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ABSTRACT

Articulated human pose estimation is one of the fundamen-

tal computer vision problems. In this paper, a Bi-directional

Message Passing(BDMP) module is proposed to fuse convo-

lutional features of different scales in the up-sampling process

of the hourglass model for human pose estimation. More-

over, a novel module which integrates Spatial and Channel-

wise Attention Network(SCANet) is proposed to refine the

features obtained from the message passing stage. We design

a Semantics-aware Channel-wise Attention(SACWA) module

to reduce the feature redundancy and enrich the semantic in-

formation simultaneously. A Sharper Spatial Attention(SSA)

module based on the Gumbel-Softmax sampling is proposed

to exclude the interference from cluttered background and

overcomes the gradient degradation induced by the softmax

normalization. The proposed framework achieves leading po-

sition on MPII benchmark against the state-of-the-arts meth-

ods with much less parameters.

Index Terms— human pose estimation, message passing,

SCANet

1. INTRODUCTION

Human pose estimation means to locate body parts(head,

shoulders, elbows, writsts, knees, ankles, etc.) from RGB

images. Human pose estimation has attracted growing inter-

ests in the past few years due to its extensive applications. It

serves as a significant basis in the field of person ReID, activi-

ty recognition and human-computer interaction. However, the

task is challenging due to the large variability of articulation

of body limbs, self-occlusion, cluttered background, various

clothes and foreshortening.

Traditional human pose estimation methods mainly relied

on the hand-crafted features. Significant improvements have

been made due to the development of the DCNNs. Some ex-

cellent works emerged in the last few years. [1, 2, 3] were de-

voted to model the relation among the human parts. The well-

known stacked hourglass model proposed by [4] utilized the

U-Net structure. However, it’s still difficult for DNN-based

(a) (b) (c) (d) (e)

Fig. 1. Visualization of the estimated results on the LSP

dataset. Our method achieves promising estimation results

on the images which cover various joints scale changes(a,b,c)

and cluttered background(d,e).

methods to deal with the cases of scale changes and cluttered

background.

Except for the scale changes of the whole human skeleton,

scale changes in the human parts have great influence on the

final result. For example, feet may be larger than head in some

images as shown in Figure 1 (a), while head may be larger

than the feet in some other cases as shown in Figure 1 (b).

The various changes of the joints scales make the prediction

process much more difficult. Models such as hourglass tend

to over-fit at a fixed scale by only using the last deconvolu-

tion feature for inference. Besides, cluttered background and

crowded people(Figure 1 (d)(e)) make the estimation much

more complicated.

Based on the analysis above, a bi-directional message

passing based SCANet is put forward to solve the issues men-

tioned before. We propose to merge multi-scale convolution-

al features via message passing to solve the scales change

problem. 1) We fuse the different scale features of the hour-

glass model after each up-sampling. 2) Bi-directional Mes-

sage Passing module is proposed to fuse features of differ-

ent scales more effectively. High level semantic information

which encodes contextual relationship of the human joints can

be delivered from the low resolution features to the high res-

olution features, while high resolution features convey more

spatial details to the low resolution features. The aggregated

features are complementary, and thus can handle the diverse

scale changes on both the human skeleton and body joints.

Human pose estimation may be difficult under the occur-
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rence of cluttered background with objects which are similar

to body joints or human body appearance. In this case, ex-

ploiting visual context proves necessary to get a better under-

standing of the whole body appearance. The semantics en-

coder of the SACWA is designed to encode high-level visual

context. The feature obtained from the semantics encoder not

only exploits multi-level spatial context, but also increases the

number of scales, which enhances the robustness of the whole

system when facing various changes of the body parts scales.

However, features of multi-level contexts are not of equal sig-

nificance for the final prediction. To address this problem,

gate function in the form of channel-wise attention is adopted

to regulate the contributions from different scale features. In

this case, useful features are conveyed to the SSA module and

superfluous features are discarded.

Spatial visual attention has been proved effective in lo-

cating the regions of interest and excluding the influence of

unrelated background. Widely used soft attention utilizes the

softmax normalization to obtain the final attention map. How-

ever, directly applying the soft attention to our pose estima-

tion model doesn’t improve the result. Small number after

the normalization which cause the small gradient values w.r.t

the model parameters is the main cause of the degradation.

Here we propose a Sharper Spatial Attention(SSA) module to

make the attention map sharper and avoid the occurrence of

extreme small numerical problem. We substitute the in-place

Gumbel-Softmax sampling for the common Poisson sampling

to make the whole process differentiable. Experiments show

the effectiveness of our proposed spatial attention compared

with the soft one.

We summarize our contributions as follows:

• A Bi-directional Message Passing mechanism is pro-

posed to combine the convolutional features of differ-

ent scales and facilitates the information flow among

them.

• A Semantics-aware Channel-wise Attention module

composed of semantics encoder and feature selector is

proposed to encode richer contextual information and

weights the feature of different scales dynamically.

• A novel spatial attention is proposed based on the

Gumbel-Softmax sampling which makes the attention

map sharper compared with the soft attention map and

overcomes the degradation caused by the softmax nor-

malization.

2. METHOD

The whole framework is shown in Figure 2. We embed

the Bi-directional Message Passing(BDMP), Multi-scale Fea-

tures Integration(MSFI), Semantics-aware Channel-wise At-

tention(SACWA) and Sharper Spatial Attention(SSA) mod-

ules into each stack of hourglass model sequentially. B-

DMP and MSFI are utilized to integrate multi-scale features

more effectively. The features fetched from BDMP and MSFI

are further decorated via the SCANet which is composed of

SACWA and SSA. In the subsequent section, we will describe

each component in detail.

2.1. Bi-directional Message Passing and Multi-scale Fea-
tures Integration modules

We stack multiple hourglass modules continuously to perfor-

m repeated down-sampling and up-sampling operations. Be-

sides, in the up-sampling process, the features are enhanced

with features of the same spatial size from the down-sampling

part by element-wise addition. The fused features of different

layers are denoted as F11, F12, F13, F14, respectively. How-

ever, the large number of channels of the F11, F12, F13, F14

makes the message passing process consume too much pa-

rameters. Taking both the efficiency and effectiveness into

consideration, we apply the 1×1 spatial convolution to reduce

the channels of the fused features from 256 to 32. It can be

seen as another way to reduce the feature redundancy. We de-

note the channel-reduced features as F21, F22, F23, F24. Then

we up-sample the F22, F23, F24 to the same resolution with

the F21 whose spatial resolution is 64 × 64. We denote the

up-sampled features as F31, F32, F33, F34.

The Bi-directional Message Passing module contains two

ways to conduct the message passing. Firstly, the informa-

tion is propagated from the high resolution features to the low

resolution features, which is denoted as top-down process. In

this way, the rich spatial details in high resolution features can

be transmitted to the low resolution features. The message

passing that works in opposite directions are complementary.

Therefore, we also build information flow from the low res-

olution features to the high resolution features, which is de-

noted as bottom-up process. In this process, global skeleton

information is transmitted from the low resolution features to

the high resolution features.

In the top-down pathway, we apply 3 × 3 convolution on

the higher resolution features. The resulted features contain-

ing more spatial details are summed with the neighboring low

resolution features. We keep the highest resolution features

as it used to be. As follows, this process is iterated until the

information is transmitted to the lowest resolution feature

map:

F
′
31 = F31,

F
′
32 = F32 +H(F

′
31),

F
′
33 = F33 +H(F

′
32),

F
′
34 = F34 +H(F

′
33),

(1)

where H represents the 3× 3 convolution.

In the bottom-up pathway, we apply 3× 3 convolution on

the lower resolution features. The convolved features depict-

ing the global consistency are merged with the neighboring

high resolution features by element-wise sum. We keep the
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Fig. 2. The proposed Bi-directional Message Passing based SCANet. Our approach contains several important components:

Bi-directional Message Passing network(BDMP) module, Multi-scale Features Integration(MSFI) module, Semantics-aware

Channel-wise Attention(SACWA) module, and Sharper Spatial Attention(SSA) module.

lowest resolution features as it used to be. The information

propagation in the bottom-up pathway is shown as follows:

F
′′
34 = F34,

F
′′
33 = F33 +G(F

′′
34),

F
′′
32 = F32 +G(F

′′
33),

F
′′
31 = F31 +G(F

′′
32),

(2)

where G represents the 3× 3 convolution.

The fusion of the spatial details and the global consistency

can effectively combine different scales features and generate

more discriminative features.

We concatenate the features from the two passing ways

and reduce the channels of the concatenated features from 64

to 32 by 1× 1 convolution.

F41 = R(Fcat(F
′
31, F

′′
31)),

F42 = R(Fcat(F
′
32, F

′′
32)),

F43 = R(Fcat(F
′
33, F

′′
33)),

F44 = R(Fcat(F
′
34, F

′′
34)),

(3)

where R and Fcat represent the channel reduction function

and concatenation function, respectively.

Then we apply the MSFI by concatenating

F41, F42, F43, F44 along the channel dimension.

concat

:rate 2

:rate 4

Fig. 3. The proposed Semantics-aware Channel-wise Atten-

tion module.

2.2. Semantics-aware Channel-wise Attention

In this subsection, we will introduce the Semantics-aware

Channel-wise Attention(SACWA) module, which consists of

semantics encoder and feature selector.

The detailed structure of semantics encoder is shown in

Figure 3. Two consecutive dilated convolution operations

with dilated rate 2 and dilated rate 4 which enlarge the respec-

tive field of the network are conducted in the first branch. The

second branch retains the original input to preserve the con-

text extracted from the conv-deconv process of the hourglass

module. The outputs of the two branches are concatenated as

follows:

U = Fcat(D(O), O), (4)
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where O is the output of the second branch and D(O) is the

output of the first branch, Fcat means the concatenation. The

output of the semantics encoder may be redundant for the fi-

nal prediction. Therefore we utilize channel-wise attention[5]

which serves as feature selector to weight each feature chan-

nel. The feature selector plays the same role as gate function

to control the information flow.

2.3. Sharper Spatial Attention

In this part, spatial attention is proposed to refine the output

features of SACWA.

The widely used soft attention can be found in [6].

However, directly applying the soft attention to the hourglass

module doesn’t work as expected. The resolution of the

output feature maps of the final hourglass module reaches

up to 64 × 64. In this case, the usage of spatial softmax

operation will lead to too small attention weights and severe

degradation of both useful and useless information. The

small attention values lead to small attended feature values,

and thus lead to small gradient values of the convolutional

parameters. To address this dilemma, we propose a novel

sampling method to overcome the defect resulted from the

small feature values and the gradients with respect to the

parameters of the last convolution layer whose input is the

attended feature are 10-100x larger than the soft one from our

experiments. The advantage of the proposed Sharper Spatial

Attention mechanism is summarized as follows:

1. The attention map obtained from the Gumbel-Softmax

sampling method avoids excessively small numeric val-

ues. Attention values within the interesting region ap-

proach 1, while attention values of the unrelated back-

ground approach 0.

2. The attention map obtained from the Gumbel-Softmax

sampling is sharper than the original soft attention map.

The sharper map can distinguish the most discrimina-

tive visual part from unrelated background more ag-

gressively and reduces the ambiguity.

Next, we will make a detailed description of the Gumbel-

Softmax sampling method, and then introduce how to employ

this sampling method on the human pose task.

In the first step, we employ the traditional soft attention

mechanism to obtain the initial degraded attention map f .

The soft attention mask is then input into the sharper atten-

tion generator. As is usually set, we normalize the values of

the soft attention mask f .

fn
i,j =

fi,j − fmin

fmax − fmin
, (5)

where fmax means the maximum value of the whole attention

map, while fmin means the minimum value of the whole at-

tention map. We treat the normalized value of each position

in the attention map as the probability we choose it. The larg-

er the value is, the higher probability it can be chosen with.

Poisson sampling is an ideal method to implement the idea.

However, if Poisson sampling is implemented on the atten-

tion map, the resulted attention map is not differentiable to

the fn. Gumbel-Softmax sampling is an alternate choice to

replace the Poisson sampling and makes the whole process d-

ifferentiable. Each position of the resulted attention map fn

is subject to the Bernoulli distribution,

p1i,j � fn
i,j , p

0
i,j � 1− p1i,j . (6)

Gumbel-Softmax sampling technique comes from

Gumbel-Max sampling[7]:

fsharp
i,j = argmax

k∈{0,1}
(gki,j + log(pki,j)). (7)

The Gumbel distribution is as follows:

Gumbel(x;μ, β) = e−z−e−z

, z =
x− μ

β
. (8)

Here, g0i,j , g
1
i,j are i.i.d samples drawn from Gumbel(0,1).

However, the argmax operation of the Gumbel-Max sam-

pling is also not differentiable. Gumbel-Softmax sampling

approximates the Gumbel-Max sampling by the softmax

trick, which can be seen as a way of reparametrization.

Through the Gumbel-Softmax sampling, the whole process

is differentiable. The approximation is as follows:

fsharp
i,j =

exp((g1i,j + log(p1i,j))/τ)∑
k∈0,1 exp((g

k
i,j + log(pki,j))/τ)

. (9)

Temperature parameter τ controls the degree of the ap-

proximation. When τ approximates 0, the distribution gener-

ated by the Gumbel-Softmax sampling looks more like one-

hot[8]. However, The larger the τ is, the smoother the distri-

bution generated by the Gumbel-Softmax sampling is. When

τ becomes large enough, the distribution generated by the

Gumbel-Softmax sampling is completely a uniform distribu-

tion.

3. EXPERIMENT

3.1. Experiments Settings

The proposed model is evaluated on the widely used bench-

mark MPII Human Pose. Our implementation follows [4].

The model is trained with Torch7 toolbox with the initial

learning rate 2.5×10−4. We drop the learning rate by 10 at the

150th, 170th, and 200th epoch. We make use of RMSprop al-

gorithm to optimize the parameters of the model. Each person

is cropped from the image according to the center and scale

of the human body and resized to the size of 256 × 256. We
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Table 1. Evaluation results using PCKh@0.5 as measurement

on the MPII dataset
Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Tompson et al. [2] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Hu et al. [9] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Gkioxary et al. [10] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al. [11] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Wei et al. [12] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al [13] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [4] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ning et al. [14] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
Chu et al. [6] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

ours 98.4 96.3 92.0 87.9 90.5 88.6 85.5 91.6

augment the data by implementing rotation, scaling, and col-

or jittering. Six-scale image pyramids combined with flipping

are employed during testing. 4-stack hourglass model is used

in our final experiments and finetuned with the assistance of

the hard point mining loss.

3.2. Comparison with the State-of-the-Art

Our approach achieves competitive results compared with the

previous state-of-the-art methods in the leading board of MPI-

I dataset. The results on the MPII dataset are summarized in

Table 1. Our method surpasses [6], which aggregated multi-

scale features via multi-scale spatial attention. The parame-

ters number of our model approximates 15.6M, while 8-stack

U-Nets[4] approximates 25.5M and [6] approximates 58.1M.

3.3. Ablation Study

The ablation study is implemented on the validation set of the

MPII dataset.

3.3.1. The Effectiveness of the MSFI

The baseline in this part is the pure 2-stack hourglass model

if not specified. We first compare our Multi-scale Features

Integration mechanism with the baseline and summarize the

results in Table 2. The MSFI aggregates semantic informa-

tion covering 4 levels as described in section 2.1. The MS-

FI improves the mean result of baseline by 0.3% in that the

multi-scale information which enhances the robustness of the

model when facing various scale changes is included in the

aggregated features.

All the experiments below incorporate the individual sub-

module based on the MSFI framework. The comparison of

different submodules can also be found in Table 2.

3.3.2. The Effectiveness of the BDMP

Message passing among different level features promotes the

communication of the semantic information among different

scales. BDMP gets 88.66% PCKh score finally and exceed-

s the MSFI by 0.27% as features which contain high-level

context and spatial details are obtained via BDMP for final

prediction.

Table 2. Comparison of different submodules. (1) SCA: The

integration of SACWA and SSA. (2) ALL: The integration of

BDMP, SCA and hard point mining.
Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Baseline 96.38 95.09 89.02 83.48 87.81 83.90 80.16 88.09
MSFI 96.45 95.30 89.16 84.48 88.26 83.76 80.61 88.39
MSFI+BDMP 96.49 95.38 89.33 84.72 88.11 84.54 81.22 88.66
MSFI+SACWA 96.42 95.28 89.42 84.84 88.52 84.73 80.56 88.64
MSFI+SSA 96.32 95.14 89.21 84.50 88.75 84.67 81.79 88.74
MSFI+BDMP+SCA 96.38 95.67 89.43 84.68 88.16 85.01 82.03 88.87
MSFI+ALL 96.35 95.21 89.57 84.82 87.92 85.41 82.12 88.90

100 120 140 160 180 200
Epoch

85.25

85.50

85.75

86.00

86.25

86.50

86.75
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K

h@
0.

5

validation
Soft Attention
SSA

Fig. 4. Comparison of the sharper attention and soft attention.

The curve of the figure shows the PCKh@0.5 scores on the

MPII validation set over the training process.

3.3.3. The Effectiveness of the SACWA and SSA

By adding SACWA module, the PCKh score reaches 88.64%
and surpasses MSFI by 0.25%.

The SSA module achieves promising result by generating

sharper attention map compared with the traditional soft at-

tention mechanism. Figure 4 displays the comparison of the

sharper attention map and soft attention map. The sharper at-

tention module surpasses the soft attention module by a large

margin as shown in Figure 4. By adding SSA module, our al-

gorithm obtains 88.74% PCKh score and improves the result

of the MSFI framework by 0.35%.

The attention map generated from the SSA module is

much sharper than the soft attention map and covers more

regions of the whole body. The soft attention map mainly

concentrates on the separate body parts instead of the whole

body and thus loses the global skeleton information and ap-

pearance cues. We experiment with different values of τ to

observe how temperature impacts on the generation of the at-

tention map. The parameter τ ’s influence on the generation

of the attention map can be found in Figure 5. We can see

that the attention map with the larger τ looks more irregular

in that the sampling approximates uniform sampling in this

case, while the attention map with the smaller τ looks much

sharper. To avoid numeric instability caused by the smaller

τ (τ < 1.0) when implementing the algorithm on Torch7, we

adopt τ as 1.0 in the end.
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(a) Input (b) τ = 1 (c) τ = 2 (d) τ = 3 (e) τ = 5 (f) τ = 10

Fig. 5. Sharper attention map generated by setting different

values of temperature.

3.3.4. The Effectiveness of Whole Framework

The SCANet which combines SACWA and SSA proves ef-

fective compared with the separate single module and gets

88.76% PCKh score in the end. If we combine the BDMP

and SCANet together, the final PCKh score can reach 88.87%
and performs better than all the module mentioned above. We

achieve 88.90% PCKh score by training the overall frame-

work combined with hard points mining technique.

4. CONCLUSION

A Bi-directional Message Passing based SCANet is proposed

in this paper. We tackle the scale variance and cluttered back-

ground problem by combing the Bi-directional Message Pass-

ing mechanism, SACWA module and SSA module togeth-

er. With the design of Bi-directional Message Passing mod-

ule and Multi-scale Features Integration subnetwork, we in-

tegrate different resolution features together and get a com-

prehensive understanding of different scale features. The fea-

ture concatenated across different levels is further refined via

the proposed SACWA module. On the one hand, the pro-

posed SACWA module enriches semantic information by the

semantics encoder we design. On the other hand, feature is

filtered with the assistance of the channel-wise attention. Fi-

nally, SSA module which generates sharper attention map to

weaken the influence of the unrelated cluttered background

further boosts the performance of the whole network.
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