xi,yi)}Ni=1 ⊆ (X×Y)N Y ⊆ Rm

X
ϕ : X→Y

W E consider the problem of learning to predict outputs
 from inputs , given a set of input-output

pairs . We assume that is a
convex set, but make no assumptions on . In this paper, we
specifically consider models that predict the output
y by solving a convex optimization problem that depends on
the input x. We call such models convex optimization models.
While convex optimization has historically played a large role
in fitting machine learning models, we emphasize that in this
paper, we solve convex optimization problems to perform
inference.

A convex optimization model has the form

ϕ(x;θ) = argmin
y∈Y

E(x,y;θ) (1)

E : X×Y→ R∪{+∞}
θ ∈ Θ
Θ

E(x,y;θ)
E(x,y;θ)

θ

E(x,y;θ) = +∞ ϕ(x;θ) , y

y ∈ Y ϕ

where the objective function is convex
in its second argument, and is a parameter belonging to
a set of allowable parameters . The objective function E is
the model’s energy function, and the quantity is the
energy of y given x; the energy can depend
arbitrarily on x and , as long as it is convex in y. Infinite
values of E encode additional constraints on the prediction,
since implies . Evaluating a convex
optimization model at x corresponds to finding an output

 of minimum energy. The function is in general set-
valued, since the convex optimization problem in (1) may

have zero, one, or many solutions. Throughout this paper, we
only consider the case where the argmin exists and is unique.

y ∈ Y

Y
Y

Y

Convex optimization models are particularly well-suited for
problems in which the outputs are known to have
structure. For example, if the outputs are probability mass
functions, we can take to be the probability simplex; if they
are sorted vectors, we can take to be the monotone cone; or
if they are covariance matrices, we can take to be the set of
symmetric positive semidefinite matrices. In all cases, convex
optimization models provide an efficient way of searching
over a structured set to produce predictions satisfying known
priors.

θ
Because convex optimization models can depend arbitrarily

on x and , they are quite general. They include familiar
models for regression and classification as specific instances,
such as linear and logistic regression. In the basic examples of
linear and logistic regression, the corresponding convex
optimization models have analytical solutions. But in most
cases, convex optimization models must be evaluated by
iterating a numerical algorithm.

D
Learning a parametric model requires tuning the parameters

to make good predictions on and ultimately on held-out
input-output pairs. In this paper, we present a gradient method
for learning the parameters in a convex optimization model;
this learning problem is in general non-convex, since the
solution map of a convex optimization model is a complicated
function. Our method uses the fact that the solution map is
often differentiable, and its derivative can be computed
efficiently, without differentiating through each step of the
numerical solver [1]–[4].

θ E(x,y;θ) = ∥y− f (x, θ)∥2 f (x, θ)

We limit our attention to optimization models that are
convex for three reasons: convex programs can be solved
globally, efficiently, and reliably [5], which makes inference
tractable; the solution map is often differentiable [1], [3],
which makes learning tractable; and convex optimization
models are general, since they can depend arbitrarily on x and
 (e.g., we can take , where can

be any function, such as a neural network).
Contributions: The contributions of our paper are the

following:
1) We describe a new type of machine learning model, the

convex optimization model, which makes it both possible and
easy to express priors and enforce constraints on the model
output.

2) We show how to fit convex optimization models using
recently developed methods for differentiating through the
solution map of convex programs.

3) We give several examples of convex optimization
models, grouping the examples by application area, i.e., MAP
inference, utility-maximizing processes, and agent models.
We include numerical experiments showing how to use open-

Manuscript received December 1, 2020; revised February 2, 2021 and

March 4, 2021; accepted March 28, 2021. Recommended by Associate Editor
Weinan Gao. (Corresponding author: Shane Barratt.)

Citation: A. Agrawal, S. Barratt, and S. Boyd, “Learning convex
optimization models,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp.
1355–1364, Aug. 2021.

The authors are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA (e-mail: sbarratt@stanford.edu;
boyd@stanford.edu; akshayka@stanford.edu).

Digital Object Identifier 10.1109/JAS.2021.1004075

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021 1355

https://doi.org/10.1109/JAS.2021.1004075

source software to fit these models.
Outline: Our learning method is presented in Section II for

the general case. In the following three sections, we describe
special cases of convex optimization models with particular
forms or interpretations. In Section III, we interpret convex
optimization models as solving a maximum a posteriori
(MAP) inference task, and we give examples of these MAP
models in regression, classification, and graphical models. In
Section IV, we show how convex optimization models can be
used to model utility-maximizing processes, and in Section V,
we give examples of modeling agents using the framework of
stochastic control. In Section VI, we present numerical
experiments of learning convex optimization problems for a
number of prediction tasks.

B. Related Work
Structured Prediction: Structured prediction refers to

supervised learning problems where the output has known
structure [6]. A common approach to structured prediction is
energy-based models, which associate a scalar energy to each
output, and select a value of the output that minimizes the
energy, subject to constraints on the output [7]. Most energy-
based learning methods are learned by reducing the energy for
input-output pairs in the training set and increasing it for other
pairs [8]–[11]. More recently, the authors of [12], [13]
proposed a method for end-to-end learning of energy networks
by unrolled optimization. Indeed, a convex optimization
model can be viewed as a form of energy-based learning
where the energy function is convex in the output. For
example, input-convex neural networks (ICNNs) [14] can be
viewed as a convex optimization model where the energy
function is an ICNN. We also note that several authors have
proposed using structured prediction methods as the final
layer of a deep neural network [15]–[17]; of particular note is
[18], in which the authors used a second-order cone program
(SOCP) as their final layer.

Inverse Optimization: Inverse optimization refers to the
problem of recovering the structure or parameters of an
optimization problem, given solutions to it [19], [20]. In
general, inverse optimization is very difficult. One special
case where it is tractable is when the optimization problem is
a linear program and the loss function is convex in the
parameters [19], and another is when the optimization
problem is convex and the parameters enter in a certain way
[21], [22]. This paper can be viewed as a heuristic method for
inverse optimization for general convex optimization
problems.

Differentiable Optimization: There has been significant
recent interest in differentiating the solution maps of
optimization problems; these differentiable solution maps are
sometimes called optimization layers. Reference [23] showed
how quadratic programs can be embedded as optimization
layers in machine learning pipelines, by implicitly
differentiating the KKT conditions (as in the early works [24],
[25]). Recently, [2], [3] showed how to efficiently
differentiate through convex cone programs by applying the
implicit function theorem to a residual map introduced in [4],
and [1] showed how to differentiate through convex
optimization problems by an automatable reduction to convex

cone programs; our method for learning convex optimization
models builds on this recent work. Optimization layers have
been used in many applications, including control [26]–[29],
game-playing [30], [31], computer graphics [18], combina-
torial tasks [32], automatic repair of optimization problems
[33], and data fitting more generally [14], [34]–[36].
Differentiable optimization for nonconvex problems is often
performed numerically by differentiating each individual step
of a numerical solver [37]–[40], although sometimes it is done
implicitly; see, e.g., [26], [41], [42].

II. Learning Convex Optimization Models

θ
(x1,y1), . . . , (xN ,yN) ∈ X×Y

ŷi = ϕ(xi;θ) yi xi

i = 1, . . . ,N θ

In this section we describe a general method for learning the
parameter in a convex optimization model, given a data set
consisting of input-output pairs .
We let denote the prediction of based on , for

. These predictions depend on , but we suppress
this dependency to lighten the notation.

A. Learning Problem

L :Y×Y→ R
L(ŷi,yi)

ŷi

θ

D
T ⊂ {1, . . . ,N}

V = {1, . . . ,N} \T

The fidelity of a convex optimization model’s predictions is
measured by a loss function . The value

 is the loss for the ith data point; the lower the loss, the
better the prediction. Through , this depends on the
parameter . Our ultimate goal is to construct a model that
generalizes, i.e., makes accurate predictions for input-output
pairs not present in . To this end, we first partition the data
pair indices into two sets, a training set and a
validation set . We define the average
training loss as

L(θ) =
1
|T |
∑
i∈T

L(ŷi,yi).

θ
R : Θ→ R∪{∞}

We fit the model by choosing to minimize the average
training loss plus a regularizer , i.e., solving
the optimization problem

minimizeL(θ)+R(θ) (2)
θ θ

R(θ) =∞ θ < Θ
θ ∈ Θ

with variable . The regularizer measures how compatible is
with prior knowledge, and we assume that for ,
i.e., the regularizer encodes the constraint . We describe
below a gradient-based method to (approximately) solve the
problem (2).

We can check how well a convex optimization model
generalizes by computing its average loss on the validation set

Lval(θ) =
1
|V|
∑
i∈V

L(ŷi,yi).

θ
In some cases, the model or learning procedure depends on

parameters other than , called hyper-parameters. It is
common to learn multiple models over a grid of hyper-
parameter values and use the model with the lowest validation
loss.

B. A Gradient-Based Learning Method
LIn general, is not convex, so we must resort to an

approximate or heuristic method for learning the parameters.
One could consider zeroth-order methods, e.g., evolutionary

 1356 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021

θ

strategies [43], Bayesian optimization [44], or random search
[45]. Instead, we use a first-order method, taking advantage of
the fact that the convex optimization model is often
differentiable in the parameter .

θ

θ

Differentiation: The output of a non-pathological convex
optimization model is an implicit function of the input x and
the parameter . When some regularity conditions are
satisfied, this implicit function is differentiable, and its
derivative with respect to can often be computed in less time
than is needed to compute the solution [2]. One generic way
of differentiating through convex optimization problems
involves a reduction to an equivalent convex cone program,
and implicit differentiation of a residual map of the cone
program [2]; this is the method we use in this paper. For
readers interested in more details on the derivative
computation, we suggest [1], [2], [4]. In our experience, it is
unnecessary to check regularity conditions, since we and
others have empirically observed that the derivative
computation in [2] usually provides useful first-order
information in the rare cases when the solution map is not
differentiable at the current iterate [1], [29]. In this sense,
convex optimization models are similar to other kinds of
machine learning models, such as neural networks, which can
be trained using gradient descent despite only being
differentiable almost everywhere.

θ1

Bk ⊂ T

Learning Method: We propose a proximal stochastic
gradient method. The method is iterative, starting with an
initial parameter . The first step in iteration k is to choose a
batch of (training) data denoted . There are many ways
to do this, e.g., by cycling through the training set or by
selecting at random. The next step is to compute the gradient
of the loss averaged over the batch

gk =
1
|Bk |
∑
i∈Bk

∇θL(ŷi,yi).

|Bk |

θ

This step requires applying the chain rule for differentiation
to compositions of the convex optimization model
(discussed above) and the loss function. The final step is to
update by first taking a step in the negative gradient
direction, and then applying the proximal operator of R

θk+1 = proxtkR(θk − tk∇gk)

= argminθ∈ΘR(θ)+
1

2tk ∥θ− θ
k + tk∇gk∥22

tk > 0
R(θ)

{0,∞} Θ

where is a step size. We assume that the proximal
operator of R is single-valued and easy to evaluate. When
is the indicator function of , this method reduces to
the standard projected stochastic gradient method

θk+1 = ΠΘ(θk − tk∇gk)

ΠΘ Θ

tk
where is the Euclidean projection operator onto . There
are many ways to select the step sizes ; see, e.g., [46]–[48].

III. MAP Models

x ∈ X y ∈ Y

θ

Let the inputs and outputs be random vectors,
and suppose that the conditional distribution of y given x has a
log-concave density p, parametrized by . The energy function

E(x,y;θ) = − log p(y | x;θ)
ŷ = ϕ(x;θ)yields a maximum a posteriori (MAP) model: is the

MAP estimate of the random vector y, given x [49, §1.2.5].
Conversely, any convex optimization model can be interpreted
as a MAP model, by identifying the density of y given x with
an exponential transformation of the negative energy

p(y | x;θ) =
1

Z(x;θ)
exp(−E(x,y;θ))

where Z is the normalizing constant or partition function

Z(x;θ) =
w

y∈Y
exp(−E(x,y;θ)).

Z(x;θ)
Crucially, evaluating a MAP model does not require

computing since it does not depend on y; i.e., MAP
models can be used even when the partition function is
computationally intractable, as is often the case [50, §18].

A. Regression
Several basic regression models can be described as MAP

models, with

p(y | x;θ) ∝ exp(− f (θT x− y))

x ∈ X = Rn y ∈ Y = Rm θ ∈ Rn×m

f : Rm→ R θT x

θ

ϕ(x;θ) = θT x
L(ŷ,y) = ∥ŷ− y∥22

ℓ1 ℓ1

where , , is the parameter and
 is a convex penalty function (The expression

can be replaced with a more complex function, such as a
neural network, since convex optimization models can depend
arbitrarily on x and ; we focus on the linear case for
simplicity). If the penalty f is minimized at 0, then the MAP
model is the linear predictor . In this case, fitting
the MAP model with a mean-squared loss is
equivalent to fitting a linear regression model; fitting it with
an loss is equivalent to regression; and fitting it with the
Huber loss [5, §6.1] yields robust Huber regression.

Y
These very basic examples can be made more interesting by

constraining the outputs y to lie in a convex subset C of ,
using a density of the form

p(y|x) ∝
{

exp(− f (θT x− y)) y ∈C
0 otherwise.

f (u) = ∥u∥22
ŷ = ϕ(x;θ)

θT x ℓ1
f (u) = ∥u∥1

Because the output is constrained, different choices of the
penalty function f yield different MAP models. When the
penalty function f is the squared Euclidean norm, ,
the MAP estimate is the Euclidean projection of

 onto C. Other penalty functions, like the norm
 or the Huber function [5, §6.1] yield interesting

non-trivial regression models. We present some examples of
the constraint set C below.

C = Rm
+Nonnegative Regression: Taking (the set of

nonnegative m-vectors) yields a MAP model for nonnegative
regression, i.e., the MAP estimates in this model are
guaranteed to be nonnegative.

Monotonic Output Regression: When C is the monotone
cone, i.e., the set of ordered vectors

C = {y ∈ Rm | y1 ≤ y2 ≤ · · · ≤ ym}

θT x

the MAP estimates in the regression model are guaranteed to
be sorted in ascending order. When f is the Euclidean norm,
the MAP estimate is the projection of onto the monotone

AGRAWAL et al.: LEARNING CONVEX OPTIMIZATION MODELS 1357

θT x
O(mn)

O(m)

cone, and evaluating it requires solving a convex quadratic
program (QP); in this special case, once has been
computed (which takes time), evaluating the convex
optimization model is equivalent to monotonic or isotonic
regression [51], which takes time [52], meaning it has
the same complexity as the standard linear regression model.

x ∈ X ŷ

We note the distinction between traditional isotonic
regression [51] and a convex optimization model with
monotone constraint. In isotonic regression, we seek a single
vector with nondecreasing components. In a convex
optimization model with a monotone constraint, we seek a
model that maps to a prediction that always has
nondecreasing components.

B. Classification
In (probabilistic) classification tasks, the outputs are vectors

in the probability simplex, i.e.,

Y = ∆m−1 = {y ∈ Rm | 1T y = 1, y ≥ 0}.

{1, . . . ,m} x ∈ X = Rn

ŷ = ϕ(x;θ)
p(y | x;θ)

{1, . . . ,m}
yk = 1 yi = 0

i , k

The output y can be interpreted as a probability distribution
over associated with an input . The MAP
estimate is therefore the most likely distribution
associated with x, under a particular density . This
includes as a special case the familiar setting in which each
output is a label, e.g., a number in , since the label k
can be represented by a vector y such that and for

.
As a simple first example, consider the MAP model with

density

p(y|x;θ) ∝
{

exp(xT θy+H(y)) y ∈ ∆m−1

0 otherwise

θ ∈ Rn×m H(y) = −∑m
i=1 yi logyi

θT x ϕ(x;θ) = exp(θT x)/1T exp(θT x)

where and is the entropy
function. The resulting convex optimization model is just the
softmax of , i.e., , where the
exponentiation and the division are meant elementwise (This
fact is readily verified via the KKT conditions of the convex
optimization model [3, §2.4.4]).

ŷ = ϕ(x;θ)

Since the outputs are probability distributions, a natural loss
function is the KL-divergence from the true output y to the
prediction , i.e.,

L(ŷ,y) =
m∑

i=1

yi log(yi/ŷi) =
m∑

i=1

yi logyi− yi log ŷi.

yi logyiDiscarding the constant terms , which do not affect
learning, recovers the commonly used cross-entropy loss [53,
§2.6]. Using this loss function with the softmax model
recovers multinomial logistic regression [53, §4.4]. This
model can be made more interesting by simple extensions.

ŷ
Constrained Logistic Regression: We can readily add

constraints on the distribution . As a simple example, a box-
constrained logistic regression model has the form

ϕ(x;θ) = argminy − xT θy−H(y)

s.t. y ∈C
∆m−1where C is a convex subset of . There are many

interesting constraints we can impose on the distribution y. As

a simple example, the constraint set

C = {y ∈ ∆m−1 | α ≤ y ≤ β}
α,β ∈ Rm

ŷ
α

β

{1, . . . ,m} ŷ
ŷ

ŷ

where are vectors and the the inequalities are meant
elementwise can be used to require that have heavy tails, by
making the leading and trailing components of large, or thin
tails, by making the leading and trailing components of
small. Another simple example is to specify the expected
value of an arbitrary function on under , which is a
simple linear equality constraint on . More generally, any
affine equality constraints and convex inequality constraints
on may be imposed; these include constraints on the
quantiles of the random variable associated with y, lower
bounds on its variance, and inequality constraints on
conditional probability distributions.

Piecewise-Constant Logistic Regression: A piecewise-
constant logistic regression model has the form

ϕ(x;θ) = argminy − xT θy−H(y)+ r(y)

s.t. y ∈ Y
θwhere the parameter is ,

r(y) = λ
m−1∑
i=1

|yi+1− yi|

λ > 0

yi , yi+1 i = 1, . . . ,m−1
λ

and is a (hyper-) parameter. To the standard energy we
add a total variation term that encourages y to have few
“jumps”, i.e., few indices i such that ,
[54, §7.4]. The larger the hyper-parameter is, the fewer
jumps it will have.

C. Graphical Models
A Markov random field (MRF) is an undirected graphical

model that describes the joint distribution of a set of random
variables, which are represented by the nodes in the graph. An
MRF associates parametrized potential functions to cliques of
nodes, and the joint distribution it describes is proportional to
the product of these potential functions. MRFs are commonly
used for structured prediction, but learning their parameters is
in general difficult [49, §8.3]. When the potential functions
are log-concave, however, we can fit the parameters using the
methods described in this paper.

z = (x,y) ∈ Rn+m c1 c2 cp
zck

ck ck = (1,4,5) zck = (z1,z4,z5)

Suppose we are given an MRF describing the joint
distribution of the random vectors x and y. Let

, and let , , …, denote the indices of the
graph cliques; we write to denote the components of z in
clique . For example, if , then .
Suppose the MRF has a Boltzmann distribution, meaning

p(y | x;θ) ∝ exp(−(E1(zc1)+E2(zc2)+ · · ·+Ep(zcp))).

exp(−Ek(zck)) Ek
θ

E1, . . . ,Ep

Here, are the potential functions, and is a
local energy function, parametrized by , for the clique k. As
long as the functions are convex, the corresponding
MAP model

ϕ(x;θ) = argmax
y∈Y

log p(y | x;θ)

(x,y) θ
is a convex optimization model. In this case, given a dataset of
input-output pairs , we can fit the parameter without

 1358 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021

evaluating or differentiating through the partition function.

Rn Rm(
n+m

2

)
+n+m

{zi,z j} 1 ≤ i ≤ j ≤ n+m

Quadratic MRFs: Consider an MRF in which the variables
x and y lie in convex sets (such as slabs, or all of or).
Suppose the MRF has pairwise cliques of the
form (), and a Boltzmann distribution
with local energy functions

E(i, j)(zi,z j) = θi jziz j, 1 ≤ i ≤ j ≤ n+m

θ ∈ Θ = Sn+m
+ Sn+m

+where is the parameter (is the set of
positive semidefinite matrices). The MAP inference task for
this MRF is a convex optimization model, of the form

ϕ(x;θ) = argmax
y∈Y

−zT θz = argmin
y∈Y

zT θz.

MRFs with a similar clique structure have been proposed
for various signal and image denoising tasks. We give a
numerical example of fitting a quadratic MAP model of an
MRF in Section VI.

We emphasize that the dependence on x can be arbitrary;
e.g., if the energy function were

E(x,y;θ) = (f (x),y)T θ(f (x),y))
where f were a neural network, the MAP model would remain
convex.

IV. Utility Maximization Models

We now consider the case where the output y is a decision,
and the input x is a context or feature vector that affects the
decision. We assume that the decision y is chosen to maximize
some given parametrized utility function

U : X×Y→ R∪{−∞}
U(x,y;θ)

θ

where is the utility of choosing a decision y given
the context x and the parameters , and is concave in y
(Infinite values of U are used to constrain the decision y). The
energy function in a utility maximization model is simply the
negative utility

E(x,y;θ) = −U(x,y;θ).
ϕ(x;θ)The resulting convex optimization model gives a

maximum utility decision in the context x. The same losses
used for regression (see Section III-A) and classification (see
Section III-B) can be used for utility maximization. The
context x might include, for example, a total budget on the
decision y, prices that affect the decision, or availabilities that
affect the decision.

y ∈ Rm
+

yi
1T y ≤ B

B ∈ R+

Resource Allocation: A standard example of utility
maximization is resource allocation. In the simplest case, this
involves allocating a single, finite resource across m agents or
tasks. The decision gives the allocation across those
tasks, where is the resource allocated to task i; because the
resource is finite, the allocation must satisfy , where

 is a nonnegative budget. The context x contains the
budget B, and possibly other important parameters such as
limits on allocations to the tasks. When the input x is just the
budget, the utility has the form

U(x,y;θ) =
{

U(y;θ) y ≥ 0, 1T y ≤ B
−∞ otherwise

U(y;θ)

ϕ(x;θ)

where is some parametrized concave utility function,
describing the utility of an allocation. In this simple case,

 gives the maximum utility allocation that satisfies the
budget constraint.

p ∈ Rm
++

yi yi/pi

The input x is not limited to just the budget; it can also
contain additional context that affects or constrain the
decision. One important case is when the resource to be
allocated is dollars, and x contains the prices of the resource
for each of the agents, denoted . When there are
prices, an allocation of dollars provides units of some
good to agent i. The utility in this case has form

U(x,y;θ) =
{

U(y/p;θ) y ≥ 0, 1T y ≤ B
−∞ otherwise

U(z;θ)
zi

i = 1, . . . ,m ϕ(x;θ)

where the division is meant elementwise, and gives the
utility of the agents receiving units of the resource,

. The resulting convex optimization model
gives the maximum utility allocation that satisfies the budget
constraints, given the current prices.

m′

y ∈ Rm
+ m = km′

We can just as well model the allocation of multiple
resources, each with its own budget, across agents or tasks;
e.g., we might model the allocation of computational
resources, such as cpu cores, memory, and disk space, to a
pool of tasks. If there are k resources and agents, then the
output would be the k allocation vectors for each resource,
stacked together to form a vector , where .

Utility Functions: A simple family of utility functions are
the separable functions

U(y;θ) =
m∑

i=1

Ui(yi;θ)

Ui(yi;θ) yi

Ui(yi;θ) = −exp(θiyi)/θi

where is the utility of allocating of the resource to
the ith agent or task. In this case the entries of the decision y
are coupled by budget constraints. A simple example for
separable utility is exponential utility .

However, U need not be separable. A common example is
when y represents an allocation of dollars in a portfolio of
stocks; the Markowitz utility or risk-adjusted return is

U(y;θ) = µT y−γyTΣy
µ ∈ Rm

Σ ∈ Sm
++ γ > 0

θ = (µ,Σ,γ)

where is the expected return of each investment,
 is the covariance of the returns and is a risk

aversion parameter. We can take , in which case
we are observing portfolios and attempting to infer the mean
covariance, and risk aversion parameter that best model the
observed portfolio allocations.

V. Stochastic Control Agent Models

x ∈ X = Rn

y ∈ Y = Rm
In this section, we consider a setting in which is

the context or state of a dynamical system, and
represents the actions taken in that state. Our goal is to model
the policy, i.e., the mapping from state to action, that the agent
is using. In this section, we describe generic ways to model an
agent’s policy with a convex optimization model. The convex
optimization models we present are all instances of convex
optimization policies commonly used for stochastic control
[29]. When learning these models, one can use the same losses

AGRAWAL et al.: LEARNING CONVEX OPTIMIZATION MODELS 1359

proposed for regression (see Section III-A).

xt yt

Stochastic Control: To motivate the models presented in
this section, here, we describe a general stochastic control
problem. Let and denote the state and action at time t.
Suppose the state evolves according to the dynamics

xt+1 = f (xt,yt,wt) (3)
wt ∈W

f : Rn×Rm×W→ Rn
where is a random variable, and the function

 gives the (stochastic) dynamics of the
dynamical system. Suppose also that the agent selects actions
according to

yt = ϕ(xt), t = 0,1, . . . (4)
ϕ : Rn→ Rm

g : Rn×Rm→ R∪
{+∞}

where is the policy, and that the agent’s goal is
to minimize a discounted sum of stage costs

 over time

∞∑
t=0

γtg(xt,yt)

γ ∈ (0,1]where is a discount factor, subject to the dynamics
(3) and the policy (4). It is well known (see, e.g., [55]) that an
optimal policy is given by

ϕ⋆(x) = argmin
u

g(x,y)+EV(f (x,y))

V : Rn→ Rwhere is the cost-to-go function, which satisfies
Bellman’s equation

V(x) = inf
u

g(x,y)+EV(f (x,y)), x ∈ Rn. (5)

In general, given a dataset describing an agent’s actions, we
have no reason to believe that the agent chooses actions by
solving a stochastic control problem. Nonetheless, choosing a
model that corresponds to a policy for stochastic control can
work well in practice. As we will see, our models involve
learning the parameters in three functions that can be
interpreted as dynamics, stage costs, and an approximate value
function.

Approximate Dynamic Programming (ADP): One possible
model of agent behavior is the ADP model [55, §6], which has
the form

ϕ(x;θ) = argminy g(x,y;θ)+ V̂(x+;θ)

s.t. x+ = f (x,y;θ)

x+ ∈ Rn y ∈ Rm

f : Rn×Rm→ Rn

g : Rn×Rm→ R∪{+∞}
V̂

θ ŷ = ϕ(x;θ)

where and are the variables. The function
, which must be affine in its second

argument, can be interpreted as the dynamics; the function
 is the stage cost (which is convex in

its second argument); and the convex function can be
interpreted as an approximation of the cost-to-go or value
function. All three of these functions are parametrized by the
vector . The value is the optimal value of the
variable y, i.e., the ADP model chooses the action that
minimizes the current stage cost plus an estimate of the cost-
to-go of the next state.

h1, . . . ,hp : Rn×Rm→
R∪{+∞}

One reasonable parametrized stage cost g is the weighted
sum of a number of convex functions

g(x,y;θ) =
p∑

i=1

θihi(x,y).

Θ = Rp
+In this case we would have . For example, if the

dynamical system were a car, the state was the physical state
of the car, and the action was the steering wheel angle and the
acceleration, there would be many reasonable costs: e.g.,
tracking, fuel use, and comfort. Such a stage cost could be
used to trade off these costs, or to derive them from data.

V̂1, . . . , V̂p : Rn→ R∪{∞}
Similarly, the cost-to-go function might be a weighted sum

of functions

V̂(x;θ) =
p∑

i=1

θiV̂i(x)

e.g., taking

V̂i+ jn(x) = xix j, i = 1, . . . ,n, j = 1, . . . ,n

yields a quadratic cost-to-go function.
Model Predictive Control (MPC): An MPC policy is an

instance of the ADP policy [55, §6.4.3]

ϕ(x;θ) = argmin
T−1∑
t=0

gt(xt,yt;θ)

s.t. xt+1 = ft(xt,yt;θ)
x0 = x

x0, . . . , xT y0, . . . ,yT−1
ft : Rn×Rm→ Rn

gt : Rn×Rm→ R∪{+∞}
yt

θ
∑T−1

t=1 gt(xt,yt;θ)

gt

y0, . . . ,yT−1
ŷ = ϕ(x;θ) y0

with variables and , where T is the time
horizon. Here is the (affine) dynamics
function at time t, and is the stage
cost function at time t, which is convex in ; both functions
are parametrized by (The expression can be
interpreted as the approximate value function of an ADP
policy). The objective is the sum of the stage costs through
time, and the constraints enforce the dynamics and the initial
state. The MPC model chooses the action as the first action in
a planned sequence of future actions , i.e.,

 is the optimal value for the variable .

VI. Numerical Experiments

In this section we present four numerical experiments that
mirror the examples from Sections III–V. The code for all of
these examples can be found online1.

n = 20
m = 10 θtrue ∈ Rn×m

Monotonic Output Regression: We consider the monotonic
output regression model (see Section III-A). We take
and . We generate a true parameter with
entries sampled independently from a standard normal
distribution, and sample 100 training data pairs and 50
validation data pairs according to

x ∼ N(0, I), y = ϕ(x+ z;θtrue), z ∼ N(0, I).
We compare the convex optimization model to linear

regression, using the standard sum of squares loss and no
regularizer. The results for both of these methods are
displayed in Fig. 1. On the left, we show the validation loss
versus training iteration. The final validation loss for linear
regression is 3.375, for the convex optimization model is

1 redacted

 1360 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021

0.562, and for the true model is 0.264. We also calculated the
validation loss of a convex optimization model with the linear
regression parameters; this resulted in a validation loss of
1.511. While better than 3.375, this shows that here our
learning method is superior to learning the parameters using
linear regression and then projecting the outputs onto the
monotone cone. On the right, we show both model’s
predictions for a validation input.

x ∈ Rn

y ∈ Rm n = m

Signal Denoising: Here, we fit the parameters in a quadratic
MRF (see Section III-C) for a signal denoising problem. We
consider a denoising problem in which each input is a
noise-corrupted observation of an output , where .
The goal is to reconstruct the original signal y, given the
noise-corrupted observation. We model the conditional
density of y given x as

p(y | x;θ) ∝ exp
(
−
(
∥M(x− y)∥22+λ∥Dy∥22

))
θ = (M ∈ Rn×n,λ ∈ R++)

ϕ(x;θ) = argmaxy log p(y | x;θ)

where is the parameter and D is the
first-order difference matrix. The MAP estimate of y given x
is , and the corresponding
convex optimization model has the energy function

E(x,y;θ) = ∥M(x− y)∥22+λ∥Dy∥22.
The first term says that x should be close to y, as measured

by the squared quadratic M-norm, while the second term says
that the entries of y should vary smoothly. When M = I, this
model is equivalent to least-squares denoising with Laplacian
regularization. We note that this convex optimization model
has the analytical solution

ϕ(x;θ) = (MT M+λDT D)−1MT Mx.

n = 100 m = 100 N = 500We use , , and training pairs. Each
output y is generated by sampling a different scale factor a

[1,3]

[0,2πa]

Σ

from a uniform distribution over the interval , and then
evaluating the cosine function at 100 linearly spaced points in
the interval . The outputs are corrupted by Gaussian
noise to produce the inputs. We generate a covariance matrix

 according to

Σ = PT P, P ∼ N(0,0.01I)
and then generate the components of each input x

v ∼ N(0,Σ), x = y+ v.

λ

We generate 100 validation points in the same way. As a
baseline, we use least-squares denoising with Laplacian
regularization, sweeping to find the value which minimizes
the error on the training set. The least-squares reconstruction
achieves a validation loss of 0.090; after learning, the convex
optimization model achieves a validation loss of 0.014. Fig. 2
compares a prediction of the convex optimization model with
least squares and the true output, for a held-out input-output
pair.

B ∈ R+
p ∈ Rm

+ y ∈ Rm
+

Resource Allocation: We consider an instance of the
resource allocation problem with prices, as described in
Section IV, and use the separable exponential utility function.
The input x consists of the budget and the prices

, and the output is the resource allocation. Our
convex optimization model has the form

ϕ(x;θ) = argminy

m∑
i=1

exp(−θiyi/pi)/θi

s.t. y ≥ 0, 1T y ≤ B.

Θ = Rm
+ m = 10Here the feasible parameter set is . We take ,

and sample 100 training and 50 validation inputs and the true
parameter according to

5 10 15 20
Iteration

0

2

4

6

V
al

id
at

io
n

lo
ss

LR
COM
true

0 2 4 6 8
i

0

2

4

ϕ(
x;

 θ
)

LR
COM
true

Fig. 1. Monotonic output regression: linear regression (LR), convex optimization model (COM), true model (true). Left: validation loss. Right: predictions for
a held-out input.

0 20 40 60 80 100
i

−2

0

2

ŷ i

input
LS
COM
true

Fig. 2. Signal denoising. Predictions for a held-out input; least squares (LS), convex optimization model (COM), and true output (true).

AGRAWAL et al.: LEARNING CONVEX OPTIMIZATION MODELS 1361

B ∼ U[0,1], pi ∼ U[0,1], θtrue
i ∼ U[0,1]

U[a,b]
[a,b]

where denotes the uniform distribution over the
interval . The outputs were generated according to

y = B
ϕ(B, p;θtrue)◦ z

1T (ϕ(B, p;θtrue)◦ z) , zi ∼ U[0.5,1.5]

◦where denotes elementwise multiplication. In other words,
we evaluate the true convex optimization model, multiply
each output by a random number between 0.5 and 1.5, and re-
scale the allocation so it sums to the budget B. We compare
the convex optimization to logistic regression using the prices
as features and the (normalized) allocation as the output. In
Fig. 3 we show results for these two methods. On the left, we
show the validation loss versus iteration for the convex
optimization model, with horizontal lines for the validation
loss of the logistic regression baseline and the true model. On
the right, we show the learned and true utility function
parameters, and observe that the learned parameters are quite
close to the true parameters.

n = 10 m = 4 Y = {y ∈ Rm | ∥y∥∞ ≤ 0.5}
T = 5

Constrained MPC: We fit a convex optimization model for
an instance of the MPC problem described in Section V, with

 states, controls with ,
and a horizon of . Our convex optimization model has
the form

ϕ(x;θ) = argmin
T−1∑
t=0

θT x2
t + ∥yt∥22

s.t. xt+1 = Axt +Byt

∥yt∥∞ ≤ 0.5
x0 = x (6)

x0, . . . , xT ∈ Rn

y0, . . . ,yT−1 ∈ Rm (xt)2

ϕ(x;θ) y0
θ ∈ Rn

+

where the variables are the states and the
controls , the square is meant
elementwise, and is the optimal value of . The
parameter parametrizes the stage cost, and the
dynamics matrices A and B are known numerical constants.

θtrue ∈ Rn
+

ϕtrue

θtrue

x0 ∼ N(0, I)

We generate a true weight with entries set to the
absolute value of samples from a standard normal distribution.
The dataset is generated by rolling out an MPC policy of
the form (6), with parameter . The policy is simulated
from an initial state . The outputs are noise-
corrupted controls, generated according to

ui = ϕtrue(xi), zi ∼ N(0,0.1I), yi = ΠY(ui+ zi)

νi−1 ∼ N(0, I), xi = Axi−1+Bui−1+ νi−1

i = 1, . . . ,1000for . We generate 1000 validation points in the
same way.

We use the mean-squared loss for the loss function L, and
train for 20 iterations. As a baseline, we compare against a
two-layer feedforward ReLU network with hidden layer
dimension n, and with output clamped to have absolute value
no greater than 0.5. The results are displayed in Fig. 4. The
ReLU network achieves a validation loss of 0.071. The trained
convex optimization model achieves a validation loss of
0.066, which is close to the validation loss of the underlying
model. Additionally, the convex optimization model nearly
recovers the true weights.

References

 A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” in Proc. 33rd Conf.
Neural Information Processing Systems, Vancouver, Canada, 2019, pp.

[1]

0 5 10 15 20 25
Iteration

0

0.2

0.4

0.6

V
al

id
at

io
n

lo
ss

LR
COM
true

0 2 4 6 8
i

0.2

0.4

0.6

0.8

1.0

θ i

learned
true

Fig. 3. Resource allocation. Left: validation loss versus iteration for logistic regression and our convex optimization model. Right: learned and true
parameters.

1 5 10 15 20
Iteration

0.066

0.068

0.070

0.072

V
al

id
at

io
n

lo
ss

NN
COM
true

0 2 4 6 8
i

0.5

1.0

1.5

2.0

θ i

learned
true

Fig. 4. Constrained MPC. Left: validation loss for a neural network (NN), convex optimization model (COM), and true model (true). Right: learned and true
parameters.

 1362 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021

9558–9570.

 A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. Moursi,
“Differentiating through a cone program,” J. Appl. Numer. Optim.,
vol. 1, no. 2, pp. 107–115, Aug. 2019.

[2]

 B. Amos, “Differentiable optimization-based modeling for machine
learning,” Ph.D. dissertation, Carnegie Mellon Univ., Pittsburgh, USA,
2019.

[3]

 E. Busseti, W. M. Moursi, and S. Boyd, “Solution refinement at regular
points of conic problems,” Comput. Optim. Appl., vol. 74, no. 3,
pp. 627–643, Aug. 2019.

[4]

 S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, USA:
Cambridge University Press, 2004.

[5]

 G. BakIr, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V.
N. V. Vishwanathan, Predicting Structured Data. Cambridge, USA:
MIT Press, 2007.

[6]

 Y. LeCun, S. Chopra, R. Hadsell, M. A. Ranzato, and F. J. Huang, “A
tutorial on energy-based learning,” in Predicting Structured Data, G.
Bakir, T. Hofman, B. Scholkopf, A. Smola, and B. Taskar, Eds.
Cambridge, USA: MIT Press, 2006.

[7]

 B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning
structured prediction models: A large margin approach,” in Proc. 22nd
Int. Conf. Machine Learning, Bonn, Germany, 2005, pp. 896–903.

[8]

 B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,”
in Proc. 16th Int. Conf. Neural Information Processing Systems,
Vancouver and Whistler, British Columbia, Canada, 2004, pp. 25–32.

[9]

 I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
margin methods for structured and interdependent output variables,” J.
Mach. Learn. Res., vol. 6, pp. 1453–1484, Dec. 2005.

[10]

 S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Proc. IEEE
Computer Society Conf. Computer Vision and Pattern Recognition, San
Diego, USA, 2005, pp. 539–546.

[11]

 D. Belanger and A. McCallum, “Structured prediction energy
networks,” in Proc. 33rd Int. Conf. Machine Learning, New York,
USA, 2016, pp. 983–992.

[12]

 D. Belanger, B. S. Yang, and A. McCallum, “End-to-end learning for
structured prediction energy networks,” in Proc. 34th Int. Conf.
Machine Learning, Sydney, Australia, 2017, pp. 429–439.

[13]

 B. Amos, L. Xu, and J. Z. Kolter, “Input convex neural networks,” in
Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp.
146–155.

[14]

 J. Peng, L. F. Bo, and J. B. Xu, “Conditional neural fields,” in Proc.
22nd Int. Conf. Neural Information Processing Systems, Vancouver,
Canada, 2009, pp. 1419–1427.

[15]

 S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Z. Su, D. L.
Du, C. Huang, and P. H. S. Torr, “Conditional random fields as
recurrent neural networks,” in Proc. IEEE Int. Conf. Computer Vision,
Santiago, Chile, 2015, pp. 1529–1537.

[16]

 L. C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun, “Learning
deep structured models,” in Proc. 32nd Int. Conf. Machine Learning,
Lille, France, 2015, pp. 1785–1794.

[17]

 Z. L. Geng, D. Johnson, and R. Fedkiw, “Coercing machine learning to
output physically accurate results,” J. Comput. Phys., vol. 406, Article
No. 109099, Apr. 2020.

[18]

 R. K. Ahuja and J. B. Orlin, “Inverse optimization,” Oper. Res., vol. 49,
no. 5, pp. 771–783, Oct. 2001.

[19]

 C. Heuberger, “Inverse combinatorial optimization: A survey on
problems, methods, and results,” J. Comb. Optim., vol. 8, no. 3,
pp. 329–361, Sept. 2004.

[20]

 V. Chatalbashev, “Inverse convex optimization,” M.S. thesis, Stanford[21]

Univ., Stanford, USA, 2005.

 A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective
function,” in Proc. IEEE Int. Symp. Intelligent Control, Denver, USA,
2011, pp. 613–619.

[22]

 B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a
layer in neural networks,” in Proc. 34th Int. Conf. Machine Learning,
Sydney, Australia, 2017, pp. 136–145.

[23]

 A. V. Fiacco and G. P. McCormick, Nonlinear Programming—Sequ-
ential Unconstrained Minimization Techniques. New York, USA: John
Wiley & Sons Ltd, 1990.

[24]

 A. V. Fiacco, “Sensitivity analysis for nonlinear programming using
penalty methods,” Mathem. Program., vol. 10, no. 1, pp. 287–311, Dec.
1976.

[25]

 B. Amos, I. D. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter,
“Differentiable MPC for end-to-end planning and control,” in Proc.
32nd Int. Conf. Neural Information Processing Systems, Montreal,
Canada, 2018, pp. 8299–8310.

[26]

 F. de A. Belbute-Peres, K. Smith, K. R. Allen, J. B. Tenenbaum, and J.
Z. Kolter, “End-to-end differentiable physics for learning and control,”
in Proc. 32nd Conf. Neural Information Processing Systems, Montreal,
Canada, 2018, pp. 7178–7189.

[27]

 S. T. Barratt and S. P. Boyd, “Fitting a Kalman smoother to data,” in
Proc. American Control Conf., Denver, USA, 2020.

[28]

 A. Agrawal, S. Barratt, S. Boyd, and B. Stellato, “Learning convex
optimization control policies,” in Proc. 2nd Annu. Conf. Learning for
Dynamics and Control, 2020.

[29]

 C. K. Ling, F. Fang, and J. Z. Kolter, “What game are we playing? end-
to-end learning in normal and extensive form games,” in Proc. 27th Int.
Joint Conf. Artificial Intelligence, Stockholm, Sweden, 2018.

[30]

 C. K. Ling, F. Fang, and J. Z. Kolter, “Large scale learning of agent
rationality in two-player zero-sum games,” in Proc. AAAI Conf.
Artificial Intelligence, Palo Alto, USA, 2019, pp. 6104–6111.

[31]

 Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J. P. Vert, and F. Bach,
“Learning with differentiable perturbed optimizers,” arXiv preprint
arXiv: 2002.08676, Jun. 2020.

[32]

 S. Barratt, G. Angeris, and S. Boyd, “Automatic repair of convex
optimization problems,” Optim. Eng., vol. 22, pp. 247–259, 2021.

[33]

 B. Amos and D. Yarats, “The differentiable cross-entropy method,”
arXiv preprint arXiv: 1909.12830, Aug. 2020.

[34]

 S. Barratt and S. Boyd, “Least squares auto-tuning,” Eng. Optim.,
vol. 53, no. 5, pp. 789–810, May 2021.

[35]

 S. Barratt and R. Sharma, “Optimizing for generalization in machine
learning with cross-validation gradients,” arXiv preprint arXiv:
1805.07072, May 2018.

[36]

 S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, “Unrolled
optimization with deep priors,” arXiv preprint arXiv: 1705.08041, Dec.
2018.

[37]

 J. Domke, “Generic methods for optimization-based modeling,” in
Proc. 15th Int. Conf. Artificial Intelligence and Statistics, La Palma,
Canary Islands, 2012, pp. 318–326.

[38]

 C. Finn, “Learning to learn with gradients,” Univ. California, Berkeley,
USA, Tech. Rep. No. UCB/EECS-2018–105, 2018.

[39]

 D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based
hyperparameter optimization through reversible learning,” in Proc.
32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 2113–2122.

[40]

 A. Agrawal and S. Boyd, “Differentiating through log-log convex
programs,” arXiv preprint arXiv: 2004.12553, May 2020.

[41]

 J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of
hyperparameters by implicit differentiation,” arXiv preprint arXiv:
1911.02590, Nov. 2019.

[42]

AGRAWAL et al.: LEARNING CONVEX OPTIMIZATION MODELS 1363

http://dx.doi.org/10.1007/s10589-019-00122-9
http://dx.doi.org/10.1016/j.jcp.2019.109099
http://dx.doi.org/10.1287/opre.49.5.771.10607
http://dx.doi.org/10.1023/B:JOCO.0000038914.26975.9b
http://dx.doi.org/10.1007/BF01580677
http://dx.doi.org/10.1007/s11081-020-09508-9
http://dx.doi.org/10.1080/0305215X.2020.1754406
http://dx.doi.org/10.1007/s10589-019-00122-9
http://dx.doi.org/10.1016/j.jcp.2019.109099
http://dx.doi.org/10.1287/opre.49.5.771.10607
http://dx.doi.org/10.1023/B:JOCO.0000038914.26975.9b
http://dx.doi.org/10.1007/BF01580677
http://dx.doi.org/10.1007/s11081-020-09508-9
http://dx.doi.org/10.1080/0305215X.2020.1754406

 N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2,
pp. 159–195, Jun. 2001.

[43]

 J. Močkus, “On Bayesian methods for seeking the extremum,” in Proc.
IFIP Technical Conf. Optimization Techniques, Novosibirsk, Russia,
1974, pp. 400–404.

[44]

 F. J. Solis and R. J. B. Wets, “Minimization by random search
techniques,” Math. Oper. Res., vol. 6, no. 1, pp. 19–30, Feb. 1981.

[45]

 A. Beck and M. Teboulle, “Gradient-based algorithms with applications
to signal-recovery,” in Convex Optimization in Signal Processing and
Communications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge,
USA: Cambridge University Press, 2009, pp. 42–88.

[46]

 L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, Y. Lechevallier and G. Saporta, Eds.
Heidelberg: Physica-Verlag, 2010, pp. 177–186.

[47]

 J. Nocedal and S. J. Wright, Numerical Optimization. New York, USA:
Springer, 2006.

[48]

 C. M. Bishop, Pattern Recognition and Machine Learning. New York,
USA: Springer, 2006.

[49]

 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, USA: MIT Press, 2016.

[50]

 R. E. Barlow and H. D. Brunk, “The isotonic regression problem and its
dual,” J. Am. Stat. Assoc., vol. 41, no. 5, pp. 140–147, Mar. 1972.

[51]

 M. J. Best and N. Chakravarti, “Active set algorithms for isotonic
regression; A unifying framework,” Math. Program., vol. 47, no. 1–3,
pp. 425–439, May 1990.

[52]

 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. 2nd ed. Tokyo,
Japan: Springer Science & Business Media, 2009.

[53]

ℓ1 S. J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “ trend filtering”
SIAM Rev., vol. 51, no. 2, pp. 339–360, May 2009.

[54]

 D. Bertsekas, Dynamic Programming and Optimal Control, Vol. I. 4th
ed. Belmont, USA: Athena Scientific, 2017.

[55]

Akshay Agrawal is a Ph.D. candidate at Stanford
University, USA, advised by Professor Stephen
Boyd. His research interests are in applications of
optimization and machine learning. He received the
B.S. and M.S. in computer science from Stanford
University in 2016 and 2017, respectivelly. Akshay
is the developer of PyMDE, a library for computing
embeddings of large datasets, and a core developer of
CVXPY, a domain-specific language for convex
optimization used by many universities and

companies.

Shane Barratt is a Ph.D. candidate in the
Department of Electrical Engineering at Stanford
University. His research focuses on convex
optimization, and in particular its applications to
machine learning and control. He received the M.S.
degree in electrical engineering from Stanford
University in 2019, and the B.S. degree in electrical
engineering and computer science from the
University of California, USA, in 2017.

Stephen Boyd (F’99) is the Samsung Professor of
engineering, and Professor of electrical engineering
in the Information Systems Laboratory at Stanford
University, with courtesy appointments in computer
science and management science and engineering.
He received the A.B. degree in mathematics from
Harvard University, USA, in 1980, and the Ph.D. in
electrical engineering and computer science from the
University of California, USA, in 1985, and then
joined the faculty at Stanford. His current research

interests include convex optimization applications in control, signal
processing, machine learning, finance, and circuit design.

 1364 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021

http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1287/moor.6.1.19
http://dx.doi.org/10.1007/BF01580873
http://dx.doi.org/10.1137/070690274

	I Introduction
	A Convex Optimization Models
	B Related Work

	II Learning Convex Optimization Models
	A Learning Problem
	B A Gradient-Based Learning Method

	III MAP Models
	A Regression
	B Classification
	C Graphical Models

	IV Utility Maximization Models
	V Stochastic Control Agent Models
	VI Numerical Experiments

