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   Abstract—Developing  and  optimizing  fuzzy  relation  equations
are of great relevance in system modeling, which involves analysis
of  numerous  fuzzy  rules.  As  each  rule  varies  with  respect  to  its
level of influence, it is advocated that the performance of a fuzzy
relation  equation  is  strongly  related  to  a  subset  of  fuzzy  rules
obtained by removing those without significant relevance. In this
study,  we  establish  a  novel  framework  of  developing  granular
fuzzy  relation  equations  that  concerns  the  determination  of  an
optimal  subset  of  fuzzy  rules.  The  subset  of  rules  is  selected  by
maximizing  their  performance  of  the  obtained  solutions.  The
originality  of  this  study  is  conducted  in  the  following  ways.
Starting  with  developing  granular  fuzzy  relation  equations,  an
interval-valued fuzzy relation is determined based on the selected
subset  of  fuzzy  rules  (the  subset  of  rules  is  transformed  to
interval-valued  fuzzy  sets  and  subsequently  the  interval-valued
fuzzy  sets  are  utilized  to  form  interval-valued  fuzzy  relations),
which  can  be  used  to  represent  the  fuzzy  relation  of  the  entire
rule base with high performance and efficiency. Then, the particle
swarm  optimization  (PSO)  is  implemented  to  solve  a  multi-
objective  optimization  problem,  in  which  not  only  an  optimal
subset of rules is selected but also a parameter ε for specifying a
level  of  information  granularity  is  determined.  A  series  of
experimental studies are performed to verify the feasibility of this
framework and quantify its performance. A visible improvement
of  particle  swarm  optimization  (about  78.56% of  the  encoding
mechanism of particle swarm optimization, or 90.42% of particle
swarm optimization with an exploration operator) is gained over
the  method  conducted  without  using  the  particle  swarm
optimization algorithm.
    Index Terms—A subset  of  data,  granular  fuzzy  relation  equations,
interval-valued fuzzy relation, particle swarm optimization (PSO).
  

I.  Introduction

FUZZY sets  and fuzzy rules  are  usually  applied to  form a
rule-based  system  to  build  a  data  processing  framework

[1]–[5]. A typical fuzzy rule-based system contains three basic
components: a collection of fuzzy rules (rule base), a database
that collects membership grades used in the fuzzy rules, and a
reasoning mechanism that  provides relationships between the
input and output variables. In typical fuzzy system modeling,
fuzzy relation equations play an important role in representing
the relationships between the input and output spaces [6], and
they  are  strongly  correlated  to  the  final  performance  of  the
fuzzy rule-based system. Information granules [7]–[9],  which
are commonly constructed in the form of fuzzy sets [10]–[12]
and  positioned  in  the  antecedent  and  consequent  parts  of  the
fuzzy  rules  in  fuzzy  rule-based  systems  [13],  are  critical  to
forming the fuzzy relation equations from both the conceptual
and algorithmic perspectives.

A  commonly  encountered  structure  of  fuzzy  relation
equation is represented as
 

B = A◦R (1)
where A and B are  the  fuzzy  sets  defined  in  the  finite  input
and  output  spaces,  respectively.  The  solution  to  the  fuzzy
relation  equation  is R,  which  indicates  the  relationship
between  the  elements  positioned  in  the  input  and  output
spaces.

2, . . . ,

Usually, a system of fuzzy relational equations is considered
as  that  the  fuzzy  sets  formed  in  the  input  and  output  spaces
(Ak, Bk), k = 1,  N, are associated in the following form:
 

Bk = Ak ◦R. (2)
Previous  research  mainly  focuses  on  fuzzy  rule-based

systems  [14]  that  are  related  to  fuzzy  relations,  and  they
perform  significant  roles  in  reasoning  of  complex  problems
[15]–[17].  They  provide  various  forms  of  fuzzy  operations
[18]–[21] from the conceptual aspects, which greatly promote
the abilities of exploring different solutions to fuzzy relations.
However,  these  fuzzy  operations  are  built  on  a  basis  of
numeric  data.  It  is  widely  admitted  that  in  fuzzy  rule-based
systems, a reasonable and feasible alternative is that both the
antecedent  and  consequent  parts  of  the  fuzzy  rules  are
characterized  by  information  granules  rather  than  numeric
variables.  Information  granules  [7]–[9]  make  significant
contributions  to  improve  the  performance  of  fuzzy  system
modeling  by  providing  a  new  way  of  representing  and
describing data at higher levels of abstraction. Different from
traditional  numeric  models,  one  can  directly  improve  the
accuracy and interpretability  of  granular  models  by changing
the  level  of  information  granularity  flexibly.  Thus,  granular
fuzzy  relation  equations  are  becoming  increasingly  noticed
and widely researched in fuzzy system modeling.
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When  developing  fuzzy  relation  equations,  it  becomes
essential to improve their efficiency, especially for large-scale
fuzzy  systems  [22]  that  are  composed  of  thousands  of  fuzzy
rules coming in the form: if x is Ak, then y is Bk. Fuzzy rules
or  fuzzy  relations  are  directly  related  with  the  fuzzy  sets
formed in the input and output spaces, and some of the fuzzy
sets  appear  to  be  of  less  significance  in  system  modeling.
While designing and optimizing fuzzy relation equations, it is
critical  for  ensuring  the  good  performance  of  the  resulting
systems such that  they are endowed with high efficiency and
sufficient functionality by selecting a suitable subset of fuzzy
rules  with  high  influence  and  removing  the  others  from  the
entire rule base. In other words, fuzzy relations obtained based
on  the  selected  rules  perform  as  efficiently  as  those
correspond to the entire rule base. The number of rules to be
selected,  namely  the  cardinality  of  the  subset  of  rules,  is
considered and determined in order  to  ensure that  this  subset
(sample) size [23] is sufficient to obtain good performance of
the simplified system.

However, it  is worth noting that even though rule selection
could effectively improve the efficiency and interpretability of
system  modeling,  at  the  same  time  the  accuracy  of  the
resulting model  is  deteriorated to some extent  because of  the
reduction  of  rules.  In  order  to  compensate  for  the  loss  of
modeling  accuracy  caused  by  rule  reduction,  the  selected
(remaining)  rules  are  made  granular  through  allocating  a
certain  level  of  information  granularity.  Subsequently,  these
granular  rules  give  rise  to  granular  outputs  and  the  formed
global model is referred to granular fuzzy relation model. The
quality  of  the  overall  model  is  affected  by  the  selected  local
rules and the imposed level of information granularity, and it
is measured in terms of the coverage and specificity criteria of
the granular results. Through determining an optimal subset of
rules and a suitable level of information granularity, we arrive
at  a  highly  interpretable  granular  model  whose  accuracy  and
interpretability are carefully balanced and reconciled.

The  motivation  of  this  study  comes  with  the  design  of  a
novel  framework  of  granular  fuzzy  relation  equations  based
on  the  optimized  subsets  of  data,  which  are  determined  by
removing those with less significant impacts using the particle
swarm  optimization  (PSO)  algorithm.  As  a  prerequisite,  rule
selection is  carried out for pre-determining an optimal subset
as  the  experimental  evidence  for  the  following  designing
process. It is subsequently available to transform the numeric
fuzzy  rules  (described  using  the  selected  subset  of  data)  into
interval-valued fuzzy rules (represented with upper and lower
bounds),  and  then  the  interval-valued  fuzzy  relations  are
developed which are anticipated to perform as the solutions to
the optimized granular fuzzy relation equations.

The originality of this study has two facets:
1)  A novel  framework of  granular  fuzzy relation equations

is  proposed,  in  which  a  parameter ε indicating  a  level  of
information  granularity  is  introduced  to  transform  a  suitable
subset of fuzzy sets into granular (interval-valued) fuzzy sets.
The  granular  outputs  are  finally  obtained  as  the  products  of
fuzzy  sets  formed  in  the  input  space  and  the  optimized
interval-valued fuzzy relations which are developed based on
the selected subset of interval-valued fuzzy rules. To evaluate

its  performance,  two  conflicting  criteria,  coverage  and
specificity, are utilized such that a sound compromise between
the interpretability and accuracy of the model is achieved.

2)  To  finalize  the  overall  framework,  especially  that  rule
selection performs as an essential part of the realization of the
granular  model,  a  new  encoding  mechanism  of  PSO  is
designed  and  applied  where  fuzzy  rules  can  be  vectored,
sorted, and further analyzed. The encoding mechanism of PSO
makes  up  for  the  shortcomings  of  traditional  optimization
methods  that  are  commonly  encountered  in  feature  selection
[24],  [25]  and  is  designed  for  dealing  with  such  discrete
problems where a subset containing a certain number of rules
is selected. An exploration operator is also included in PSO by
extending  the  diversity  of  solutions,  which  reduces  the
computing overhead of the optimization process.

This  study  is  structured  as  follows.  A  literature  review  is
provided  in  Section  II.  In  Section  III,  we  present  a  novel
framework of developing granular fuzzy relation equations by
introducing a parameter ε that indicates a level of information
granularity.  Section  IV  starts  with  a  brief  introduction  to  the
PSO  and  binary  PSO.  Then,  an  augmented  encoding
mechanism of PSO is developed to be appropriate for solving
discrete problems. An exploration operator is also considered
in  PSO  which  helps  improve  its  efficiency.  Experimental
studies  are  conducted  in  Section  V  and  the  conclusions  are
drawn in Section VI.  

II.  Literature Review

In this section, we present a brief review which consists of
the  basic  concepts  of  fuzzy  relation  equations,  granular
computing  and  granular  system  modeling,  and  feature
selection. The related works perform as essential prerequisites
in  the  proposed  scheme  for  realizing  granular  fuzzy  relation
equations.  

A.  Fuzzy Relation Equations
Fuzzy relation equations constitute important parts in fuzzy

system modeling,  and  there  are  a  series  of  related  studies  on
the solutions to fuzzy relation equations [26]–[31]. In [18], the
max-min  composition  is  firstly  introduced  by  Sanchez.
Pedrycz [19] focuses on the fuzzy relation equations based on
a  max-product  composition.  Max-min  and  max-product
compositions  are  regarded  as  the  commonly  used t-norms  in
fuzzy  relations.  Wu  and  Guu  [20]  consider  a  necessary
condition  of  fuzzy  relation  equations  with  the  max-product
composition.  They  extend  this  necessary  condition  to  the
situation  with  max-Archimedean  triangular-norm  composi-
tion,  and  then  propose  rules  to  reduce  the  problem’s  size.
Yang et al. [21] propose a method of developing addition-min
fuzzy relation inequalities  with  application in  the  BitTorrent-
like peer-to-peer file-sharing system.

In addition,  a  series  of  studies  have been conducted on the
development and optimization of fuzzy relation equations and
inequalities.  Loetamonphong  and  Fang  [32]  consider  an
optimization problem with a linear objective function subject
to  a  system  of  fuzzy  relation  equations  using  max-product
composition.  An  optimization  model  with  a  linear  objective
function  subject  to  max-t fuzzy  relation  equations  as
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constraints  is  presented  by  Thapar et  al.  [33],  where t is  an
Archimedean t-norm.  Ghodousian  [34]  investigates  an
optimization problem of a linear objective function with fuzzy
relational  inequality  constraints,  and  the  feasible  region  is
formed  by  the  intersection  of  two  inequality  fuzzy  systems
and  Dubois-Prade  family  of t-norms  that  are  considered  as
fuzzy  composition.  Ghodousian et  al.  [35]  study  a  nonlinear
optimization  problem  with  a  system  of  fuzzy  relational
equations  as  its  constraints.  In  order  to  avoid  network
congestion  and  improve  the  stability  of  data  transmission,  a
min-max programming problem subject to addition-min fuzzy
relation inequalities is proposed by Yang et al. [36]. Cao et al.
[37]  extend  the  fuzzy  relational  compositions  based  on
generalized quantifiers.

Previous  research  endeavor  to  develop  fuzzy  relations  by
exploring  various  forms  of  fuzzy  operations.  It  is  still  facing
great challenges to improve performance in system modeling.  

B.  Granular Computing and Granular System Modeling
With the rapid improvement of the diversity and complexity

of  information,  it  becomes  significantly  challenging  for
describing  and  analyzing  a  large  number  of  data  using
numeric  models  [8],  [38].  It  is  worth  noting  that  granular
computing  (GrC),  which  stems  from  the  fuzzy  theory
proposed  by  Zadeh  [11],  [12],  has  become  a  novel  and
promising  framework  for  data  description  and  system
modeling. It promotes a commonly encountered situation that
data should be represented at different levels of abstraction.

Information  granules  [7]–[9],  as  well  as  granular  models
[39],  are  expressed  in  terms  of  various  formalisms  and
subsequently  utilized  in  several  areas  of  applications.
Different  from  the  well-known  numeric  models,  granular
models are developed on a basis of information granules. As a
consequence, the results produced by granular models are also
information granules rather  than numeric values.  To be more
specific,  the  antecedent  and  consequent  parts  of  fuzzy  rules
are  characterized  by  a  collection  of  information  granules,
which leads to a general concept of granular fuzzy rule-based
systems. The ith rule performs as follows:
 

If x is Ãi, then y is B̃i (3)
Ãi B̃iwhere  and  are  the  information  granules  of  fuzzy  rules

formed in the input and output spaces, respectively.
By  stressing  the  relationships  between  the  antecedent  and

consequent  parts  of  fuzzy  rule-based  system,  the  underlying
architecture  of  granular  fuzzy  relation  equations  could  be
adapted  by  changing  the  level  of  abstraction  flexibly.  It  is
worth noting that granular models contribute to improving the
performance, which is strongly influenced by the allocation of
information granularity [2].  

C.  Feature Selection
Fuzzy  relation  is  fundamentally  generalized  based  on  a

collection of fuzzy rules, and each rule varies with respect to
its  level  of  influence.  Feature  selection  has  attracted  much
attention  in  the  field  of  fuzzy  relational  modeling  [40].  An
iterative  method  to  select  suitable  features  in  an  industrial
pattern  recognition  context  is  proposed  in  [41],  which

combines  a  global  method  of  feature  selection  and  a  fuzzy
linguistic  rule  classifier.  Post-processing  methods  of  sam-
ple  size  in  rule  selection  are  initially  proposed  by  Alcalá
et  al.  [42],  considering both the rule selection and the tuning
of membership functions to obtain solutions with the smallest
sample size but high accuracy. Zhou et al. [43] point out that
it is essential to reduce the number of rules as well as ensuring
the remaining system’s approximation performance. From this
brief  review,  we  can  see  that  selecting  a  suitable  subset  of
rules is important for developing fuzzy relation equations with
a higher level of performance.

In  this  study,  we  aim to  explore  a  new way  of  developing
granular  fuzzy  relation  equations  with  high  efficiency  and
sufficient functionality, in which the granular fuzzy relation is
formed based on a subset of fuzzy rules.  

III.  Granular Fuzzy Relation Equations
Based on A Subset of Data

The overall conceptual framework is displayed in Fig. 1.
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Fig. 1.     The development framework of granular fuzzy relation by selecting
a subset of fuzzy rules.
 

Ak Bk 2, . . . ,
Ak

Bk Ak [ak1, ak2, ak3, . . . ,

akn] ∈ [0,1]n Bk bk1, bk2, . . . , bkm ∈ [0,1]m aki bk j

Assume  that  there  are  a  collection  of  rules  (fuzzy  sets)
coming in pairs ( , ), k = 1,  N, which are defined in
a  multi-dimensional  space: n-dimensional  fuzzy  sets  and
m-dimensional  fuzzy  sets ,  where  = 

  and  = [ ] ,  and 
are the ith and jth elements of the kth fuzzy rule, respectively.

Ak Bk

The fuzzy relation R can be formed based on the fuzzy rules
 and  as follows:

 

R =
N
∪

k=1
(Ak ×Bk) = [ri j] (4)

ri j =maxk=1,2,...,N[min(aki,bk j)] 2, . . . ,
2, . . . ,

where , i = 1,  n,  and j =
1,  m.

Bk
Ak

The  fuzzy  sets  positioned  in  the  output  space  can  be
calculated and expressed by combining  and R as
 

Bk = Ak ◦R = [bk j] (5)

bk j =maxi=1,2,...,n[min(aki,ri j)] 2, . . . ,
2, . . . ,

where , k = 1,  N,  and j =
1,  m.
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M≪ N
2, . . . ,

Ãp = [a−pi,a
+
pi] B̃p = [b−p j,b

+
p j] 2, . . . ,

2, . . . , 2, . . . ,
Ãp B̃p

In  this  study,  we  are  interested  in  selecting M rules  out  of
the rule base with a size of N ( ). Once a subset of rules
is  selected,  which are  expressed as  (Ap, Bp), p =  1,  M,
the  selected  fuzzy  rules  can  be  transformed  into  interval-
valued fuzzy sets  by introducing a parameter ε.  The interval-
valued  fuzzy  sets  are  characterized  by  their  upper  and  lower
bounds:  and , p = 1,  M, i =
1,  n, and j = 1,  m. The upper and lower bounds of
the interval-valued fuzzy sets  and  are determined as
 

a+pi =min(1,api+ε) (6)
 

a−pi =max(0,api−ε) (7)
 

b+p j =min(1,bp j+ε) (8)
 

b−p j =max(0,bp j−ε) (9)

ε ∈ [0,1]where  is  used  for  specifying  a  level  of  information
granularity.  The  choice  of  the  value  of ε affects  the  length
(specificity) of the intervals.

R̃ = [r−i j,r
+
i j]

Ãp B̃p

In view of the monotonicity of the composition operator, to
further determine the upper and lower bounds of the interval-
valued  fuzzy  relation ,  the  interval-valued  fuzzy
sets  and  are  utilized  in  the  following  max-min
composition:
 

r+i j = max
p=1,2,...,M

[min(a+pi,b
+
p j)] (10)

 

r−i j = max
p=1,2,...,M

[min(a−pi,b
−
p j)]. (11)

B̃k = [b−k j,b
+
k j]

The  interval-valued  fuzzy  relation  can  be  subsequently
applied  to  the  construction  of  the  interval-valued  fuzzy  sets

 in  the  output  space.  The  upper  and  lower
bounds are calculated as follows:
 

b+k j = max
i=1,2,...,n

[min(a+ki,r
+
i j)] (12)

 

b−k j = max
i=1,2,...,n

[min(a−ki,r
−
i j)]. (13)

B̃k
B̃k

To evaluate  the  performance  of  the  granular  fuzzy  relation
equations, the principle of justifiable granularity is adopted by
using  two  essential  criteria:  coverage  and  specificity.  Recall
that coverage indicates how the interval-valued outputs cover
the  original  output  fuzzy  rules Bk,  while  specificity  means
how  precise  is.  It  is  noted  that  the  value  of  parameter ε
definitely  influences  the  final  granular  output  that  is
directly  applied  in  the  calculation  of  the  coverage  and
specificity  criteria.  It  is  obvious  that  these  two  criteria  are
conflicting  by  stressing  the  fact  that  an  increasing  value  of
coverage is corresponding to a decreasing value of specificity.

B̃k

The  coverage  (cov)  criterion  concerns  the  number  of  the
original  fuzzy rules Bk included in  the  interval-valued output

 and is calculated as follows: 

cov =
1

m ·N

N∑
k=1

m∑
j=1

incl{bk j, [b−k j,b
+
k j]} (14)

where incl() is a binary predicate, 

incl
{
bk j, [b−k j,b

+
k j]
}
=

1, if bk j ∈ [b−k j,b
+
k j]

0, if bk j < [b−k j,b
+
k j].

(15)

Specificity  (sp)  criterion  is  calculated  in  the  following
manner:
 

sp =
1

m ·N

N∑
k=1

m∑
j=1

(1− |b−k j−b+k j|) (16)

b−k j = b+k jnote  that  if ,  specificity  attains  its  maximal  value,
which is equal to 1.

V(ε)

The overall  performance is  determined by taking a product
of  coverage  and  specificity  to  achieve  a  sound  compromise
between the two criteria.  The fitness function  is defined
as follows:
 

V(ε) = cov× sp. (17)
ε

V(ε)
The  optimal  assuming  values  in  [0,1]  is  obtained  by

maximizing , namely
 

ε = argmax
ε

V(ε). (18)

B̃k

Ak R̃

It  is  worth  noting  that  in  (14)–(17),  the  coverage  is
determined  between  the  entire  rule  base  and  the  obtained
granular output, while the specificity is calculated with the use
of  the  interval-valued  output  (obtained  by  extracting  the
max-min  composition  between  the  original  input  fuzzy  sets

 and the interval-valued fuzzy relation ).
The  development  of  granular  fuzzy  relation  equations  is

associated with a large number of fuzzy rules containing those
with less important impacts which increase the computational
complexity  of  the  model.  In  order  to  make  the  model  to  be
more  efficient  and  offer  sufficient  functionality,  determining
an optimal subset of fuzzy rules is a prerequisite to developing
granular  fuzzy  relation  equations.  Rule  selection  is  realized
using  an  augmented  optimization  method —  an  encoding
mechanism of PSO, which will be discussed in the following
section.  

IV.  Determination of the Optimal Subset of Fuzzy
Rules Using the PSO Algorithm

Even  though  rule  selection  can  help  remove  the  rules  with
less  important  influence,  it  is  difficult  to  determine  which
rules  should  be  selected  in  order  to  realize  an  optimal  fuzzy
relation.  Several  optimization  algorithms  are  commonly
studied.  Because  of  its  powerful  ability  in  searching  for  the
best  solution  as  well  as  the  characteristic  of  a  simple
configuration, PSO [44] is widely applied to obtain a group of
feasible  solutions  in  a  continuous  search  space.  It  simulates
the social behavior of birds’ searching food process in a multi-
dimensional  search  space  [24],  which  aims  to  find  out  the
optimal solution according to the best positions and the global
best  positions  of  each  individual  bird  of  the  group.  To  deal
with  discrete  problems,  such  as  feature  selection  [24],
Kennedy and Eberhart [45] propose the binary PSO in which
the particles update their positions according to binary vectors
determined  by  a  probability  defined  with  the  velocity.  A
mutation  operator  is  included  in  the  binary  PSO  to  improve
the  diversity  of  the  solutions  without  compromising  the
solution quality [46].  
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A.  PSO and Binary PSO as a Preliminary

vi j
xi j

The  PSO  algorithm  [47],  [48]  is  a  population-based
searching process, in which the optimal solutions are obtained
iteratively.  Each  particle  updates  its  velocity  and  position

 as follows:
 

vi j := w× vi j+ c1× rand j()× (pbesti j− x)

+ c2× rand j()× (gbesti j− xi j) (19)
 

xi j := xi j+ vi j (20)
2, . . . ,

2, . . . ,
where i = 1,  p, and p is the number of particles (p = 20).
j = 1,  dim, and dim is the dimension of the experimental
data; w is  an inertia weight; pbestij is  the best  position of the
jth  coordinate  with  respect  to  the ith  particle  experienced  so
far,  and gbestij is  the  best  position  of  the jth  coordinate  with
respect to the ith particle compared with the whole swarm of
particles; randj()  returns  a  random value located in  the  range
of [0,1]; c1, c2 are learning factors that assume to be positive
values.

vi j

The  binary  PSO  algorithm  [45]  is  regarded  as  a  modified
version of PSO by extending the continuous search space into
binary spaces. The velocity  is updated in the same way as
in the traditional PSO algorithm.

xi j
vi j

The position  is updated according to a probability value
returned by a sigmoid function with respect to the velocity 
 

xi j :=

 1, if S (vi j) >rand()

0, otherwise
(21)

S (·)where  is a sigmoid function expressed as follows:
 

S (vi j) =
1

1+ e(−vi j)
. (22)

xi j
vi j

xi j
vi j

It  is  indicated  that  binary  PSO  updates  the  position 
depending  on  the  value  of S( ),  resulting  in  a  great
possibility of local convergence in which the solutions will be
explored  in  limited  local  areas  (the  values  of  always
remain equal to 1). The value of S( ) will be approximately
equal to 1 if the velocity assumes high values. In this case, a
mutation  operator  [46],  [49]  is  introduced  to  the  binary  PSO
algorithm, which helps improve the diversity of the solutions.

The mutation operator is defined as
 

xi j :=

 ∼ xi j, if rand() ≤ rmut

xi j, otherwise
(23)

rmutwhere  denotes  a  mutation  probability,  which  is
determined with a random value distributed in [0, 1].  

B.  Encoding Mechanism of PSO for Selecting a Subset of Data

xi j

vi j xi j

xi j

vi j

xi j vi j

In  this  study,  rule  selection  (selecting  an  optimal  subset  of
rules with a certain number) should be regarded as a discrete
optimization problem in which the positions  and velocities

 are  expressed  as  certain  integers.  Since  the  positions 
represent  a  collection  of  indices  for  the  selected  subset  of
rules,  should  be  determined  as  integers  within  [1, N].
Meanwhile,  the  velocities  mean  the  length  of  steps
according to which  are updated in each generation.  are
integers  that  change  within  [1, N],  and  they  are  required  to

1 ≤ (xi j+vi j) ≤ Nsatisfy the constraint that .
Even though the binary PSO is a considerable alternative to

solve  discrete  problems,  it  can  only  be  applied  to  determine
whether a given fuzzy rule is selected or not. In order to select
a  subset  of  rules  with  certain  sample  size,  an  encoding
mechanism of PSO is developed by extending the continuous
search space to discrete search space.

ai j ∈ [0,1]n

xi j ai j

Let us consider a rule base with a size of N, as shown in Fig. 2.
Each rule is  randomly assigned with a coordinate of a vector
[a1, a2, …, aM, …, ai, …, aN], ai = [ ] . The selected
subset  of  fuzzy  rules  is  regarded  as  the  solutions  to  the
discrete optimization problems, i.e.,  = , i = 1, 2, …, N,
j =  1,  2,  …, n.  The  search  space  and  the  solutions
corresponding  to  the  entire  fuzzy  rule  base  are  displayed  in
Fig. 2.
 

ai∈[0,1]na1 a2 a3 … aM … aN

M

N
M << N

 
Fig. 2.     Search space (rule base) and solutions (selected rules).
 

vi j ∈ [0,1]n

The  encoding  mechanism  of  PSO  can  therefore  be
implemented  by  moving  along  the  coordinates  according  to
the performance values with a velocity vector V = [v1, v2, …,
vM,  … vi,  …, vN], vi =  [ ] . The  solutions  are  eval-
uated  based  on  the  fitness  function f(vi),  as  shown  in Fig. 3.
 

N

V1 V2 V3 … VM … VN

M
M << N

f(V1) > f(V2) > ··· > f(VM)

 
Fig. 3.     Solutions (selected subset of rules) of encoding mechanism in PSO
within discrete search space.  

C.  PSO With an Exploration Operator

vi j

The  encoding  mechanism  of  PSO  provides  a  practicable
way of rule selection in the proposed framework. However, a
commonly encountered situation comes with that  the optimal
solution may be missed when the particles move too fast (the
velocity  is  greater  than  what  is  expected),  resulting  in
reduced  efficiency.  Inspired  by  the  general  idea  of  mutation
operator in binary PSO, an exploration operator is included to
help improve the efficiency by exploring a wider diversity of
solutions, which is expressed as follows:
 

xi j :=

 xi j+ vi j · repr, if repr = 1

xi j, otherwise
(24)

reprwhere  is defined as the exploration probability,
 

repr :=

 1, if S (vi j) >rand()

0, otherwise.
(25)

  

 1420 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021



V.  Optimization of Granular Fuzzy Relation
Equations by Selecting a Subset of Data

To  complete  the  framework  of  developing  granular  fuzzy
relation  equations  illustrated  in Fig. 1,  PSO  algorithms
(including the encoding mechanism of PSO and PSO with an
exploration  operator)  are  enrolled  in  a  multi-objective
optimization problem that a subset of data and a parameter of
information granularity ε are optimized at the same time. The
process is presented in Algorithm 1.

Algorithm 1. Optimization of granular fuzzy relation equations

∈ vi jInitialization: randomly select M rules, M/N  [1%, 100%]),  =
2.0.

Optimization:
for M/N = 1% to 100%
begin
　　Step 1: the interval-valued fuzzy relation

r−i j =maxp=1,2,...,M[min(a−pi,b
−
p j)]　　　　　　　　

r+i j =maxp=1,2,...,M[min(a+pi,b
+
p j)]　　　　　　　　

R̃ = [r−i j,r
+
i j]　　　　　　　　

　　Step 2: the interval-valued output
b−k j =maxi=1,2,...,n[min(a−ki,r

−
i j)]　　　　　　　　

b+k j =maxi=1,2,...,n[min(a+ki,r
+
i j)]　　　　　　　　

B̃k = [b−k j,b
+
k j]　　　　　　　　

　　Step 3: update the position (index of the selected subset rules)

xi j =

xi j + vi j · repr, if repr= 1

xi j, otherwise
　　　　　　　　

　　with an exploration probability

repr =

1, if S (vi j) >rand()

0, otherwise
　　　　　　　　

　　Step 4:  mark the  particles  whose positions  do not  change as
“no update”
　　Step 5: update the positions of the particles which are marked

by “no update”
　　Step 6: fitness function

cov = 1
m·N

N∑
k=1

m∑
j=1

incl{bk j, [b−k j,b
+
k j]}　　　　　　　　

sp = 1
m·N

N∑
k=1

m∑
j=1

(1− |b−k j −b+k j |)　　　　　　　　

V(ε) = cov∗sp　　　　　　　　
end

R̃optthe optimal  fuzzy relation  corresponds to the maximal  fitness
function

B̃ = Ã◦ R̃optthe granular fuzzy relation equations 

It  is  shown  that  a  granular  fuzzy  relation  equation  is
obtained  with  the  interval-valued  fuzzy  relation  that  is
determined based on a selected subset of fuzzy rules while an
encoding  mechanism  of  PSO/PSO  with  an  exploration
operator is applied to select an optimal sample size.  

VI.  Experimental Studies

The  main  objective  of  the  experiments  is  to  quantify  the
performance of the granular fuzzy relation equations obtained
based  on  a  subset  of  fuzzy  rules  with  a  certain  number.  The
selection is  realized with the use of  the encoding mechanism
of  PSO.  Synthetic  data  as  well  as  the  publicly  available  UCI
machine  learning  data  sets  are  used  in  the  experiments.  The

xi j

vi j

cardinality  of  the  search  space  is  equal  to  the  number  of
indices  within  the  rule  base.  Fuzzy  sets  are  represented  with
membership grades in the range of [0, 1]. The positions  are
initialized  with  the  randomly  selected M rules,  and  the
velocity  is  initialized  as  =  2.0.  In  PSO,  the  inertia  weight
w = 2.0 and the learning factors c1 = c2 = 2.05.

To carry out the experiments, the size of the selected subset
M should  be  neither  too  large  in  order  to  control  the
computational  complexity  nor  too  small  in  order  to  ensure
sufficient functionality. Therefore, we vary the proportions of
M/N within  a  range  of  reasonable  values.  Some  comparative
studies are included in this section.  

A.  Synthetic Data

Ak Bk
Ak [ak1, ak2, . . . , akn]

Bk [bk1, bk2, . . . , bkn] aki ∼ N(0,1) bk j ∼ N(0,1)

Let  us  start  with  a  collection of  fuzzy sets  coming in  pairs
( , ), k =  1,  2,  …, N, N =  100,  which  are  randomly
generated  uniform  distributed  data.  = 
and  = , where , ,
n = 10, m = 5, and n and m are the dimensions of the input and
output spaces, respectively. With the use of PSO, M rules are
selected  out  of  the  entire  rule  base.  We  assume  that  the
proportions M/N are  equal  to  5%,  10%,  15%,  and  20%,
respectively.

The  fitness  function  is  described  by  (18).  The  plots  of  the
performance index V(ε) regarded as a function of ε are shown
in Fig. 4.
 

0 0.40.2 0.6 0.8 1.0
0

0.10

0.20

0.05

0.15

0.30

0.25

є

V(
є)

5%
10%
15%
20%

 
Fig. 4.     V(ε) as functions of ε for different sample size ratios.
 

Let us consider the results shown in Fig. 4, where V(ε) is an
unimodal function with a clearly visible maximum. As shown
in  the  results,  the  values  of  performance  index  change  as
sample  size  ratio  varies  from  5% to  20%.  When  the  sample
size ratio is 5%, better performance can be obtained compared
with  the  sample  size  ratio  of  10%–20%.  However,  when  the
sample  size  ratio  is  increased  to  20%,  lower  performance
values  are  obtained  when  the  same ε is  used.  As  the
computational complexity increases with a larger sample size,
5% is the optimal solution to fuzzy rule selection to ensure a
balance  between  a  good  performance  and  a  minimal
computational complexity.

When  applying  PSO to  rule  selection,  we  are  interested  in
the  fitness  values  obtained  in  successive  generations.  The
results are displayed in Fig. 5.

The  results  shown in Fig. 5 provide  a  different  perspective
to  analyze  the  performance  of  granular  outputs.  It  is  shown
that higher fitness values correspond to a smaller sample size.
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Consider four options in which the ratio of selected rules over
the  rule  base  is  5%,  10%,  15%,  and  20%,  respectively,  the
best  performance  is  obtained  when  the  sample  size  ratio  is
5%,  and the optimal  values  of  fitness  decrease as  the sample
size ratio increases from 5% to 20%.

The  feasibility  of  the  proposed  method  is  verified  to  be
functional when selecting a subset of fuzzy rules. A series of
experiments are also carried out based on a collection of UCI
data sets.  

B.  Experiments Using Machine Learning Data Sets
We consider a collection of data sets from the UCI machine

learning  repository  (http://arhieve.ics.uci.edu/ml),  and  the
detailed information of the data sets is presented in Table I.

(xk,yk)

(Ai(xk)) (B j(yk))
Ai(xk) B j(yk)

The data sets come with input and output variables ,
k = 1, 2, …, N, and can be transformed into fuzzy sets of input
and  output  spaces , , i =  1,  2,  …, q1, j =  1,
2, …, q2, q1 = 5, q2 = 3. The fuzzy sets  and  are
represented  by  the  corresponding  variables  of  the  input  and
output  data  following  the  standard  Fuzzy  C-Means  (FCM)
formulas.
 

Ai(xk) =
1

q1∑
l=1

( ||xk−vi ||
||xk−vl ||

)2/(m−1)
(26)

 

B j(yk) =
1

q2∑
l=1

(
||yk−w j ||
||yk−wl ||

)2/(m−1) (27)

where vi and wj are  the  prototypes  located  in  the  input  and
output  spaces,  respectively. m is  the fuzzification coefficient,
and usually m = 2.0.

First  of  all,  it  is  essential  to  verify  the  feasibility  of  the
proposed  model  in  developing  granular  fuzzy  relation
equations  based  on  a  subset  of  data  that  is  decided  through
rule selection. As a prerequisite, we are interested in selecting
a certain number of fuzzy rules from the entire rule base. One
feasible  alternative  is  selecting  rules  one  by  one  randomly,
which means that one more rule is selected at each time until
all  the rules  in the rule  base are selected.  The sample size of
the selected rules ranges from 1 to N, in other words, the value

of M/N changes from 0% to 100%. In order to finalize the rule
selection,  two  different  methods  are  applied  to  the  selection
process:  1)  rule  selection  realized  without  using  any
optimization  methods,  that  is,  rules  are  selected  in  sequence
one  by  one  randomly;  2)  selecting  one  more  rule  each
generation  until  a  suitable  subset  of  fuzzy  rules  is  selected
with  the  use  of  PSO.  To  process  with  selection  using  PSO,
certain sample sizes from 1 to N are expected to be selected,
and  the  experiments  are  also  performed  by  selecting  rules
randomly for comparison. The selection is repeated at least 10
times and the average results are reported.

In Fig. 6,  we  show  the  performance  of  rule  selection  in
terms of the performance index obtained with the use of PSO
compared with that without using PSO.

The  results  shown  in Fig. 6 indicate  that  for  each  data  set,
the  performances  of  granular  fuzzy  relation  equations
obtained  with  the  use  of  PSO  are  better  than  those  without
using PSO. With respect  to the size of  the selected rules,  the
optimal performance is obtained when the ratio M/N is in the
range of 30%–50%. It is noted that the way of selecting rules
one  by  one  provides  a  reasonable  solution  to  rule  selection,
but  it  is  not  a  good  idea  regarding  to  its  high  computational
complexity.

For comparative analysis, we consider that a subset of rules
is selected by using PSO in two different ways. One case is to
select  by  index  in  which  a  certain  number  of  fuzzy  rules  are
randomly  selected  with  respect  to  their  index;  in  the  other
case, rule selection is processed by carrying out the proposed
framework  as  described  in  Section  III.  An  encoding
mechanism of PSO is applied to both of the two cases.

The  results  of  the  two  cases  are  presented  in Fig. 7. Fig. 7
plots  the  performances  of  the  proposed  model  as  well  as
selecting a subset of data by index. The sample size increases
from 1 to N. The performance is greatly improved when rules
are  selected  with  the  proposed  framework  compared  to  that
selected  by  index.  The  corresponding  sample  ratios  for
obtaining  an  optimal  performance  are  in  the  range  of
30%–50%.

We  are  also  very  interested  in  the  comparative  analysis
between the results shown in Figs. 6 and 7. It is shown that the
PSO algorithm can definitely improve the performance of the
rule  selection  and  the  proposed  framework  indicates  a  better
feasibility  in selecting a suitable subset  of  rules  to obtain the
optimal  granular  fuzzy  relation  equations.  It  provides  a
general  idea  of  optimizing  granular  fuzzy  relation  equations
by introducing the encoding mechanism of the PSO algorithm
to the proposed framework in this study.

In Table II,  we  present  a  summary  of  the  optimal
performance values V(ε)  with their  corresponding values of ε
for a collection of UCI data sets. In the table, N stands for the
size of  the rule  base,  and the sample ratios  are  considered as
M/N =  25%,  30%,  and  35%,  respectively.  The  performance
values obtained by selecting using PSO and selecting without
using PSO are the same as shown in Table II.

Through conducting the optimization problem using PSO, a
subset of fuzzy rules and an optimal value of parameter ε can
be  determined,  which  are  subsequently  utilized  to  the
development  of  granular  fuzzy  relation  equations  following
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Fig. 5.     Performance  index  with  successive  generations  using  PSO  with
different sample size ratios.
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the formulas presented in Section III.
To further improve its efficiency, we consider extending the

diversity  of  solutions by including an exploration operator  to
PSO.  In Table III,  we  present  the  computing  overhead  for
obtaining  the  expected  optimal  performance  values  by  using
the  encoding  mechanism  of  PSO,  PSO  with  an  exploration
operator,  and  selecting  without  PSO.  The  experiments  are
repeated  10  times,  and  the  average  values  are  reported.  The
results  shown  in Table III indicate  that  both  of  the  two
methods — the encoding mechanism of PSO and PSO with an
exploration operator, can be used for rule selection with a high

level  of  efficiency.  The  computing  overhead  is  directly
dependent on the distribution of data set. It can be concluded
that  great  improvements  are  achieved  when  using  PSO
compared  with  random  selection  performed  without  using
PSO. To be more specific, the exploration operator helps PSO
to  improve  its  efficiency  by  extending  the  diversity  of
solutions.  By carrying out  PSO with an exploration operator,
the largest improvement achieved is equal to 98.21% (for the
Forest fires data set) while the least improvement is achieved
to  61.31% (for  the  Concrete  compressive  strength  data  set),
and the average improvement attained is about 90.42%. As for

 

TABLE I 

Detailed Information of Data Sets Used in the Experiments

Name of
data sets

Number of
instances N

Number
of input
variables

Number
of output
variables

Associated tasks Description of data sets

Boston housing 506 13 1 Regression
Classification

Samples contain 13 attributes of houses at different locations around the
Boston suburbs in the late 1970s. Targets are the median values of the

houses at a location (in k$).

Forest fires 517 12 1
Regression

Feature selection
Outlier detection

This dataset is used to predict the burned area of forest fires in the northeast
region of Portugal by using meteorological and other data.

Auto MPG 398 8 1 Regression In line with the use by Ross Quinlan (1993) in
predicting the attribute “mpg”.

Airfoil
self-noise 1503 5 1 Regression

The data set comprises different size NACA 0012 airfoils at various wind
tunnel speeds and angles of attack. The span of the airfoil and the observer

position were the same in all of the experiments. The only output is the
scaled sound pressure level, in decibels.

Computer
hardware 209 8 1 Regression

The estimated relative performance values were estimated by the authors
using a linear regression method. See their article (pp. 308–313) for more

details on how the relative performance values were set.

Energy
efficiency 768 8 2 Regression

Classification
The dataset comprises 768 samples and 8 features, aiming to predict two
real valued responses. It can also be used as a multi-class classification

problem if the response is rounded to the nearest integer.
Concrete

compressive
strength

1030 8 1 Regression The concrete compressive strength is a highly nonlinear
function of age and ingredients.
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Fig. 6.     Plots of performance index with the use of PSO and without using PSO.
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processing  rule  selection  with  the  encoding  mechanism  of
PSO,  the  largest  improvement  achieved  is  equal  to  97.28%
(for the Airfoil data set) and the least improvement is achieved
to  31.16% (for  the  Boston  housing  data  set),  and  an  average
improvement is obtained as about 78.56%. Among all the data
sets used in the experimental studies, the best improvement is
obtained for the Airfoil data set for both the two methods.

We  compare  the  computing  overhead  in  processing  rule
selection by using PSO and PSO with an exploration operator.
It is found that it takes less time for the later one — PSO with
an  exploration  operator  to  obtain  an  optimal  performance
index.  The  exploration  operator  can  help  reduce  the  cost  of
time  with  the  best  improvement  as  large  as  58.46% (for
Boston  housing  data  set),  and  an  average  improvement  is
about 11.88%.

It is worth noting that different efficiency improvements are
obtained  based  on  different  data  sets.  However,  it  is  obvious
that  both  the  encoding  mechanism of  PSO and  PSO with  an
exploration operator are beneficial in rule selection, which can
be used to finalize the development of granular fuzzy relation
equations in this study.  

VII.  Conclusions

The development of fuzzy relation equations is both critical
and  challenging  in  fuzzy  system  modeling.  In  this  study,  a
framework of granular fuzzy relation equations is proposed, of
which  the  efficiency  is  maximized  while  the  functionality  is
ensured.  To  reduce  computational  complexity  with  limited
processing resources, it is essential to develop fuzzy relations
by evaluating  and selecting  an  optimal  subset  of  fuzzy rules.
The  encoding  mechanism  of  PSO  is  introduced  to  rule
selection, and an exploration operator is also included in PSO
to extend the diversity of its solutions.

To verify the feasibility of the proposed framework, a series
of  comparative  experiments  are  studied.  First  of  all,  rule
selection is carried out by selecting rules one by one randomly
from the rule base. It is convinced by the results that the PSO
algorithm  can  help  in  improving  the  efficiency  of  the
framework.  To  finalize  the  development  of  granular  fuzzy
relation  equations,  we  also  consider  selecting  fuzzy  rules
following two methods: one is about selecting by index while
the  other  one  is  processed  with  the  proposed  framework,  in
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Fig. 7.     Plots of performance index with the use of PSO.
 

 

TABLE II 

Performance V(ε) for Selected Values of ε

Data sets Number of instances N

Optimal performance index V Corresponding optimal values of ε

M/N M/N

25% 30% 35% 25% 30% 35%

Boston housing 506 0.320 0.342 0.335 0.622 0.622 0.622

Concrete compressive strength 1030 0.312 0.317 0.303 0.698 0.686 0.718

Forest fires 517 0.185 0.197 0.190 1.000 1.000 1.000

Auto MPG 398 0.285 0.279 0.272 0.602 0.602 0.576

Energy efficiency 768 0.288 0.274 0.260 0.412 0.412 0.390

Computer hardware 209 0.341 0.358 0.327 0.998 0.996 0.996
 

 1424 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021



R̃

which  a  subset  of  fuzzy  rules  are  selected  and  subsequently
they  are  transformed  to  interval-valued  fuzzy  rules  by
introducing a  level  of  information granularity.  Synthetic  data
as  well  as  a  collection  of  UCI  data  sets  are  enrolled  in  the
experiments.  It  is  indicated  from  the  results  that  the  optimal
sample  ratios  are  30%–50%.  Finally,  the  granular  interval-
valued  fuzzy  relation  can  be  determined  based  on  the
optimal  subset  of  fuzzy  rules  and  the  corresponding  optimal
value of ε following the processes in Section III.

The  ultimate  objective  of  this  study  is  to  establish  and
optimize  granular  fuzzy  relation  equations  by  achieving  high
efficiency  and  maintaining  sufficient  interpretability.  Future
directions can be conducted in the following ways. First, it is
of great interest to introduce various forms of fuzzy operations
into  the  development  of  granular  interval-valued  fuzzy
relations.  Second,  the  sample  size  of  the  optimized  subset  of
fuzzy  rules  is  not  confined  to  a  static  value,  and  it  can  be  a
complex matrix or a correlative function obtained from other
downstream systems. Finally, granular fuzzy system modeling
can  be  greatly  enhanced  from  the  processing  efficiency  side
which is worth exploring in further research.
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