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   Abstract—In  practical  process  industries,  a  variety  of  online
and offline sensors and measuring instruments have been used for
process control and monitoring purposes, which indicates that the
measurements  coming  from  different  sources  are  collected  at
different sampling rates. To build a complete process monitoring
strategy, all  these multi-rate measurements should be considered
for  data-based  modeling  and  monitoring.  In  this  paper,  a  novel
kernel  multi-rate  probabilistic  principal  component  analysis  (K-
MPPCA) model is proposed to extract the nonlinear correlations
among different sampling rates. In the proposed model, the model
parameters  are  calibrated  using  the  kernel  trick  and  the
expectation-maximum  (EM)  algorithm.  Also,  the  corresponding
fault  detection  methods  based  on  the  nonlinear  features  are
developed. Finally, a simulated nonlinear case and an actual pre-
decarburization unit in the ammonia synthesis process are tested
to demonstrate the efficiency of the proposed method.
    Index Terms—Fault  detection,  kernel  method,  multi-rate  process,
probability principal component analysis (PPCA).
  

I.  Introduction

W ITH  the  continuous  developments  of  modern  process
industries  and  advances  of  data  acquisition  technolo-

gies,  a  large  amount  of  industrial  process  data  have  been
collected and stored by the distributed control system (DCS),
which made data-driven process monitoring methods become
a  hot  research  topic  in  the  field  of  process  control  in  recent
years  [1]–[7].  Especially,  with  the  rapid  developments  of
machine  learning  and  deep  learning  in  recent  decades,
multivariate  statistical  process  method  (MSPM)  technology
can  accurately  express  the  operation  state  of  processes  at  a
low  cost  while  also  being  easy  to  apply.  Therefore,  MSPM

methods like principal component analysis (PCA), partial least
squares  (PLS) and their  extensions have been widely applied
in  various  types  of  process  industries  [8]–[12].  Besides,  the
process  data  are  usually  measured  with  different  kinds  of
noises,  which  have  an  obvious  impact  on  the  data-driven
model.  Hence,  the  descriptions  of  the  process  noises  should
also  be  considered  for  process  modeling  purposes.  At  the
same time, the process measurements are inherently stochastic
variables  instead  of  the  deterministic  values,  which  indicate
that they are proper to be estimated in a probabilistic manner.
Ge  [13]  has  made  a  review  of  various  types  of  probabilistic
latent  variable  models  in  recent  years,  in  which  probabilistic
PCA  (PPCA),  factor  analysis  (FA),  and  Gaussian  mixture
model  (GMM)  are  widely  used  for  process  modeling  and
monitoring [14]–[16].

For most traditional MSPM methods, they all assumed that
the  sampled  numbers  of  the  training  data  for  different
variables  are  consistent.  However,  as  the  process  industries
have  become  more  and  more  complex  and  production  scales
increase, the integrated automation system has been split into
multiple  levels  and  multiple  sampling  rates  of  the
measurements  are  contained  [17]–[19].  For  example,  the
sampling  rates  of  the  process  variables  such  as  temperature,
pressure,  and  flow  are  usually  around  a  few  seconds  or
minutes.  Some  important  quality  variables  and  other
scheduling  related  data  are  tested  at  the  laboratory  with  a
much  lower  sampling  rate,  such  as  the  product  quality,
exhaust  gas  concentration,  and  energy  consumption  index.
They may be collected among a few hours or days. In general,
various  variables  with  different  sampling  rates  from multiple
levels  can  reflect  the  process  status  from  different
perspectives.  Hence,  it  is  desirable  to  utilize  all  the  sampled
measurements  which  are  collected  from  multiple  sampling
rates so that different unfavorable conditions of processes like
sensor  faults,  quality  decline,  or  excessive  energy consump-
tion can be accurately detected and identified.

The traditional data-driven methods for multi-sampling rate
process  monitoring  can  be  summarized  as  up-sampling
methods,  down-sampling  methods,  and  semi-supervised
methods.  The  main  idea  of  the  up-sampling  method  is  to
establish  a  regression  model  to  predict  the  un-sampled  data
with  a  lower  sampling  rate.  For  comparison,  the  down-
sampling  method  is  to  reduce  all  the  variables  to  the  lowest
sampling rate to transfer a multiple sampling rate process to a
single  sampling  rate  process.  After  these  two  pretreatment
technologies, the traditional MSPM method can be applied for
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process  modeling and monitoring.  Lu et  al.  [20]  transformed
the original dual sampled data into a three-dimensional matrix
by  adjusting  the  sample  structure  and  using  a  multiway  PLS
model  for  key  variable  prediction.  Marjanovic et  al.  [21]
extended the process variables with different  sampling scales
to  the  high-dimensional  vectors  according  to  the  sampling
interval  of  the  quality  variable.  After  that,  the  batch  process
monitoring  scenario  is  established  using  the  down-sampled
data.  Besides,  Li et  al.  [22]  used  fast  sampling  and  slow
sampling  samples  through  the  lifting  technology  and
resampling  for  batch  process  modeling.  However,  there  are
still  several  limitations  to  these  methods.  Up-sampling
methods  greatly  depend  on  the  accuracy  of  the  regression
model.  Down-sampling  methods  break  correlations  of  their
original  data  structures.  When  the  difference  between
sampling  rates  is  too  large,  training  data  will  be  statistically
insufficient and cannot derive an accurate enough model.

Another choice for multi-rate process modeling is to directly
utilize  the  original  dataset.  The  probabilistic  model  can
combine  the  probability  inference  and  the  expectation
maximization  (EM)  algorithm,  which  makes  it  possible  for
estimating  the  missing  data  and  multi-rate  process  modeling
[23]. Especially, the semi-supervised methods have been used
for quality prediction and monitoring in the dual-rate process.
Ge et al. [24] proposed a semi-supervised algorithm based on
Bayesian  canonical  PPCA  and  a  selection  method  of  the
dimension  of  latent  variables.  Zhou et  al.  [25]  proposed  a
semi-supervised  probabilistic  latent  variable  regression
(PLVR)  model  and  applied  it  on  a  continuous  process  and
batch process, in which the unbalanced fast sampling process
variables  and  slow  sampling  quality  indexes  were  both
involved.  Recently,  the  semi-supervised  probabilistic  model
has  been  extended  to  the  multi-rate  form.  The  multi-rate
PPCA and multi-rate factor analysis models are developed to
incorporate  the  measurements  with  different  sampling  rates
without  down-sampling  and  up-sampling.  Also,  the  common
latent variables are extracted in the probabilistic framework to
describe the auto-correlations among different sampling scales
[26], [27].

Besides, the correlation relationships in the actual industrial
processes  are  usually  nonlinear,  which  indicates  that  linear
models  will  be  improper  for  these  cases.  To  deal  with  the
nonlinear  relationship  among  process  and  quality  variables,
the  kernel  method  has  been  widely  used  in  many  statistical
learning  methods  such  as  support  vector  machines  (SVM),
kernel  principal  component  analysis  (KPCA),  kernel
probabilistic  principal  component  analysis  (KPPCA),  kernel
partial  least  squares  (KPLS)  [28]–[31],  etc.  Huang  and  Yan
[32]  proposed  a  quality-driven  kernel  principal  component
analysis  (Q-KPCA)  model  for  quality  dependent  nonlinear
process  monitoring  by  decomposing  the  kernel  matrices  into
quality  related  and  unrelated  spaces.  With  the  help  of  the
kernel trick,  the nonlinear correlations can be projected to be
linear  in  the  feature  subspace.  Besides,  ensemble  learning  is
also  an  idea  for  monitoring  nonlinear  processes.  Li  and  Yan
[33],  [34]  used  the  ensemble  learning  to  solve  nonlinear
problems  and  improve  monitoring  performance.  More
recently,  a  deep  learning  technology  has  been  rapidly
developed with the enhancements of the computing hardware

and the increase of the data storage capacity [35]. Using end-
to-end  learning,  the  parameters  of  feature  extraction  and
pattern classification in the multi-hidden layer network can be
coordinated  and  optimized.  For  process  modeling  and
monitoring  purposes,  deep  learning  technologies  have  also
been applied. Jiang et al.  [36] proposed a unified robust self-
monitoring framework, which adds the artificial  data into the
model input and introduces the robust training method into the
self-supervised  model.  Deng et  al.  [37]  proposed  a  deep
learning  method  based  on  the  nonlinear  PCA  model  for
industrial  process monitoring and fault  detection named deep
PCA (DePCA). Wu and Zhao [38] performed the convolution
operation on chemical industry data sets and proposed a deep
convolutional  neural  network  (DCNN)  model  for  fault
diagnosis.

In  these  models,  the  nonlinear  activation  functions  are
contained  in  each  layer,  which  makes  it  possible  to  solve
nonlinear  problems and  have  good fitting  abilities.  However,
most  current  deep  learning  models  still  require  that  the
dimensions  of  input  samples  must  be  unified.  It  is  hard  to
directly  utilize  the  traditional  deep  learning  models  for  the
nonlinear multi-rate processes.

In past research mentioned above, those mainly focused on
the  model  of  single  sampling  rate,  which  led  to  the  lack  of
process  monitoring  of  multi-sampling  rate  data.  Besides,  the
current multi-rate process modeling methods rarely considered
the nonlinear constraint relationship. Hence, the kernel multi-
rate  probabilistic  principal  component  analysis  (K-MPPCA)
model  is  proposed  to  extract  the  nonlinear  correlations  with
different  sampling  rates.  With  the  aid  of  the  kernel  trick,  the
common  principal  components  are  derived  in  the  high-
dimensional  feature  space,  in  which  the  correlations  between
the  principal  components  and  the  projected  measurements
among different sampling rates are assumed to be linear. The
model  parameters  can  also  be  calibrated  using  the  EM
algorithm.  Moreover,  the  fault  detection  scenarios  with
different  sampling  rates  are  further  developed  in  the  feature
space and several residual spaces for each sampling rate. The
corresponding  fault  detection  performance  is  expected  to  be
more  accurate  since  the  nonlinear  correlations  are  extracted
and  monitored  without  destroying  the  original  multi-rate
structures.

The  contribution  of  this  work  can  be  summarized  as
follows:

1)  The  constraint  nonlinear  relationship  with  different
sampling  rates  are  considered  in  the  proposed  K-MPPCA
model.  Besides,  a  nonlinear  EM  algorithm  is  proposed  for
model  parameter  estimation  since  the  explicit  nonlinear
correlations  between  the  original  measurement  and  the  latent
variables  cannot  be  obtained  after  the  kernel  method  is
introduced.

2)  A  fault  detection  scheme  for  a  nonlinear  multi-rate
process  is  developed.  In  K-MPPCA,  however,  the  squared
prediction error (SPE) statistics are difficult to derive in high-
dimensional  feature  space.  Hence,  it  is  further  constructed
with the help of the kernel trick in this paper.

The  rest  of  this  paper  is  organized  as  follows.  The  section
“Revisit  of  MPPCA” briefly  reviews  the  MPPCA  model,
which  is  linear  and  based  on  the  whole  multi-rate
measurement.  Then,  the  K-MPPCA  model  and  its  model
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parameter  estimation  method  for  the  nonlinear  multi-rate
process  are  introduced  in  detail  in “K-MPPCA  Model”. “K-
MPPCA  based  Fault  Detection” implements  the  nonlinear
process  monitoring  strategy  using  the  multi-rate  measure-
ments. “Case Studies” demonstrates a numerical example and
an actual industrial process to evaluate the performance of the
proposed method. Finally, some conclusions are made.  

II.  Revisit of Multiple Probability Principal
Component Analysis

As a multi-rate form of PPCA model, MPPCA has a similar
structure to PPCA and can make full use of data with different
sampling rates, which is given as follows
 

x1 =Φ1t+ε1
x2 =Φ2t+ε2

...

xS−1 =ΦS−1t+εS−1

xS =ΦS t+εS .

(1)

{x1 x2 · · ·xS−1 xS }
x1

xS

K1 K2, KS−1 KS
KS < KS−1 < · · · < K2 < K1 {Φ1 Φ2 · · ·ΦS−1 ΦS }

x1, x2, . . . , xS−1,xS
ε1 ∈ RM1 ε2 ∈ RM2

εS−1 ∈ RMS−1 εS ∈ RMS

ε1 ∼ N(0,σ2
1I) ε2 ∼ N(0,σ2

2I)
εS−1 ∼ N(0,σ2

S−1I) εS ∼ N(0,σ2
S I)

In this model, all the measurements with different sampling
rates can be included in a unique model.  are
the  process  variables,  where  sampling  rate  is  the  highest
and  sampling  rate  is  the  lowest.  In  the  actual  industrial
processes,  some  process  variables  are  collected  in  just  a  few
seconds  and  some  key  quality  indexes  need  the  offline  test
which  takes  a  lot  of  time.  Therefore,  it  can  be  assumed  that
the  number  of  samples  for  process  variables  at  different
sampling  rates , …,  and  are  given  as

,  and  are  the
loading matrices of the model under different sampling rates.
Like  most  probability  models,  the  latent  variable t shared  by

 is assumed to follow a Gaussian distribution
with  zero  mean  and  unit  variance. , , …,

 and  are  used  to  describe  their
respective  noises;  they  are  defined  to  follow  the  isotropic
Gaussian  distribution  as , , …,

 and ,  respectively.  The
MPPCA  model  has  brought  about  a  possible  solution  to  the
multi-rate  process  modeling  problem.  However,  it  still  only
extracts the linear relationship among different sampling rates.
Hence, it  is desirable to derive its nonlinear form for the real
multi-rate industrial processes.  

III.  Kernel Multiple Probability Principal Component
Analysis Model

{Φ1 Φ2 · · ·
ΦS−1 ΦS }

In  the  actual  multi-rate  process,  process  variables  often
exhibit  a  strong  nonlinear  relationship  which  leads  to  poor
interpretation  of  the  loading  matrices  (such  as 

,  as  obtained  in  the  MPPCA  model)  and  has  some
limitations on the fault detection approach based on it. In this
section,  the  linear  MPPCA  model  is  generalized  to  its
nonlinear  form using  the  kernel  trick,  which  is  named as  the
multi-rate probability kernel principal component analysis (K-
MPPCA)  model.  Also,  its  model  parameter  estimation
methods are derived.  

A.   Kernel  Multiple  Probability  Principal  Component  Analysis
Model (K-MPPCA)

The  nonlinear  relationship  between  the  multi-rate

{x1 x2 · · ·xS−1 xS }
{M1,M2, . . . ,MS−1,MS }

Φ : xs ∈ RMs 7→Φ(xs) ∈ F
Φ(xs)

measurements  and  their  common  latent  variables  are
constructed  in  K-MPPCA.  The  original  multi-rate  measure-
ments  are ,  in  which  their  dimensions  are

,  respectively.  In  K-MPPCA,  they  are
first  projected  into  a  high-dimensional  feature  space  as

,  where  the  correlations  between
the  latent  variables  and  are  thought  of  as  linear,  and
they are given as
 

Φ(x1) = P1t+e1

Φ(x2) = P2t+e2

...

Φ(xS−1) = PS−1t+eS−1

Φ(xS ) = PS t+eS

(2)

Φ(xs)

{P1 P2 . . .PS−1 PS }{
e1∼N(0,σ2

1I), e2∼N(0,σ2
2I), . . . ,eS−1∼N(0,σ2

S−1I),
eS ∼N(0,σ2

S I)
}

VS = {(Φ(x1k),Φ(x2k), . . .,Φ(xS k)) |k = 1, . . . ,KS } VS−1 ={(
Φ(x1k),Φ(x2k), . . . ,Φ(xS−1,k)

) |k = KS +1, . . . ,KS−1
}

V2 =

{Φ(x1k),Φ(x2k)|k = K3+1, . . . ,K2} V1 = {Φ(x1k)|k = K2+

1, . . . ,K1}
V = VS ∪VS−1∪ · · ·∪V2∪V1

{σ2
1,σ

2
2, . . . ,σ

2
S } σ2

where the correlations between the latent variables and 
are  thought  as  linear  and  constructed  using  the  loading
matrices .  The  common latent  variable t is
shared by all the measurements with different sampling rates.
The noises 

 are  assumed  to  be  Gaussian  and  are  used  to
describe  the  residual  spaces  of  the  model.  The  whole
measurements which contain different classes of sampling rate
are  divided  into  different  partitions.  Therefore,  all  multi-
rate measurements can be arranged and divided into S partiti-
ons as , 

,…, 
 and 

. According to the above arrangement, the whole data
set can be written as a union as .
The  reason  for  dividing  all  data  into S partitions  is  that  the
expected  values  of  latent  variables  in  different  partitions  are
updated  differently.  At  the  same  time,  when  updating  model
parameters ,  different  requires  the
expectation  of  the  latent  variables  from  different  partitions.
Therefore,  dividing  the  data  into S partitions  can  make  the
model  more  concise  and  the  parameter  updating  procedures
clearer.  Although  the  data  are  divided  into S partitions,  the
latent  variables  are  jointly  determined  by  all  the  multi-
sampling  rate  data.  Hence,  the  K-MPPCA  model  is  still  a
unified model unlike those separated models.  

B.  Model Parameter Estimation Using Nonlinear EM{
P1,P2, . . . ,PS ,σ

2
1,σ

2
2, . . . ,σ

2
S

}Like  most  probability  models,  the  model  parameters
 of K-MPPCA can be estimated

by the  EM algorithm,  which  calibrates  the  model  parameters
by  iterating  the  expectation  (E-step)  and  maximization  (M-
step) steps until the model parameters converge. In the E-step,
the  current  model  parameters  are  used  to  calculate  the
posterior distribution of the latent variables, which is given as
 

E
(
t̂k | Vi

)
=Ω−1

i

i∑
s=1

σ−2
s PT

sΦ
(
xs,k
)
, i = 1,2, . . . ,S (3)

 

Ω−1
i =

i∑
s=1

σ−2
s PT

s Ps+ I, i = 1,2, . . . ,S (4)

 

E
(
t̂k t̂T

k | Vi
)
=Ω−1

i +E
(
t̂k | Vi

)
ET
(
t̂k | Vi

)
, i = 1,2, . . . ,S .

(5)
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In  the  M-step,  the  exponential  likelihood  function  is
maximized, which is given as
 

L = LS +LS−1+ · · ·+L2+L1

=

KS∑
k=1

lnp (Φ (x1k) ,Φ (x2k) , . . . ,Φ (xS k))

+

KS−1∑
k=KS +1

lnp
(
Φ (x1k) ,Φ (x2k) , . . . ,Φ

(
xS−1,k

))
+ · · ·+

K2∑
k=K3+1

lnp (Φ (x1k) ,Φ (x2k))+
K1∑

k=K2+1

lnp (Φ (x1k)) .

(6)
The  updated  model  parameters  value  can  be  obtained  by

taking  the  partial  derivative  of  the  likelihood  function
concerning the parameter and they are estimated as
 

P̂i =



KS∑
k=1

Φ (xik) ET
(
t̂k | VS

)
+

KS−1∑
k=KS +1

Φ (xik) ET
(
t̂k | VS−1

)
+ · · ·+

KI∑
k=K2+1

Φ (xik) ET (tk | Vi)



×



KS∑
k=1

E
(
t̂k t̂T

k | VS
)
+

KS−1∑
k=KS +1

E
(
t̂k t̂T

k | VS−1
)

+ · · ·+
Ki∑

k=Ki+1+1

E
(
t̂k t̂T

k | Vi
)



−1

i = 1,2, . . . ,S (7)
 

σ̂2
i =

1
MiKi



K1∑
k=1

Φ(x1k)TΦ (x1k)

−2



KS∑
k=1

ET
(
t̂k | VS

)
P̂T

i Φ (xik)

+

KS−1∑
k=KS +1

ET
(
t̂k | VS−1

)
P̂T

1Φ (xik)

+ · · ·+
Ki∑

k=Ki+1+1

ET (tk | Vi) P̂T
i Φ (xik)



+trace





KS∑
k=1

E
(
t̂k t̂T

k | VS
)

+

KS−1∑
k=KS +1

E
(
t̂k t̂T

k | VS−1
)

+ · · ·+
Ki∑

k=Ki+1

E
(
t̂k t̂T

k | Vi
)


P̂T

i P̂i




i = 1,2, . . . ,S . (8)

{Φ (x1) ,Φ (x2) , . . . ,Φ (xS−1) ,Φ (xS )}

It can be readily obtained that the model parameters cannot
be  directly  estimated  using  the  above  equations  since  the
projected  values  are
unknown.  Therefore,  it  is  necessary  to  introduce  the  kernel
method by calculating the kernel matrix of different sampling
variables.  In  such  a  manner,  a  nonlinear  EM  algorithm  is

developed.
Firstly,  all  the  loading  matrices  can  be  decomposed  into

three parts, which are given as follows:
 

P̂i =Φ(Xi)T TiC−1
i , i = 1,2, . . . ,S (9)

{Φ (Xi) ,Ti,Ci} (i = 1,2 . . .S )where  are respectively defined as
 

Φ (Xi) =
[
Φ
(
xi,1
)
,Φ
(
xi,2
)
, . . . ,Φ

(
xiKi−1

)
,Φ
(
xi,Ki

)]T
i = 1,2, . . . ,S (10)

 

Ti =
[
TVS ,TVS−1 , . . . ,TVi

]T

=


E
(
t̂1 | VS

)
, . . . ,E

(
t̂KS | VS

)
E
(
t̂KS +1 | VS−1

)
, . . . ,E

(
t̂KS−1 | VS−1

)
· · ·
E
(
t̂Ki+1+1 | V2

)
, . . . ,E

(
t̂Ki | V2

)

T

i = 1,2, . . . ,S (11)
 

Ci =

S∑
S=i

CVS =



KS∑
k=1

E
(
t̂k t̂T

k | VS
)
+

KS−1∑
k=KS +1

E
(
t̂k t̂T

k | VS−1
)

+ · · ·+
Ki∑

k=Ki+1+1

E
(
t̂k t̂T

k | V2
)


i = 1,2, . . . ,S . (12)

At  the  same  time,  the  equivalent  transformation  can  be
obtained as
 

P̂T
i P̂i = C−1

i TT
i Φ (Xi)Φ(Xi)T TiC−1

i = C−1
i TT

i KiTiC−1
i

P̂T
i Φ (xik) = C−1

i TT
i Φ (Xi)Φ (xik) = C−1

i TT
i kik, i = 1,2, . . . ,S

(13)
Ki =Φ(Xi)Φ(Xi)T , i = 1,

2, . . . ,S
where we introduce the kernel  trick 

 with  each  entry  for S different  sampling  rate.  Hence,
the measurements with the same sampling rate share the same
kernel matrix, which is given as
 

Ki(h, j) =
⟨
Φ
(
xi,h
)
,Φ
(
xi, j
)⟩
=Φ
(
xi,h
)TΦ (xi, j

)
, i = 1,2, . . . ,S .

(14)
{k1,k2, . . . ,kS−1,kS }
{K1,K2, . . . ,KS−1,KS }

Also,  are  the  vectors  of  the  kernel
matrices . Using the (9)–(13), the E-step
of K-MPPCA can be updated as
 

E
(
t̂k | Vi

)
=Ω−1

i

i∑
S=1

σ−2
i C−1

i TT
i ki,k, i = 1,2, . . . ,S (15)

 

Ω−1
i =

i∑
S=1

σ−2
S C−1

S TT
S KS TS C−1

S + I, i = 1,2, . . . ,S (16)

 

E
(
t̂k t̂T

k | Vi
)
=Ω−1

i +E
(
t̂k | Vi

)
ET
(
t̂k | Vi

)
, i = 1,2, . . . ,S .

(17)
By  introducing  the  kernel  trick,  the  K-MPPCA  model

avoids  the  problem  of  solving  the  explicit  nonlinear
relationships  between  the  process  variables  and  the  latent
variables.  Hence,  the  posterior  expectations  of  the  latent
variables  can  be  obtained  without  loading  matrices  in  the  E-

 1468 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 8, AUGUST 2021



step. Because of this and the assumption that process variables
and  latent  variables  are  nonlinear,  the  model  K-MPPCA  is
nonlinear.

Similarly,  the  kernel  trick  can  also  be  used  to  update  the
model parameters in the M-step, which is given as
 

σ̂2
i =

1
MiKi

{
trace (Ki)− trace

(
TT

i KiTiC−1
i

)}
, i = 1,2, . . . ,S

(18)
in  which  trace  (·)  is  an  operator  for  the  trace  value  of  the
matrix.  The  detailed  derivation  of  the  M-step  is  provided  in
Appendix  A.  In  the  nonlinear  EM  algorithm,  the  accurate
model parameters can be obtained by iterating E-step and M-
step  until  convergence.  It  should  be  noted  that  the S-type
measurement  data  in  the  multi-rate  process  were  reordered
and  the  corresponding  measurement  variables  were  given
before  the  EM  algorithm.  This  is  for  ease  of  tagging  and
coding.  The  model  parameters  estimation  can  still  work
without this step. In addition, the projected values need to be
re-centralized. The specific centralized equations are
 

K̄i = K̄i−
1ni1T

ni
Ki

ni
−

Ki1ni1T
ni

ni
+

1ni1T
ni

Ki1ni1T
ni

ni
(19)

1ni = [1, . . . ,1]T , i = 1,2, . . . ,S
ni ith

where  is the one-column vector
of length , which is the size of the data at  sampling rate.  

C.  Discussions of K-MPPCA
In  this  subsection,  some  properties  of  the  proposed  K-

MPPCA models are further discussed by several remarks.
Remark 1: The proposed K-MPPCA can reduce to KPPCA

when S=1,  in  which  the  measurements  with  single  sampling
rate is used for model training. Also, K-MPPCA can reduce to
supervised  KPLVR  (S=2  and K1=K2)  or  semi-supervised
KPLVR  (S=2  and K1≠K2).  Therefore,  these  models  can  be
treated as the specific forms for K-MPPCA.

Remark 2: The proposed K-MPPCA model implicitly maps
the  original  multi-rate  measurements  to  a  higher  dimension.
By  designing  appropriate  kernel  parameters,  the  projected
values  turn  to  be  linearly  correlated  and  the  constraint
relationship with different sampling rate can be presented by a
few linear latent variables.

Remark 3: It is noticed that the K-MPPCA model is totally
different  from  several  separated  KPPCA  models.  The  latent
variables  of  K-MPPCA  are  determined  by  simultaneously
considering  all  the  classes  of  the  process  variables  and  the
model  parameters  which  are  influenced by  each  other.  It  can
be  seen  from  (15)–(18)  that  model  parameters  at  different
sampling  rate  are  affected  by  parameters  of  other  sampling
rates rather than just themselves.  

IV.  K-MPPCA BAsed Fault Detection

T 2

It  should  be  noted  that  the S-type  measurement  data  in  the
multi-rate  process  were  reordered  and  the  corresponding
measurement  variables  were  given  before  the  EM algorithm.
After  the  K-MPPCA  model  is  constructed,  two  commonly
used  measures  and SPE statistics  are  applied  to  establish
the  fault  detection  scheme.  These  two  statistics  are  used  to
monitor  the  variations  of  the  common  principal  component
space  and  the  residual  space,  respectively.  It  is  worth  noting

T 2

that the posterior distributions of the latent variables should be
separately  estimated  using  different  equations  when  different
classes  of  measurements  are  collected.  Therefore,  the
calculation  method of  and SPE statistics  of  the  multi-rate
process is different from that in the traditional methods.

When  the  new  samples  are  collected  under  different
sampling rates, the expected values of the latent variables are
calculated  separately  considering  different  conditions,  which
depend  on  which  class  of  measurements  it  contains.  The
estimated  mean  projections  of  latent  variables  are  calculated
as
 

ti,new =Ω
−1
i

i∑
s=1

σ−2
s C−1

s TT
s KT

new,s, i = 1,2, ...,S (20)

Knew,s
T 2

where  are the kernel matrices between the test data and
normal data. The  statistic can be constructed as
 

T 2
i,new = tT

i,newvar−1(ti,new|Φ(xi,new))ti,new, i = 1,2, ...,S (21)

ti,new
var−1(ti,new|Φ(xi,new))

T 2 T 2

T 2

where  is  the  estimated  latent  variable  with  the
measurements  of ith classes  and  is  its
corresponding  variance  and  it  varies  based  on  the  number  of
the measurements at  different sampling time. The confidence
limit  of  statistics  can  be  gotten  by  approximating  of
normal  data  by  an  F-distribution  [8].  If  statistics  of  test
data exceed the confidence limit, the corresponding sample is
thought as a fault.

In addition, SPE statistics can also be constructed based on
the  prediction  errors  of  the  model.  Considering  that  the  test
data may have multiple sampling rates,  it  must design S type
of SPE statistics for S sampling rates, which is given as
 

S PEi,new = eT
i,newei,new

= [Φ(xi,new)−Φ(x̂i,new)]T [Φ(xi,new)−Φ(x̂i,new)]

i = 1,2, ...,S . (22)
Φ(xi,new)Since  the  projected  values  cannot  be  directly

obtained,  the  kernel  function  is  also  used  to  eliminate  the
inner  product  of  the  high-dimensional  mapping  set  and  they
are given as
 

S PEi,new =Ki,new−2Ki,newTiC−1
i ti,new

+ (TiC−1
i ti,new)T KiTiC−1

i ti,new

i = 1,2, ...,S . (23)
S PEi,new

χ2 S PE ∼ g ·χ2
h

χ2

The  detailed  derivation  of  are  provided  in
Appendix B. It is noticed that the SPE statistics are separately
constructed  for  different  sampling  rates.  Hence,  they  can
reflect the fluctuations of process variables for each sampling
rate in the residual space and indicate the particular fault. The
confidence line of the SPE statistics can also be estimated by
an  distributed approximation: , in which g and
h are  the  parameters  of  distribution  and  they  are  given  as
[39]
 

g ·h = mean(S PEnormal)

2g2h = var(S PEnormal). (24)
  

V.  Case Study

In  this  section,  a  numerical  example  and  an  actual  pre-
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decarbonization  unit  in  the  ammonia  synthesis  process  are
tested  to  evaluate  the  process  modeling  and  monitoring
performance  of  the  proposed  method.  The  first  one  is  a
hypothetical  example,  as  it  is  easier  to  understand  why  the
proposed  K-MPPCA  outperforms  the  traditional  models.
Then,  we  applied  the  proposed  method  to  a  pre-
decarbonization  unit  data  in  the  ammonia  synthesis  process
found  in  the  chemical  industry.  In  both  cases,  the  process
variables  are  highly  nonlinearly  correlated,  in  which  several
nonlinear  process  monitoring  methods  are  compared,
especially when the process sampling rates are different.  

A.  Numerical Example
In  order  to  demonstrate  the  effectiveness  of  the  proposed

algorithm,  a  multi-sampling  rate  process  is  designed  in  this
section.  There  are  8  variables  in  the  system,  which  are
obtained by a nonlinear combination of 6 latent variables. The
process is given as follows:
 

x1 = 0.1t1+ t2÷ sqrt(t62+ t22)+0.3t4

x2 = 0.1t1× t2+ t2÷ sqrt(t62+ t22)

x3 = t2× (cos t33)+0.1exp(sin(t2))

x4 = sin(t1)3+0.2× log(2+ cos(t4))

x5 = exp(cos(t2))+3× log(30− sin(t5))+ t6
x6 = 0.1t4+ exp(t3+ t1)

x7 = 0.5t5+ t1+ sin(t2)

x8 = exp(t1)+ log(sin(t6)+5)+ t3 (25)
{x1, x2, . . . , x8} {t1, . . . , t6}

N
(
0,0.12I

)
{x1, x2, . . . , x5} {x6, x7}

x8

{x1, x2, . . . , x5}
{x6, x7} x8

{x1, x2, . . . , x5}

where  are  process  variables  and  are
latent variables. Besides, some small disturbances are added to
simulate  the  measurement  noises,  which  are  assumed  to
follow  Gaussian  distribution  as .  In  this  process,
these variables are collected in different sampling rates, where

 are sampled once a minute,  are sampled
every  two  minutes,  and  is  collected  every  ten  minutes.  In
total,  these  variables  are  generated  within  a  period  of  2000
minutes,  which indicates that  2000 samples of ,
1000 samples of , and 200  have been collected. For
comparison, KPPCA and Q-KPCA are also used for nonlinear
process modeling and monitoring [29], [31]. Since KPPCA is
based on the single sampling rate data, there are two types of
data pre-processing methods used in this paper.  The first  one
only  uses  the  measurements  with  the  highest  sampling  rate,
which  means  that  only  are  used  for  the  model
training. This model is named as KPPCA1.  Another choice is
to  utilize  the  samples  where  all  the  variables  are  collected  at
that sampling interval. Hence, only 200 samples are obtained,
which  are  based  on  the  lowest  sampling  rate.  This  model  is
named  KPPCA2.  The  dimension  of  the  feature  space  of  K-
MPPCA  is  selected  as  10.  The  widely  used  radial  basis
function (RBF) is  selected as  the  kernel  function.  The kernel
parameters  are  chosen  as  450,  30,  and  0.1  for  different
sampling  rates.  To  be  fair,  the  component  numbers  of
KPPCA1 and  KPPCA2 are  both  set  as  10  and  their  kernel
parameters are both selected as 450: the same as that in the K-
MPPCA model with the highest sampling rate. The choice of
the  kernel  parameters  is  still  an  open  question  in  kernel

{x1, x2, . . . , x5} x8

T 2
y T 2

o

learning  methods.  In  this  paper,  the  cross-validation  is  used
for model selection and it is obtained that these three methods
can achieve the best results under the same kernel parameters.
Moreover,  the  fault  detection  effect  of  the  model  does  not
change  greatly  when  the  kernel  parameters  are  kept  within  a
certain  range.  For  the  Q-KPCA  model,  in  this  case,

 are  the  process  variables  and  is  the  key
quality  variable  in  Q-KPCA.  Again,  only  the  data  at  the  full
sampling  interval  are  utilized.  The  kernel  parameter  is  set  to
500 according to the cross-validation method. The dimensions
of  the  latent  variables  in  quality-related  space  and  quality-
uncorrelated space are set to be 1 and 50, respectively. In Q-
KPCA,  and  statistics are used to monitor the changes of
these two spaces respectively.

For  fault  detection purposes,  another  set  of  samples  with  a
period of 2000 minutes are generated,  in which five kinds of
faults  are  introduced  from  the 1001st  minute  to  evaluate  the
fault  detection  performance  for  different  models.  Like  most
fault detection methods, both T2 and SPE statistics are used to
measure  the  effect  of  fault  detection  in  this  case.  The
calculation methods of the control limit of two statistics have
been  mentioned  in  the  previous  section.  If  the  value  of  the
statistic  is  greater  than  the  control  limit,  it  is  considered  a
fault. The detailed fault descriptions are given in Table I.
 

TABLE I 

Fault Description in the Numerical Example

Fault Fault variable Fault type Time

1 1st latent variable Step change by 1 1001–2000

2 3rd latent variable Ramp change by 0.005×t 1001–2000

3 4th process variable Additive random fault with N(0,5) 1001–2000

4 8th process variable Structure change by log to exp 1001–2000

5 7th process variable Step change by 1 1001–2000
 
 

In  this  paper,  the  false  alarm  rates  and  missing  detection
rates  of  faults  are  used  to  qualify  the  process  monitoring
results. Among them, false alarm rates refer to the proportion
of  normal  samples  identified  as  fault  samples,  while  missing
detection  rates  refer  to  the  proportion  of  fault  samples
detected as  normal  samples.  Given a  significance level  of  99
percent, the detailed fault detection results are given in Table II.

The lower false alarm and missing detection rate, the better
the  model  performance.  The  results  with  better  detection
performance are highlighted in bold and the fault 0 data is the
false alarm rate of these three models.

T 2

As shown in Table II, the fault detection performance of the
K-MPPCA model is better than the other two models for most
cases. The main reason is that the proposed K-MPPCA model
has made use of all the collected data to extract the nonlinear
correlations  among different  sampling rates.  For  comparison,
KPPCA1 does  not  consider  the  low  sampling  data  and
KPPCA2 has  neglected  too  many  useful  fast  sampling  data.
The  Q-KPCA  model  only  shows  good  detection  effect  on
Fault 3. This shows that the full utilization of multi-sampling
rate data can effectively improve the performance of nonlinear
process monitoring. Take Fault 1 for example: the false alarm
rate  of  the  and SPE statistics  for  the  K-MPPCA model  is
lower  than  the  other  three  alternatives.  The  detailed  fault
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detection results  of  Fault  1  using different  models  are shown
in Fig. 1.

In  addition,  the SPE statistics  are  separately  built  for
different  sampling  rates  for  the  K-MPPCA  based  fault
detection  strategy  since  the  measurements  with  multiple
sampling  rates  are  usually  collected  from  different  sources,
such  as  process  and  quality  variables.  Hence,  such  a  design
will  be  helpful  for  further  fault  identification.  For  example,
Fault 4 and Fault 5 are about the process variables x7 and x8.
However,  KPPCA1 did  not  use  variables x7 and x8 during
modeling. Hence, the fault about x7 and x8 will not be detected
using KPPCA1.

In practice, such faults are similar to the sensor faults, which
often  exist  and  whose  sampling  rate  of  fault  variables  is
sometimes  low.  If  only  the  highest-sampling-rate  data  are
used  for  modeling  like  KPPCA1,  such  faults  will  not  be
detected  totally,  which  will  cause  great  damage.  Hence,  this
situation  also  highlights  the  advantages  of  our  proposed  K-
MPPCA over KPPCA1 which are shown in Fig. 2.

T 2

In addition, since different SPE statistics are established for
variables with different sampling rates, the K-MPPCA model
can indicate the specified sampling rate according to the SPE
statistics.  This  is  also  helpful  for  further  fault  identification.
For KPPCA2, however, it only contained part of sampled data
so  that  the  established  model  is  not  accurate  enough  and  the
false alarm rate is too high. By contrast,  the  and statistics
in  the  K-MPPCA  model  can  accurately  detect  the  potential
faults with a low false alarm rate. At the same time, only the
SPE statistic  at  the  second  sampling  rate  has  exceeded  the
control  limit,  which  can  be  used  to  determine  the  range  of
variables  that  are  causing  the  fault.  Furthermore,  it  is  useful
for further fault identification. The detailed detection result of
Fault 5 is shown in Fig. 2.  

B.  Pre-Decarburization Unit
The ammonia synthesis process is quite common in modern

chemical  industries  and  its  product,  NH3,  is  also  the  basic
material  for  many processes,  such as  the  urea  synthesis.  Pre-
decarburization  is  a  crucial  unit  to  the  process  and  its  main
function  is  to  eliminate  carbon dioxide  (CO2)  in  the  original
process  gas  (PG)  as  much  as  possible.  The  flowchart  of  the
pre-decarburization unit with all instruments is given in Fig. 3.

The  process  description  and  the  sampling  rates  of
measurements are tabulated in Table III.

From  the  DCS  database  in  the  ammonia  synthesis  proc-
ess, nine process variables under the normal operation condi-
tion  within  a  period  of 3000 min  are  collected.  As  shown in

 

TABLE II 

Monitoring Results in the Numerical Example

Fault
K-MPPCA KPPCA1 KPPCA2 Q-KPCA

T2 SPE1 SPE2 SPE3 T2 SPE T2 SPE T2
y T2

o

0 0.067 0.189 0.038 0.2 0.08 0.281 0.03 0.16 0.01 0.04

1 0.134 0.157 0.242 0.01 0.08 0.293 0.97 0.55 0.140 0.970

2 0.468 0.586 0.138 0.38 0.497 0.436 0.15 1 0.950 1

3 1 0 0.804 0.98 0.992 0 1 0 0 0.010

4 0.941 0.749 0.94 0.35 0.93 0.696 1 0 1 1

5 0.915 0.99 0.096 0.8 0.919 0.929 0 0.1 1 0.970
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Fig. 1.     Monitoring  results  of  Fault  1  in  the  numerical  example  by (a)  K-
MPPCA, (b) KPPCA1, (c) KPPCA2, (d) Q-KPCA.
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Table III,  there  are  three  kinds  of  sampling  rates  in  these
measurements, in which 4 of them are sampled per minute and
the other variables are sampled every 2 min or 10 min. Hence,
3000 XMEAS  (1)–(4), 1500 XMEAS  (5)–(7)  and  300
XMEAS (8)–(9) are collected in total. As in the last case, the
proposed  K-MPPCA,  KPPCA1,  KPPCA2,  and  Q-KPCA
models are built based on these normal datasets. Similarly, the
KPPCA1 model  only uses the data with the highest  sampling

rate  for  modeling.  Although the  sampling number  is  as  large
as the K-MPPCA model, other low sampled variables are not
utilized. KPPCA2 model only selects the data at the sampling
interval  when  all  variables  have  been  recorded,  which
indicates that only 300 samples are used. The Q-KPCA model
uses XMEAS (1)–(4) as process variables and XMEAS (9) as
the  quality  variable.  Similar  to  KPPCA2,  only  300  samples
which  contain  all  the  measurements  are  used  for  training.  In
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Fig. 2.     Monitoring results of Fault 5 in the numerical example by (a) K-MPPCA, (b) KPPCA1, (c) KPPCA2, (d) Q-KPCA.
 

 

Pump 1

M

M

U10 Y

U9

U6

U1

U5 U4

U8

U3

U2

U19 U17

U11

U13

U14

U14

U16

U15

U18

U7

U20

Feed
natural gas

Separator
2

Separator
1

Absorption
column

Amine
liquor

Process gas

Rich amine liquor

Amine
liquor

Amine
liquor

Pump 2

Heat exchanger (E1)

Process natural gas (NG) pipe
Amine liquor pipe
Instrument line

Pre-decarburization
flow chart

 
Fig. 3.     Flow chart of the pre-decarbonization unit.
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this case, the traditional Gaussian kernel is still selected as the
kernel method and the kernel parameter of K-MPPCA is set to
be 1000 while  the  kernel  parameters  of  two  KPPCA  models
and  the  Q-KPCA  model  are  set  to  be  800  according  to  the
tuning result.  The dimension of all feature spaces of both the
K-MPPCA and KPPCA model are set to 20. According to the
fluctuation  of  the  raw  materials,  the  DCS  database  has
recorded two types of faults. To measure the effectiveness of
fault  detection,  another 3000 min  of  process  variables  were

collected as the test data and the faults are started at the 1501st
min. The false alarm rate and missing detection rate are used
to  compare  the  detection  performance  of  different  models.
The results for both faults are given in Table IV.

T 2

It  can  be  found  that  the  fault  detection  performance  of  the
K-MPPCA model is improved compared with alternatives, as
in the last case. For both faults, the abnormal condition can be
opportunely  detected  with  the  low  false  alarm  rates.  In
contrast,  the  false  alarm  rates  of  the  two  types  of  KPPCA
models are much higher, which indicates the control limits of
these  two models  are  wrong and the  corresponding detection
results  are  invalid.  Especially,  the  missing  detection  rates  of

 and SPE statistics in Fault 1 are all close to zero with the
normal false alarm rates. However, the detection performance
of the normal test  data using KPPCA1 and KPPCA2 are both
higher so that the corresponding fault detection results invalid.
The  fault  detection  performance  of  the  Q-KPCA  model
performs  better  than  KPPCA  model  due  to  its  functionality
with  nonlinear  models.  However,  K-MPPCA is  still  superior
since  it  can  deal  with  the  multi-rate  modeling  problems.  The
detailed process monitoring result of Fault 1 is shown in Fig. 4.  

VI.  Conclusions

In this paper, a kernel generalized MPPCA model has been
proposed  for  nonlinear  process  modeling  and  monitoring

 

TABLE III 

Process Description and Sampling Rates of the
Pre-Decarburized Unit

Number Tags Descriptions Sampling rate

XMEAS (1) U12 Level A of 15-C001

1 min
XMEAS (2) U14 Level B of 15-C001

XMEAS (3) U16 Level C of 15-C001

XMEAS (4) U20 Level of recovery column

XMEAS (5) U1 Flow-rate of input natural gas
2 minXMEAS (6) U2 Level of 15-F001

XMEAS (7) U3 Pressure differential of 15-F001

XMEAS (8) U5 Temperature of input natural gas 10 min
XMEAS (9) U9 Temperature of outlet gas at 15-F002

 

 

TABLE IV 

Monitoring Results in the Pre-Decarbonization Unit

Fault
KMPPCA KPPCA1 KPPCA2 Q-KPCA

T2 SPE1 SPE2 SPE3 T2 SPE T2 SPE T 2
y T 2

o

Normal 0.0480 0.0567 0.0107 0.0133 0.58 0.008 0.9933 0.6733 0.0200 0.3467

Fault 1 0.0120 0 0 0 0 0.1020 0 0.0067 0.0800 0.0200

Fault 2 0 0.0307 0 0 0.0020 0.9207 0 0 0.4866 0.1666
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Fig. 4.     Monitoring results of Fault 1 in the pre-decarbonization unit by (a) K-MPPCA, (b) KPPCA1, (c) KPPCA2, (d) Q-KPCA.
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purpose. With the introduction of the kernel trick for process
variables with different sampling rates, a nonlinear multi-rate
probabilistic  model is  derived to utilize all  the measurements
from different  sampling  scales.  Also,  the  corresponding  fault
detection  approach  is  developed  based  on  the  proposed  K-
MPPCA. The case study of numerical example and an actual
industrial  process  example  prove  the  feasibility  of  the
proposed  method.  In  our  future  studies,  more  nonlinear
modeling  technologies  like  the  deep  learning  models  will  be
explored for  multi-rate  process monitoring purpose,  in  which
the  nonlinear  modeling  performance  for  the  measurements
with  different  sampling  rates  are  desired  to  be  further
improved.  At  the  same  time,  more  complex  data
characteristics  like  the  auto-correlations  will  be  considered
simultaneously.  

Appendix A
Detail Derivation of the M-Step

As  we  defined  above,  the  parameters  estimation  equations
are given as follows:
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i = 1,2, . . . ,S . (26)

σ̂2
1

With  the  introduction  of  the  kernel  tricks,  (8)  can  be  all
rewritten  to  (18).  Hence,  we  take  the  parameter  estimation
equation of  as an example:
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



=
1

M1K1



trace(K1)+ trace
(
T1

T K1T1C1
−1
)

−2



KS∑
k=1

ET (t̂k |VS )P̂T
1Φ(x1k)

+

KS−1∑
k=KS +1

ET (t̂k |VS−1 )P̂T
1Φ(x1k)

+ · · ·+
K1∑

k=K2+1

ET (tk |V1 )P̂T
1Φ(x1k)





=
1

M1K1



trace(K1)+ trace
(
T1

T K1T1C1
−1
)

−2



KS∑
k=1

ET (t̂k |VS )C1
−1T1

T k1k

+

KS−1∑
k=KS +1

ET (t̂k |VS−1 )C1
−1T1

T k1k

+ · · ·+
K1∑

k=K2+1

ET (tk |V1 )C1
−1T1

T k1k


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=
1

M1K1

 trace(K1)+ trace
(
T1

T K1T1C1
−1
)

−2trace
(
T1

T K1T1C1
−1
)


=

1
M1K1

{
trace(K1)− trace

(
T1

T K1T1C1
−1
)}
. (27)

Based on the derivation in (1), the estimation equations for
other parameters can be rewritten in a similar way as
 

σ̂2
1 =

1
M1K1

{
trace(K1)− trace

(
TT

1 K1T1C−1
1

)}
σ̂2

2 =
1

M2K2

{
trace(K2)− trace

(
TT

2 K2T2C−1
2

)}
...

σ̂2
S−1=

1
MS−1KS−1

{
trace(KS−1)−trace

(
TT

S−1KS−1TS−1C−1
S−1
)}

σ̂2
S =

1
MS KS

{
trace(KS )− trace

(
TT

S KS TS C−1
S

)}
. (28)

  

{
S PE1,new,S PE2,new, ...,S PES−1,new,S PES ,new

}Appendix B
Detail Derivation of

In  (22),  the  projection  of  the  process  variables  can  not  be
directly  obtained.  Hence,  (22)  can  be  rewritten  as  follow  by
introducing  the  kernel  matrix.  Here  we  take  the  equation  of
SPE1 as the example:
 

S PE1,new = eT
1 e1 = [Φ(x1)−Φ(x̂1)]T [Φ(x1)−Φ(x̂1)]

=Φ(x1)TΦ(x1)−Φ(x̂1)TΦ(x1)

−Φ(x1)TΦ(x̂1)+Φ(x̂1)TΦ(x̂1)

=Φ(x1)TΦ(x1)−Φ(x̂1)TΦ(x1)

−Φ(x1)TΦ(x̂1)+Φ(x̂1)TΦ(x̂1)

=K1,new− (P1t1,new)TΦ(x1)−Φ(x1)T P1t1,new

+ (P1t1,new)T P1t1,new

=K1,new− tT
1,newPT

1Φ(x1)− (PT
1Φ(x1))T t1,new

+ tT
1,newPT

1 P1t1,new

=K1,new− tT
1,newC1

−1T1
TΦ(X1)TΦ(x1)

− (C1
−1T1

TΦ(X1)TΦ(x1))T t1,new

+ tT
1,newC1

−1T1
T K1T1C1

−1t1,new

=K1,new− tT
1,newC1

−1T1
T Knew,1

− (C1
−1T1

T Knew,1)T t1,new

+ tT
1,newC1

−1T1
T K1T1C1

−1t1,new

=K1,new−2(C1
−1T1

T Knew,1)T t1,new

+ tT
1,newC1

−1T1
T K1T1C1

−1t1,new

=K1,new−2Knew,1T1C−1
1 t1,new

+ tT
1,newC1

−1T1
T K1T1C1

−1t1,new

=K1,new−2Knew,1T1C−1
1 t1,new

+ (T1C1
−1t1,new)T K1T1C1

−1t1,new (29)
K1,new Knew,1where  is the kernel matrix of the test data. And 

is  the  kernel  matrix  of  the  test  data  and  the  normal  data.
According to the equation above, the whole SPE statistics can
be calculated as
 

S PE1,new =K1,new−2Knew,1T1C−1
1 t1,new

+ (T1C−1
1 t1,new)T K1T1C−1

1 t1,new

S PE2,new =K2,new−2Knew,2T2C−1
2 t2,new

+ (T2C−1
2 t2,new)T K2T2C−1

2 t2,new

...

S PES−1,new =KS−1,new−2Knew,S−1TS−1C−1
S−1tS−1,new

+ (TS−1C−1
S−1tS−1,new)T KS−1TS−1C−1

S−1tS−1,new

S PES ,new =KS ,new−2KnewS TS C−1
S tS new

+ (TS C−1
S tS new)T KS TS C−1

S tS new. (30)
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