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   Abstract—This  work  presents  a  novel  approach  combining
radial basis function (RBF) interpolation with Galerkin projection
to  efficiently  solve  general  optimal  control  problems.  The goal  is
to develop a highly flexible solution to optimal control problems,
especially  nonsmooth  problems  involving  discontinuities,  while
accounting  for  trajectory  accuracy  and  computational  efficiency
simultaneously.  The  proposed  solution,  called  the  RBF-Galerkin
method,  offers  a  highly  flexible  framework  for  direct
transcription  by  using  any  interpolant  functions  from the  broad
class of  global RBFs and any arbitrary discretization points that
do  not  necessarily  need  to  be  on  a  mesh  of  points.  The  RBF-
Galerkin costate mapping theorem is developed that describes an
exact  equivalency  between  the  Karush–Kuhn–Tucker  (KKT)
conditions of the nonlinear programming problem resulted from
the  RBF-Galerkin  method  and  the  discretized  form  of  the  first-
order necessary conditions of the optimal control problem, if a set
of discrete conditions holds. The efficacy of the proposed method
along  with  the  accuracy  of  the  RBF-Galerkin  costate  mapping
theorem  is  confirmed  against  an  analytical  solution  for  a  bang-
bang  optimal  control  problem.  In  addition,  the  proposed
approach  is  compared  against  both  local  and  global  polynomial
methods  for  a  robot  motion  planning  problem  to  verify  its
accuracy and computational efficiency.
    Index Terms—Costate  estimation,  direct  trajectory  optimization,
Galerkin projection, numerical optimal control,  radial basis function
interpolation.
  

I.  Introduction

D IRECT methods are extensively used for solving optimal
control  problems,  mainly  due  to  their  ability  to  handle

path constraints, robustness to initial guess of parameters, and
greater  radii  of  convergence  compared  to  indirect  methods
[1]–[3].  Direct  transcription  is  based on approximating states

and/or  controls  with  a  specific  function  with  unknown
coefficients and discretizing the optimal control problem with
a set of proper points (nodes) to transcribe it into a nonlinear
programming (NLP) problem. The resulting NLP can then be
efficiently  solved  by  NLP  solvers  available.  Many  direct
methods  are  collocation-based  approaches  using  either  local
or global polynomials depending on the type of function used
in  the  approximation.  Runge-Kutta  methods  [4],  [5]  and  B-
spline  approaches  [6],  [7]  are  examples  of  local  collocation
methods  that  leverage  low-degree  local  polynomials  for  the
approximation  of  states  and  controls.  The  main  drawback  of
these  methods  is  their  algebraic  convergence  rate,  so  their
solution  is  not  usually  as  accurate  as  the  solution  of  global
polynomial methods [3].

Pseudospectral  (PS)  methods  [8]–[14],  on  the  other  hand,
use a high-degree global polynomial for the approximation of
states  and  controls  and  a  set  of  orthogonal  nodes  associated
with the family of the polynomial for the discretization of the
optimal  control  problem.  Due  to  their  spectral  (exponential)
accuracy and ease of  implementation,  PS methods have been
widely  used  for  direct  trajectory  optimization  in  recent  years
[1],  [3].  However,  their  spectral  accuracy  only  holds  for
sufficiently  smooth  functions.  If  the  problem  formulation  or
the optimal solution contains discontinuities (nonsmoothness),
PS  methods  will  converge  poorly  even  with  a  high-degree
polynomial  [2].  Also,  the  use  of  a  PS  method  is  limited  to  a
specific  mesh  of  points;  For  instance,  the  Gauss  PS  [11]
method can only use Legendre-Gauss nodes, or the Legendre
PS  method  [12]  is  tied  with  the  Legendre-Gauss-Lobatto
nodes for the problem discretization. This limitation becomes
problematic  when  the  optimal  solution  has  discontinuities
requiring denser nodes around them to accurately capture the
switching times of the solution, as will  be later demonstrated
in Section V. Variations of PS methods were proposed in the
literature [15]–[18] to overcome this issue, but such modified
PS  schemes  impose  new  limitations  to  the  mathematical
formulation of the problem, are usually sensitive to the initial
guess  of  parameters,  and  cannot  typically  find  an  accurate
solution to non-sequential optimal control problems [15], [19].
Thus, a significant gap exists in the literature with respect to a
computationally  efficient  numerical  approach  that  can  find
high accuracy solution to nonsmooth optimal control problems
without  applying  further  limitations  to  the  problem  and  this
work intends to address it.

This  paper  presents  a  novel  optimal  control  approach  that
employs  global  radial  basis  functions  (RBFs)  for  the
approximation  of  states  and  controls  and  arbitrarily  selected
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points  for  the  problem discretization.  The  proposed  solution,
called  the  RBF-Galerkin,  combines  the  RBF  interpolation
with Galerkin projection for direct trajectory optimization and
costate  estimation.  Since  the  global  RBFs  comprise  a  broad
class  of  interpolating  functions,  including  Gaussian  (GA)
RBFs, multiquadrics (MQ), and inverse multiquadrics (IMQ),
the proposed method offers a great flexibility in terms of basis
functions (interpolants) for parameterizing an optimal control
problem.  In  addition,  unlike  a  PS  method  tied  with  specific
type  of  points,  the  proposed  method  leverages  a  completely
arbitrary discretization scheme—which do not even need to be
on a mesh of points— providing a highly efficient framework
for  solving  nonsmooth  optimal  control  problems  such  as  a
bang-bang  problem  [16],  as  will  be  later  demonstrated  in
Section  V.  It  should  be  noted  that  there  have  been  recent
attempts  at  leveraging  global  RBFs  as  the  interpolants  in
direct  transcription  methods  [20]–[25],  but  the  use  of  RBFs
was  limited  to  specific  type  of  problems  (e.g.,  quadratic
problems  [20])  and  specific  discretization  points  (e.g.,
Legendre-Gauss-Lobatto  points  [21]–[25]).  In  contrast,  the
proposed  method  leverages  a  completely  arbitrary
discretization scheme and can be used in solving any general
optimal  control  problems.  In  addition,  unlike  many  direct
methods,  including  previous  RBF-based  approaches
[20]–[25],  the  RBF-Galerkin  method  possesses  proof  of
optimality  for  solving  optimal  control  problems.  It  will  be
shown through the RBF-Galerkin costate mapping theorem in
Section IV that there will be an exact equivalency between the
Karush-Kuhn-Tucker  (KKT)  multipliers  of  the  NLP  resulted
from  the  RBF-Galerkin  method  and  the  discretized  form  of
the costates of the original optimal control problem, if a set of
discrete conditions (closure conditions) holds.

The  major  contribution  of  this  work  is  to  present  a  highly
flexible  numerical  solution  to  general  optimal  control
problems,  especially  the  nonsmooth  problems  whose
formulation  or  optimal  solution  involves  discontinuities  that
cannot  be  accurately  estimated  by  classical  optimal  control
methods.  Another  contribution  is  the  proof  of  optimality  via
RBF-Galerkin costate mapping theorem guaranteeing that the
solution of  the proposed method is  equivalent  to the solution
of  the  original  optimal  control  problem.  To  the  best  of  the
authors’ knowledge, this is the first time that a highly flexible,
computationally  efficient, accurate solution  with  the proof  of
optimality is presented for general optimal control problems.

The  rest  of  the  paper  is  organized  as  follows:  A  general
optimal control problem is formulated in Section II. The RBF-
Galerkin  solution  is  described  in  Section  III.  The  costate
estimation  along  with  the  proof  of  optimality  is  presented  in
Section  IV.  Numerical  examples  are  provided  in  Section  V,
and finally, the conclusions are drawn in Section VI.  

II.  Optimal Control Problem Formulation

x(τ) ∈ Rn u(τ) ∈ Rm

t0 t f

The  general  optimal  control  problem  is  defined  in  Bolza
form [3] as to determine the state , control ,
initial  time ,  and  final  time  that  minimize  the  cost
functional
 

J = Γ
(
x (−1) , t0, x (1) , t f

)
+

t f − t0
2

w −1

1
L (x (τ) , u (τ))dτ (1)

subject to state dynamics,
 

ẋ(τ) =
t f − t0

2
f (x(τ),u(τ)) (2)

boundary conditions,
 

γ(x(−1), t0, x(1), t f ) = 0 ∈ Rγ (3)
and mixed state-control path constraints,
 

q (x(τ),u(τ)) ≤ 0 ∈ Rq. (4)

τ ∈ [−1,1] t ∈ [t0, t f ]

It  is  assumed  that  the  optimal  solution  to  this  problem
exists.  Please  note  that  (1)–(4)  can  be  transformed  from  the
time interval  to the time interval  using an
affine transformation
 

t =
(t f − t0)

2
τ+

t f + t0
2

(5)

t0 t fwhere  and  are the initial and the final optimization time,
respectively.  

III.  RBF-Galerkin Method For Direct Trajectory
Optimization

A  direct  method  combining  global  RBF  parameterization,
Galerkin projection, and arbitrary discretization is proposed to
discretize  the  optimal  control  problem  of  (1)–(4).  The
discretized  problem  can  be  solved  with  the  NLP  solvers
available.

RBF Definition: RBF is a real-valued function whose value
depends on the distance from a fixed point, called center [26]
 

ρ(y, c) = ρ (∥y− c∥) (6)
ρ y c ∥ ∥where , , , and  denote the RBF, function variable, RBF

center,  and  the  Euclidean  norm,  respectively.  Any  function
satisfying (6)  is  called  an RBF function,  which can be  either
infinitely  smooth  such  as  GA,  MQ,  and  IMQ  RBFs,  or
piecewise  smooth  such  as  Polyharmonic  Splines.  Infinitely
smooth RBFs are also called global RBFs.

ρ
N x(τ)

u(τ)

In  the  proposed  method,  global  RBFs  are  leveraged  as  the
basis  functions  for  parameterizing  the  optimal  control
problem.  For  brevity  and  without  loss  of  generality,  it  is
assumed that the same type of RBFs, , and the same number
of RBFs, , are used for the approximation of states  and
controls  as
 

x(τ) ≈ xR(τ) =
N∑

i=1

αi ρ (∥τ−τi∥) =
N∑

i=1

αi ρi(τ) (7)

 

u(τ) ≈ uR(τ) =
N∑

i=1

βi ρ (∥τ−τi∥) =
N∑

i=1

βi ρi(τ) (8)

xR(τ) uR(τ) x(τ)
u(τ) ρi(τ) αi βi

xR(τ) uR(τ)

where  and  denote the RBF approximation of 
and , respectively. Also,  is the RBF and  and  are
RBF weights for  and , respectively.

{ρ1(τ),ρ2(τ), . . . ,ρN(τ)}

τ

A set of global RBFs  forms a space
of  continuous,  linearly  independent  basis  functions.  Taking
derivative of (7) with respect to  yields
 

ẋ(τ) ≈ ẋR(τ) =
N∑

i=1

αi ρ̇ (∥τ−τi∥) =
N∑

i=1

αi ρ̇i(τ). (9)

ψ(τ)
By substituting (9)  in  (2),  the defect  constraints (residuals)

 are defined as
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ψ(τ) =
t f − t0

2
f (αi,βi,ρi(τ))−

N∑
i=1

αiρ̇i(τ) (10)

i = 1, . . . ,N.
ψ(τ)

{ρ1(τ),ρ2(τ), . . . ,ρN(τ)}

for  The Galerkin method [27] is applied to (10) in
which the projection of defect constraints  on the space of
global RBFs  is set to zero. This will be
obtained by setting the projection of defect constraints on each
element of the RBF basis set equal to zero, i.e.,
 w 1

−1
ψ(τ)ρ j(τ) dτ = 0 for j = 1,2, . . . ,N. (11)

N→∞ xR

ψ
xR

x

According  to  [27],  it  implies  that  the  defect  constraints
converge  to  zero  in  the  mean  (in  the  limit ).  If 
satisfies  the  boundary  conditions  of  (3)  and  converges  to
zero  in  the  mean,  the  approximated  solution  converges  to
the exact solution  in the mean, i.e.,
 

lim
N→∞

∥∥∥xR− x
∥∥∥

2 = 0. (12)

L2
In  other  words,  by  applying  the  Galerkin  projection,  the

defect  constraints  are  being  minimized  in -norm  sense.
Now, substituting (10) in (11) and approximating the integral
of (11) with a proper quadrature yield
 

N∑
k=1

wk

 t f − t0
2

f (αi, βi, ρi(τk))−
N∑

i=1

αiρ̇i(τk)

ρ j(τk) = 0 (13)

i = 1, . . . ,N j = 1, . . . ,N wk k = 1,2, . . . ,Nfor  and ,  where , ,  are
quadrature  weights  corresponding  to  the  type  of  quadrature
points used for approximating the integral.

p(τ)
p(τ)

A  slack  variable  function  is  defined  to  convert  the
inequality  path constraints  of  (4)  to  equality  constraints. 
can be approximated using N global RBFs as
 

p(τ) ≈ pR(τ) =
N∑

r=1

κr ρ (∥τ−τr∥) =
N∑

r=1

κr ρr(τ) (14)

pR(τ) p(τ) κr
pR(τ)

Rq

where  is  the RBF approximation of  and  denote
the  RBF  weights  for  the .  The  residual  of  path
constraints, , is calculated as
 

Rq = q (αi, βi, ρi(τ))+ pR(τ) ◦ pR(τ)

= q (αi, βi, ρi(τ))+
N∑

r=1

κr ρr(τ) ◦
N∑

l=1

κl ρl(τ) (15)

i = 1, . . .N, ◦

Rq

for  where  is  the  entry-wise  product  of  two
vectors. Similar to (11), a Galerkin projection is applied to the
residual  to  set  it  orthogonal  to  every member  of  the  RBF
basis set and can be shown in the discretized form as
 

N∑
k=1

wk

q (αi,βi,ρi(τk))

+

 N∑
r=1

κr ρr(τ)◦
N∑

l=1

κl ρl(τ)


ρ j(τk) = 0 (16)

i = 1, . . . ,N j = 1, . . . ,N wkfor  and ,  where  are  the  same
quadrature  weights  used  in  (13).  By  applying  the  same
numerical quadrature to approximate the running cost L in (1),
the optimal  control  problem of  (1)–(4)  is  transcribed into the
following NLP problem:

A = (α1α2 · · · αN)T
N×n B = (β1β2 · · · βN)T

N×m
K = (κ1,κ2, . . . ,κN)T

N×q t0 t f

Determine , ,
, , and  that minimize the cost

 

J = Γ
(
αi,ρi(−1),ρi(1), t0, t f

)
+

t f − t0
2

N∑
k=1

wk L (αi, βi,ρi(τk) ) (17)

subject to:
 

N∑
k=1

wk

 t f − t0
2

f (αi,βi,ρi(τk))−
N∑

i=1

αiρ̇i(τk)

ρ j(τk) = 0

γ
(
αi,ρi(−1),ρi(1), t0, t f

)
= 0

N∑
k=1

wk

q (αi, βi, ρi(τk))

+

 N∑
r=1

κr ρr(τ) ◦
N∑

l=1

κl ρl(τ)


ρ j(τk) = 0 (18)

i = 1, . . . ,N j = 1,2, . . . ,Nfor  and .  The  discretization  method
is  called  the  RBF-Galerkin  approach  for  solving  optimal
control problems.

The proposed method is flexible in terms of both interpolant
functions  and  discretization  points,  as  it  can  use  any  type  of
global  RBFs  as  the  interpolants  and  any  arbitrary-selected
points as the discretization points. The arbitrary discretization
scheme  is  based  on  the  fact  that  the  RBF  interpolation  is
always  unique  for  global  RBFs,  regardless  of  the  type  and
number of points used in the interpolation [26].  

IV.  Costate Estimation

In  this  Section,  it  will  be  shown  that  the  KKT  optimality
conditions  of  the  NLP problem of  (17)  and  (18),  are  exactly
equivalent to the discretized form of the first-order necessary
conditions of the optimal control problem of (1)–(4), if a set of
conditions will be added to the KKT conditions.  

A.  KKT Optimality Conditions
Lagrangian  or  augmented  cost  of  the  NLP  problem  is

written as
 

J̄a = Γ
(
αi,ρi(−1),ρi(1), t0, t f

)
+

t f − t0
2

N∑
k=1

wkL (αi,βi,ρi(τk))

+

N∑
j=1

ξ̃T
j

N∑
k=1

wk

t f − t0
2

f (αi,βi,ρi(τk))−
N∑

i=1

αiρ̇i(τk)

ρ j(τk)

+ υ̃Tγ
(
αi,ρi(−1),ρi(1), t0, t f

)
+

N∑
j=1

η̃T
j

N∑
k=1

wk

q (αi,βi,ρi(τk))

+

 N∑
r=1

κr ρr(τ) ◦
N∑

l=1

κl ρl(τ)


ρ j(τk) (19)
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i = 1, . . . ,N ξ̃ j υ̃ η̃ j
J̄a

αm, βm, ξ̃m, η̃m, υ̃,κm, t0, t f

xR
1 = xR(−1)

xR
N = xR(1) uR

1 = uR(−1) uR
N = uR(1) fk = f (αi, βi, ρi(τk))

qk = q (αi, βi, ρi(τk)) Lk = L (αi, βi,ρi(τk) )

for , where , ,  are KKT multipliers associated
with  the  NLP  constraints  of  (18).  Differentiating  with
respect to  and setting them equal to
zero  provide  the  KKT  optimality  conditions:  To  save  space
and make it easier to follow, shortened notation ,

, , , ,
,  and  are  used

throughout the paper.
 

∂J̄a

∂αm
=
∂Γ

∂xR
1

ρm(−1)+
∂Γ

∂xR
N

ρm(1)

+
t f − t0

2

N∑
k=1

wk
∂Lk

∂xR ρm(τk)

+

N∑
j=1

ξ̃T
j

N∑
k=1

wk

(
t f − t0

2
∂ fk

∂xR ρm(τk)− ρ̇m(τk)
)
ρ j(τk)

+ υ̃T ∂γ

∂xR
1

ρm(−1)+ υ̃T ∂γ

∂xR
N

ρm(1)

+

N∑
j=1

η̃T
j

N∑
k=1

wk
∂qk

∂xR ρm(τk)ρ j(τk).
(20)

Lemma 1:
 

N∑
j=1

ξ̃T
j

N∑
k=1

wk ρ̇m(τk)ρ j(τk) =
N∑

j=1

ξ̃T
j ρm(1)ρ j(1)

−
N∑

j=1

ξ̃T
j ρm(−1)ρ j(−1)−

N∑
j=1

ξ̃T
j

N∑
k=1

wk ρm(τk) ρ̇ j(τk).

(21)
Proof: Using integration by parts, it can be written that

 w 1

−1
ρ̇m(τ)ρ j(τ)dτ = ρm(1)ρ j(1)−ρm(−1)ρ j(−1)

−
w 1

−1
ρm(τ)ρ̇ j(τ)dτ. (22)

wk k = 1,2, . . . ,N ∑N
j=1 ξ̃

T
j

Approximating  the  integrals  of  (22)  with  a  numerical
quadrature  where , ,  are  the  quadrature
weights  and  multiplying  both  sides  of  (22)  with 
complete the proof. ■

Now,  applying Lemma  1 to  (20)  and  rearranging  the
equations yield
 

∂J̄a

∂αm
=

t f − t0
2

N∑
k=1

wk

 ∂Lk

∂xR +

N∑
j=1

ξ̃T
j ρ j(τk)

∂ fk

∂xR

+
2

t f − t0

N∑
j=1

ξ̃T
j ρ̇ j(τk)+

2
t f − t0

N∑
j=1

η̃T
j ρ j(τk)

∂qk

∂xR

ρm(τk)

+

 ∂Γ∂xR
1

+ υ̃T ∂γ

∂xR
1

+

N∑
j=1

ξ̃T
j ρ j(−1)

 ρm(−1)

+

 ∂Γ∂xR
N

+ υ̃T ∂γ

∂xR
N

−
N∑

j=1

ξ̃T
j ρ j(1)

 ρm(1) = 0.
(23)

Similarly,

 

∂J̄a

∂βm
=

t f − t0
2

N∑
k=1

wk

 ∂Lk

∂uR +

N∑
j=1

ξ̃T
j ρ j(τk)

∂ fk

∂uR

+
2

t f − t0

N∑
j=1

η̃T
j ρ j(τk)

∂qk

∂uR

ρm(τk) = 0 (24)

 

∂J̄a

∂ξ̃m
=

N∑
k=1

wk

 t f − t0
2

f T
k −

N∑
i=1

αT
i ρ̇i(τk)

ρm(τk) = 0

∂J̄a

∂η̃m
=

N∑
k=1

wk

qT
k +

 N∑
r=1

κr
Tρr(τk)◦

N∑
l=1

κl
Tρl(τk)


ρm(τk) = 0

∂J̄a

∂υ̃
= γT

(
αi,ρi(−1),ρi(1), t0, t f

)
= 0

∂J̄a

∂κm
= 2

N∑
k=1

wk

 N∑
r=1

κr ρr(τk) ◦
N∑

j=1

η̃T
j ρ j(τk)

ρm(τk) = 0

∂J̄a

∂t0
=
∂Γ

∂t0
+ υ̃T ∂γ

∂t0
− 1

2

N∑
k=1

wk

Lk +

N∑
j=1

ξ̃T
j ρ j(τk) fk

 = 0

∂J̄a

∂t f
= − ∂Γ
∂t f
− υ̃T ∂γ

∂t f
− 1

2

N∑
k=1

wk

Lk +

N∑
j=1

ξ̃T
j ρ j(τk) fk

 = 0

(25)
m = 1,2, . . . ,Nfor .  Equations  (23)–(25)  are  KKT  optimality

conditions for the NLP problem of (17) and (18).
  

B.   First-Order  Necessary  Conditions  of  the  Optimal  Control
Problem

λ(τ) ∈ Rn µ(τ) ∈ RqAssuming  is  the  costate,  and  is  the
Lagrange  multiplier  associated  with  the  path  constraints,
Lagrangian  of  the  Hamiltonian  (augmented  Hamiltonian)  of
the optimal control problem of (1)–(4) can be written as
 

H̄(x,u,µ,λ) = L(x,u)+λT f (x,u)+µT (q(x,u)+ p◦ p) (26)

H̄ p
τ

where  is  the  augmented  Hamiltonian  and  is  the  slack
variable  function.  Please  note  that  the  notation  has  been
removed  from  (26)  for  simplicity.  The  first-order  necessary
conditions of the optimal control problem are derived as
 

ẋT =
t f − t0

2
f T (x,u) =

t f − t0
2
∂H̄
∂λ

λ̇T =
dλ
dτ
= −

t f − t0
2

(
∂L
∂x
+λT ∂ f
∂x
+µT ∂q

∂x

)
= −

t f − t0
2
∂H̄
∂x

∂L
∂u
+λT ∂ f
∂u
+µT ∂q

∂u
=
∂H̄
∂u
= 0

γT (x(−1), t0, x(1), t f ) = 0

λT (−1) = −∂Γ
∂x

∣∣∣∣∣
τ=−1
−υT ∂γ

∂x

∣∣∣∣∣
τ=−1

 

MIRINEJAD et al.: RBF INTERPOLATION AND GALERKIN PROJECTION FOR DIRECT TRAJECTORY OPTIMIZATION 1383 



λT (1) =
∂Γ

∂x

∣∣∣∣∣
τ=1
+υT ∂γ

∂x

∣∣∣∣∣
τ=1

qT (x,u)+ pT ◦ pT = 0,
∂H̄
∂p
= 2µT ◦ p= 0

H̄(t0) =
∂Γ

∂t0
+υT ∂γ

∂t0
, H̄(t f ) = − ∂Γ

∂t f
−υT ∂γ

∂t f
(27)

υ ∈ Rγ
γ

where  is  the  Lagrange  multiplier  associated  with  the
boundary conditions .  

C.   RBF-Galerkin  Discretized  Form  of  First-Order  Necessary
Conditions

λ(τ) ∈ Rn µ(τ) ∈ Rq

The  first-order  necessary  conditions  of  (27)  are  discretized
using  the  RBF-Galerkin  method.  To  this  end,  the  costates

 and  Lagrange  multipliers  are  approxi-
mated using N global RBFs as
 

λ(τ) ≈ λR(τ) =
N∑

j=1

ξ j ρ
(
∥τ−τ j∥

)
=

N∑
j=1

ξ j ρ j(τ) (28)

 

µ(τ) ≈ µR(τ) =
N∑

j=1

η j ρ
(
∥τ−τ j∥

)
=

N∑
j=1

η j ρ j(τ) (29)

λR(τ) µR(τ) λ(τ)
µ(τ) ξ j η j λR(τ)

µR(τ)

where  and  are  the  RBF  approximations  of 
and .  Also,  and  are  the RBF weights  for  and

, respectively. By using (7), (8), and (14) along with (28)
and  (29),  the  first-order  necessary  conditions  of  (27)  are
parameterized  with  the  global  RBFs.  Then,  applying  the
Galerkin  projection  to  the  residuals  and  approximating  the
Galerkin  integral  with  a  numerical  quadrature discretize the
first-order necessary conditions as
 

N∑
k=1

wk

 t f − t0
2

f T
k −

N∑
i=1

αT
i ρ̇i(τk)

ρm(τk) = 0 (30)

 

t f − t0
2

N∑
k=1

wk

 ∂Lk

∂xR +

N∑
j=1

ξT
j ρ j(τk)

∂ fk

∂xR

+

N∑
j=1

ηT
j ρ j(τk)

∂qk

∂xR +
2

t f − t0

N∑
j=1

ξT
j ρ̇ j(τk)

ρm(τk) = 0

(31)
 

N∑
k=1

wk

 ∂Lk

∂uR +

N∑
j=1

ξT
j ρ j(τk)

∂ fk

∂uR

+

N∑
j=1

µT
j ρ j(τk)

∂qk

∂uR

ρm(τk) = 0 (32)

 

γT
(
αi,ρi(−1),ρi(1), t0, t f

)
= 0

∂Γ

∂xR
1

+υT ∂γ

∂xR
1

= −
N∑

j=1

ξT
j ρ j(−1)

∂Γ

∂xR
N

+υT ∂γ

∂xR
N

=

N∑
j=1

ξT
j ρ j(1)

 

N∑
k=1

wk

qT
k +

 N∑
r=1

κr
Tρr(τk)◦

N∑
l=1

κl
Tρl(τk)


ρm(τk) = 0

2
N∑

k=1

wk

 N∑
j=1

ηT
j ρ j(τk) ◦

N∑
r=1

κr ρr(τk)

ρm(τk) = 0

H̄(t0) =
∂Γ

∂t0
+υT ∂γ

∂t0
, H̄(t f ) = − ∂Γ

∂t f
−υT ∂γ

∂t f
. (33)

  

D.  Costate Mapping Theorem
So far, two sets of equations were derived corresponding to

two different problems: The KKT optimality conditions of the
RBF-Galerkin  method  shown  by  (23)–(25)  in  Section  A  and
the discretized form of the first-order necessary conditions of
the optimal control problem described by (30)–(33) in Section
B.  It  was shown in the literature  [3],  [9]  that  dualization and
discretization  are  not  commutative  operations,  in  general.  In
fact,  when  a  continuous-time  optimal  control  problem  is
discretized, a fundamental loss of information occurs in either
primal  or  dual  variables.  Similar  to  the  costate  mapping
theorem  previously  shown  in  the  literature  for  PS  methods
[11], [28], [29], the RBF-Galerkin costate mapping theorem is
developed here to restore this loss of information by adding a
set of discrete equations to the problem defined in Section A.

To  provide  an  exact  equivalency  between  the  KKT
optimality  conditions  of  the  NLP  derived  from  the  RBF-
Galerkin  method  and  the  discretized  form  of  the  first-order
necessary conditions  of  the  optimal  control  problem, a  set  of
conditions must be added to (23)–(25). These conditions are
 

∂Γ

∂xR
1

+ υ̃T ∂γ

∂xR
1

= −
N∑

j=1

ξ̃T
j ρ j(−1)

∂Γ

∂xR
N

+ υ̃T ∂γ

∂xR
N

=

N∑
j=1

ξ̃T
j ρ j(1). (34)

Also, comparing (23)–(25) with (30)–(33) implies that
 

H̄(t0) = H̄(t f ) =
1
2

N∑
k=1

wk

Lk +

N∑
j=1

ξ̃T
j ρ j(τk) fk

. (35)

Discrete  conditions  of  (34)  and  (35)  are  known  as closure
conditions in  the  literature  [28],  [29]  and  applied  to  the
costates  and  Hamiltonian  boundaries  to  guarantee  that  first-
order necessary conditions of the NLP (i.e.,  KKT conditions)
are  equivalent  to  the  discretized  form  of  the  first-order
necessary conditions of the optimal control problem. In other
words,  by  adding  (34),  (35)  to  the  KKT  conditions,  the
dualization  and  discretization  are  made  commutative  and
hence  the  solution  of  the  direct  method  is  the  same  as  the
solution of indirect method.

RBF-Galerkin Costate Mapping Theorem: There is an exact
equivalency  between  the  KKT  multipliers  of  NLP  derived
from  the  RBF-Galerkin  method  and  Lagrange  multipliers
(costates)  of  the  optimal  control  problem  discretized  by  the
RBF-Galerkin method.

Lemma 2: The  Lagrange  multipliers  of  the  optimal  control
problem can be estimated from the KKT multipliers of NLP at
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discretization points by the equations
 

ξ j = ξ̃ j, η j =
2

t f − t0
η̃ j, υ = υ̃, j = 1,2, . . . ,N. (36)

Proof: Substitution  of  (36)  in  (31),  (32),  and  (33)  proves
that  (23)–(25)  and  (30)–(33)  are  the  same,  and  hence  the
equivalency condition holds. ■  

V.  Numerical Examples

Two  numerical  examples  are  provided  to  demonstrate  the
efficiency of the proposed method. Example 1 is a bang-bang
optimal  control  problem  for  which  an  analytical  solution  is
available.  The  optimal  trajectories  calculated  by  the  RBF-
Galerkin  method  are  evaluated  against  the  exact  solutions.
Also,  the  costates  computed  by  the  RBF-Galerkin  costate
mapping  theorem  are  compared  against  the  exact  costates
from  the  analytical  approach.  Bang-bang  is  a  typical
nonsmooth  optimal  control  problem  in  which  the  optimal
solution  has  a  switching  time  needed  to  be  accurately
estimated.  Therefore,  the  efficacy  of  the  RBF-Galerkin
approach in solving a  nonsmooth optimal  control  problem as
well  as  the  accuracy  of  the  RBF-Galerkin  costate  mapping
theorem will be thoroughly investigated in this Example.

Example 2 is a robot motion planning problem with obstacle
avoidance  in  which  the  optimal  trajectories  from  the  RBF-
Galerkin  method  are  evaluated  against  those  calculated  from
the  two  existing  optimal  control  methods:  DIDO  [30],  a
commercial  optimal  control  software  tool  using Legendre  PS
method  (global  polynomial),  and  OPTRAGEN  [31],  an
academic  optimal  control  software  package  using  B-Spline
approach (local polynomial) for direct trajectory optimization.
Comparison  studies  between  the  proposed  approach  and  the
existing  methods  are  presented  to  demonstrate  the  superior
performance  of  the  RBF-Galerkin  solution  for  a  typical
motion planning problem.  

A.  Example 1
Consider  a  bang-bang  optimal  control  problem  with

quadratic cost as to minimize
 

J =
1
2

w 5

0

(
x2

1(t)+ x2
2(t)

)
dt (37)

subject to:
 

ẋ1(t) = x2(t)

ẋ2(t) = −x1(t)+ x2(t)+u(t)

x1(0) = 0.231, x2(0) = 1.126, |u(t)| ≤ 0.8. (38)
According  to  [16],  the  solution  can  be  calculated  from  an

analytical approach as
 

u∗(t) =

 −0.8 0 ≤ t ≤ 1.275

0.8 1.275 ≤ t ≤ 5.
(39)

This example was thoroughly investigated in [16], in which
the  authors  concluded  that  a  PS  method  in  the  classic  form
cannot  accurately  solve  it  due  to  the  discontinuity  of  the
optimal  control.  For  instance,  it  has  been  shown  that  the
switching time of the solution cannot be accurately estimated
from  the  Chebyshev  PS  method  of  [10]  and  the  numerical

solution  from  the  PS  method  includes  undesired  fluctuations
at the boundaries (see [16] for more details).

On  the  other  hand,  modified  PS  schemes  [15]–[18]  may
provide better  performance than their  classic counterparts  for
solving  nonsmooth  optimal  control  problems.  However,  they
suffer  from serious  constraints  limiting  their  applicability  for
solving such problems. For instance, a modified PS technique
is  more  prone  to  the  initial  guess  of  parameters  (reduced
robustness), imposes higher computational loads, and can only
handle  limited  form  of  state  dynamics  (i.e.,  dynamic
constraints  must  be  converted  to  explicit  or  implicit  integral
form), compared to a classic PS method [15].

[0 5]
[1.2 1.3]

t = 1.275

(≈ 10−6)

In light of the current limitations with the existing methods,
we  investigated  the  efficiency  of  the  RBF-Galerkin  method
for  solving  the  nonsmooth  optimal  control  problem  of  (37)
and (38). To leverage the capability of arbitrary discretization
of  the  proposed method,  a  set  of  pseudorandom points  along
with  the  trapezoidal  quadrature  was  chosen  for  the
discretization. 40 randomly distributed points were selected in
the interval  from which at least five points were located
between .  Increasing  the  density  of  discretization
points  around  the  discontinuity,  i.e., ,  which  is  not
typically  possible  in  other  direct  methods,  enhances  the
performance  of  the  RBF-Galerkin  method  in  accurately
capturing  the  switching  time  of  the  solution.  By
parameterizing the states and control with the IMQ RBFs and
applying  the  aforementioned  discretization  points,  the
problem of (37) and (38) was transcribed into an NLP, which
was solved by SNOPT [32], a sparse NLP solver, with default
feasibility/optimality tolerances .

Fig. 1 shows  the  states  and  control  trajectories  obtained
from  the  RBF-Galerkin  method  for  40  pseudorandomly
distributed  points  along  with  their  exact  solutions.  Also,  the
costates  estimated  from  the  proposed  method  are  illustrated
along  with  the  exact  costates  in Fig. 2.  The  accuracy  of  the
proposed  method  is  clearly  demonstrated  in  graphs  even  for
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Fig. 1.     States  and  control  trajectories  calculated  by  the  RBF-Galerkin
method  for  40  pseudorandomly  distributed  points  along  with  the  exact
solutions.
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(t = 1.275)

≈ 0.003
≈ 0.004

x1(t) x2(t)
2.5×10−6 7.9×10−6

u(t)

2.3×10−6

[1.2 1.3]

those points located near the control discontinuity .
The cost value calculated from the RBF-Galerkin method was
5.663  (error ),  and  the  switching  time  of  the  optimal
control was estimtaed as 1.279 (error ). The maximum
absolute errors of the states  and  (over all 40 random
points) were  and , respectively. Also, the
maximum absolute error of the optimal control  was 0.63.
This occurs during the switching time (maximum error of the
optimal control was  without considering the points
located between ).

λx1 (t) λx2 (t)
6.6×10−5 3.6×10−5

λx1 (t) λx2 (t)
3.4×10−6 3.0×10−6

The maximum absolute  errors  for  costates  and 
(over  40  points)  were  and ,  respectively.
This  numerically  verifies  the  accuracy  of  RBF-Galerkin
costate mapping theorem as in (36). Even higher accuracy can
be achieved by increasing the number of discretization points.
For instance, the maximum absolute errors of  and 
will  be  decreased  to  and  (close  to  the
level  of  feasibility  and  optimality  tolerances  set  in  the  NLP
solver) by increasing the discretization points to 80.  

B.  Example 2

(40,20)
(55,40) (45,65) r = 10

A  robot  motion  planning  problem  with  obstacle  avoidance
in  2-dimensional  space  is  considered.  It  is  desired  to  find  an
optimal  trajectory  for  a  mobile  robot  that  spends  minimum
kinetic energy to navigate through three circular obstacles in a
fixed  time  span  [0  20].  The  obstacles  are  located  at ,

,  and  with  the  radius .  The  horizontal
and vertical speeds of the mobile robot cannot exceed 10. The
optimal control problem is formulated as to minimize the cost
function
 

J =
w 20

0
(ẍ2(t)+ ÿ2(t))dt (40)

subject to the constraints
 

|ẋ(τ)| ≤ 10 , |ẏ(τ)| ≤ 10

0 ≤ x(τ) ≤ 80 , 0 ≤ y(τ) ≤ 80

x(0) = 40 , y(0) = 5

x(20) = 55 , y(20) = 70 (41)
and nonlinear path constraints (obstacles) 

102 ≤ (x(τ)−40)2+ (y(τ)−20)2 ≤ 802

102 ≤ (x(τ)−55)2+ (y(τ)−40)2 ≤ 802

102 ≤ (x(τ)−45)2+ (y(τ)−65)2 ≤ 802. (42)
The  optimal  trajectory  for  the  mobile  robot  was  computed

from  three  different  methods:  The  RBF-Galerkin  approach,
Legendre  PS  method  (DIDO),  and  B-Spline  approach
(OPTRAGEN).  All  three  methods  use  the  same environment
(MATLAB)  along  with  the  same  NLP  solver  (SNOPT).  To
conduct  a  fair  comparison,  Legendre-Gauss-Lobatto  points
–type  of  points  used  in  the  Legendre  PS  method – were
incorporated in the other  two methods,  as  well.  The cost  and
computation time of each method are demonstrated in Table I
for different number of discretization points, i.e., N = [10, 20,
30].
 

TABLE I 

Cost and Computation Time of RBF-Galerkin, Legendre PS,
and B-Spline Methods for Robot Motion Planning Example

for N = [10, 20, 30]

Method N Cost Time (s)

RBF-Galerkin 10 255.62 0.89

Legendre PS 10 278.43 2.50

B-Spline 10 260.67 0.98

RBF-Galerkin 20 255.40 1.02

Legendre PS 20 260.70 18.32

B-Spline 20 256.44 1.50

RBF-Galerkin 30 254.32 1.27

Legendre PS 30 254.37 44.63

B-Spline 30 254.35 1.87

 
 

By  increasing  the  number  of  discretization  points,  the
accuracy  of  trajectories  improves  at  the  expense  of  higher
computation  time.  Among  the  three  methods,  the  RBF-
Galerkin had the least cost value and the shortest computation
time for each value of N. For instance, the cost function from
the RBF-Galerkin approach for N = 10 had about 2% and 8%
less value (more accurate) than the B-Spline and Legendre PS
method, respectively. Also, the computation time of the RBF-
Galerkin  approach  was  9% faster  than  B-Spline  and  about
64% faster than Legendre PS method for the same number of
discretization  points.  The  computational  efficiency  of  the
RBF-Galerkin  method  is  more  profound  for N =  20  and N =
30.  This  comparison  studies  clearly  demonstrate  superior
accuracy  and  computational  efficiency  of  the  proposed
approach  against  the  state  of  the  art  in  a  motion  planning
example.  The  optimal  trajectory  calculated  by  the  RBF-
Galerkin approach for N = 30 is shown in Fig. 3.  

VI.  Conclusion

The  RBF-Galerkin  method  combining  RBF  interpolation
with  Galerkin  projection  was  presented  for  solving  optimal
control  problems  numerically.  The  proposed  method
incorporates  arbitrary  global  RBFs  along  with  the  arbitrary
discretization scheme offering a highly flexible framework for
direct  transcription.  The  RBF-Galerkin  costate  mapping
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Fig. 2.     Costates  computed  by  the  RBF-Galerkin  costate  mapping  theorem
along with the exact costates for 40 pseudorandomly distributed points.
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theorem  was  developed  through  which  the  costates  of  the
optimal  control  problem  can  be  exactly  estimated  from  the
KKT  multipliers  of  NLP  at  the  discretization  points.  The
efficacy  of  the  proposed  method  for  computing  the  states,
costates, and optimal control trajectories as well as accurately
capturing  the  switching  time  of  the  control  function  was
verified  through  a  bang-bang  example  for  which  an  exact
solution  was  available.  Also,  the  superior  accuracy  and
computational efficiency of the RBF-Galerkin approach were
confirmed against a local and a global polynomial method for
a  motion  planning  example  with  obstacle  avoidance.  As  the
future extension, it is suggested to find an automated strategy
to  fine-tune  the  design  parameters  of  global  RBFs,  including
free shape parameter, to minimize the RBF interpolation error
and  promote  the  overall  performance  of  the  RBF-Galerkin
approach.
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Fig. 3.     Optimal  trajectory  estimated  by  RBF-Galerkin  method  for  robot
motion planning with obstacle avoidance, N = 30.
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