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Visual affordance detection is an important issue in the field of robotics and computer vision. This paper
proposes a novel and practical convolutional neural network architecture that adopts an encoder-decoder
architecture for pixel-wise affordance detection. The encoder network comprises two modules: a dilated
residual network that is the backbone for feature extraction, and an attention mechanism that is used for
modeling long-range, multi-level dependency relations. The decoder network consists of a novel up-
sampling layer that maps the low-resolution encoder feature to a high-resolution pixel-wise prediction
map. Specifically, integrating an attention mechanism into our network reduces the loss of salient details
and improves the feature representation performance of the model. The results of experiments conducted
on the University of Maryland dataset (UMD) verify that the proposed network with the attention mech-
anism and up-sampling layer improved performance compared with classical methods. The proposed
method lays the foundation for subsequent research on multi-task learning by physical robots.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Affordances are properties or features of objects that present
the possible set of actions afforded an agent by the environment.
Gibson was the first to introduce the concept of affordances in
1979 [1]. Since then, the idea of affordances has been widely
applied to the design of reliable robotic systems capable of trans-
lating perceptions into actions. For example, a hammer in a scene
affords the opportunity for a human to grasp it or pound an object.
Similarly, for an autonomous robot interacting with humans, it is
of great significance to understand the affordances of objects for
humanlike manipulation. If a robot is required to pound something
with a hammer, its computer vision must give a high degree of per-
ception that can be used to identify the hammer and locate it accu-
rately. However, the robot needs to understand all the affordances
of the hammer prior to choosing the correct actions in this task.
This includes understanding, which part of the hammer can be
grasped and which part can be used to pound.

Affordance detection has a wide range of applications, including
robot manipulation, path planning, and autonomous driving [2–6].
Early works based on low-level visual cues have been surpassed by
popular machine learning algorithms. In particular, remarkable
progress has been made in affordance detection with deep neural
network [2–8]. Existing work based on deep neural networks typ-
ically leverages mid-level visual cues [9] to label every pixel with
an affordance type. Unlike the classical semantic segmentation
application, affordance detection inherits two problems. First, the
same affordance type can present different appearances. For exam-
ple, a cup and a hammer both have the affordance type ‘‘grasp,” but
they are quite different in appearance. Second, different affordance
types may have similar appearances, such as the ‘‘contain” and
‘‘grasp” regarding a plate.

To address these problems, we propose a novel architecture to
enhance the discriminative ability of feature representations for
affordance detection. Primarily, our motivation to design such an
architecture arises from affordance detection needing to model
the shapes, orientations, appearances, and spatial relations of
objects in the environment. In any scene, some affordance parts
are large and some are small. Thus, the network requires retention
of spatial acuity in the extracted image representation. Compared
with previous works that used widely adopted convolutional neu-
ral networks to extract features (e.g., VGG [10] and Resnet [11]),
our network uses a dilated residual network (DRN) [12] as a pre-
trained model. The DRN can preserve spatial resolution in convolu-
tional layers to produce high-resolution output maps.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.01.018&domain=pdf
https://doi.org/10.1016/j.neucom.2021.01.018
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https://doi.org/10.1016/j.neucom.2021.01.018
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Existing convolutional neural network (CNN) models rely on
increasing depths to model long-range, multi-level relations for
affordance detection, which is inefficient. In this work, we inte-
grate the self-attention mechanism into the architecture. Previous
works, such as [13–15], have shown that the attention mechanism
has a positive influence in computer vision. It can not only deter-
mine where to focus, but can also improve the feature representa-
tion of interests. Thus, we adopt the self-attention mechanism to
model relationship dependencies in the spatial and channel
dimensions, because convolution operations extract features by
blending channel and spatial information.

The up-sampling layer is an important part of affordance detec-
tion, because it learns an array of up-scaling filters to generate the
pixel-wise prediction map. Most works on the up-sampling layer
can be divided into three types: bilinear up-sampling [16], trans-
posed convolution(TC) [17] [18,19] and un-pooling [20]. Many
semantic segmentation tasks use bilinear up-sampling to generate
output maps [21]. Transposed convolutions such as FCN [22] and
GAN [23], have been widely used for pixel-wise prediction and
image generation. Un-pooling is a method of upscaling low-
resolution feature maps into an output map(e.g., SegNet [24] and
DeconvNet [25]). However, in all of the above methods, fine details
may be lost. Moreover, the bilinear up-sampling method is not
learnable, because it has no parameters for up-sampling on a given
policy. Therefore, we design an up-sampling layer that can easily
generate a high-resolution affordance map. In this work, the pro-
posed up-sampling layer can fit the network architecture by
enabling end-to-end training to increase the accuracy of affordance
prediction. In summary, the contributions of this work are as
follows:

(1) To preserve spatial resolution in the convolutional layer, a
DRN is employed as a pretained model to extract features.
The fully connected layer of the DRN is removed, which
reduces the number of parameters of the network and
makes it easier to train.

(2) The attention mechanism is integrated into the architecture
to model long-range, multi-level dependency relations for
affordance detection.

(3) An up-sampling layer is designed to upscale the low-
resolution feature map into a high-resolution affordance
map.

(4) Evaluation of our model on the UMD [3], verifies that the
proposed network achieves high detection accuracy.

2. Related work

2.1. Affordance detection

Affordance prediction has been extensively studied in the com-
puter vision and robotics communities for several years. Early
works on affordance detection sought to recognize 3D computer-
assisted design objects (e.g., chairs) based on object functions.
Stark and Bowyer [26] constructed generic recognition systems
according to the functions of rigid 3D objects rather than shapes.
They leveraged functional primitive chunks to address the recogni-
tion of multiple object categories. Aldoma et al. [27] proposed a
visual–cue method to detect affordances in a scene, depending
on the geometry and pose of the objects. Their method consists
of two steps for affordance detection. First, a classifier is used to
recognize the object in the scene. Then, the six-degrees-of-
freedom poses of the object are estimated to map its affordances.
Myers et al. [3] demonstrated that local shape and geometry prim-
itives could be used to detect the pixel-wise affordances of tool
parts. Their novel method was complicated, because the same
affordance type could possess multiple appearances. Thus, differ-
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ent affordance types could have similar appearances. Two methods
were subsequently introduced to train their models. First, they
used superpixel-based hierarchical matching pursuit to extract
geometric features (e.g., depth, normal, and curvature informa-
tion). The features were classified using a linear support vector
machine to produce the final affordance maps. The method
achieved high accuracy with significant computational costs. In
addition, the structured random forest was used to infer affor-
dances based on decision trees, which provided less accurate pre-
dictions, but real-time performance.

Inspired by Mayers et al. [3], Nguyen et al. [28] used a CNN to
extract geometric deep features instead of hand–engineered fea-
tures. They proposed an encoder-decoder architecture to detect
object affordances on multi-modal features. It was demonstrated
that affordance detection with automatic feature learning achieved
better performance. Another study [2] combined deep CNN and
dense conditional random fields (CRF) to detect object affordances.
They first used a deep CNN as an object detector to generate the
object boxes. Then another network was used to produce feature
maps from bounding boxes. Finally, the CRF, as a post-processing
mechanism, improved the predictions. Similar to Nguyen et al.
[2], Thanh-Toan et al. [8] proposed AffordanceNet to detect multi-
ple objects and affordances in RGB images. This tool uses two
branches: one for object detection and the other for affordance
detection. It utilizes object detection to narrow the region of inter-
est and to detect affordances via semantic segmentation.

The advantage of object detection is that it can generate bound-
ing boxes, and separate the whole object from the complex back-
ground according to the object category, which make affordance
detection easier. However, if the detector cannot detect the object,
or if it misrecognizes the object regions, affordance detection will
fail. Moreover, after object and affordance detection, the errors will
increase cumulatively, and more feature details will be lost, Thus,
affordance maps cannot be obtained efficiently. Chu et al. [29]
and Lakani et al. [30] decouple the object class from the localized
affordance labels of object parts for the learned affordance to gen-
eralize to unseen/novel categories. Our method starts from the glo-
bal of the input image and predicts an affordance label for each
pixel without knowing the object class.The predictions are shown
in Figure 1. We use a self-attention mechanism to make our archi-
tecture focus on the regions of interest instead of using object
detection. Doing so can, therefore, improve the affordance
representation.

2.2. Attention mechanism

The attention mechanism of deep neural networks aims to
model long-range and multi-level dependencies. Recently, atten-
tion mechanisms have been widely integrated into deep neural
networks for many tasks (e.g., image generation [34], image classi-
fication [13] , image captioning [31] and image restoration [35]).
Mnih et al. [13] were the first to present a visual attention mecha-
nism based on a recurrent model, which was capable of extracting
features from an image by selecting interesting regions. Xu et al.
[31] introduced an attention-based model for image captioning,
which used hard/soft pooling to select/average the most probable
attentive regions or the spatial features with attentive weights.
Chen et al. [32] proposed a spatial and channel-wise attention
CNN for image captioning, which combined channel-wise and spa-
tial attention into multiple layers. Hu et al. [33] focused on the
channel relationships and proposed a squeeze-and-excitation-
block to adaptively recalibrate channel-wise feature responses
for image classification. Woo et al. [34] presented a convolutional
block attention module (CBAM) for feed-forward CNNs. It was
composed of a general, lightweight module and could be easily
integrated into a CNN. The CBAM operated both channel-wise
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and spatial attention. Hu et al. [35] designed channel-wise and spa-
tial attention residual blocks to dynamically adjust multi-level fea-
tures so that they could capture more informative features and
maintain longer-term information for image resolution.

Considering the advantages of attention mechanisms, we
attempt to embed them into our architecture with the purpose of
improving the feature representations of affordance detection. To
capture more important information and adaptively model long-
term dependency relations both globally and locally, we combine
spatial and channel attention into our network.
3. Architecture

3.1. Overview

Following an encoder-decoder architecture, we propose a novel
framework to detect object affordances. The architecture is illus-
trated in Fig. 2. The encoder network consists of a pre-trained
model (DRN) and an attention module, where the DRN is used as
a pre-trained model to extract features that can initialize the train-
ing process from weights trained on large datasets. The attention
module is used to improve the feature representation performance.
An up-sampling layer that uses the output of the attention module
is designed to generate high–resolution output.

3.2. Pre-trained model

Pre-trained models have been widely used for deep neural net-
work feature extraction, initializing weights without learning from
scratch. We employ DRN as the backbone for this purpose. As is
known, the classical CNN will lose salient detail information by
continuously sampling the input image to a very small feature
map. The DRN [12] is built upon the Resnet architecture presented
by He [11], which can preserve more details without adding
parameters. The original Resnet architecture consists of five groups
Fig. 1. Our architecture predictions on the UMD. Left to right: Input im
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of convolutional layers. The DRN differs from the original network
structure in the last two groups. We denote each group as Gl, for

l ¼ 1; . . . ;5. We denote the ith layer in group las Gi
l. F

i
lis the filter

associated with layer Gi
l. Let I be the feature map in the layer, Gi

l .
The output in the original model can thus be denoted as:

ðGi
l � Fi

lÞðIÞ ¼
X

mþn¼I

Gi
lðmÞFi

lðnÞ ð1Þ

The DRN introduces dilated convolutions to the two final
groups. In the fourth group, two dilated convolutions are applied
instead of the original convolutional operators.

ðGi
4 � 2Fi

4ÞðIÞ ¼
X

mþ2n¼I

Gi
4ðmÞFi

4ðnÞ ð2Þ

When i ¼ 1, the 5th group also adopts Eq. (2). For all i P 1 in the

5th group, their convolutions must be dilated by a factor of four:

ðGi
5 � 4Fi

5ÞðIÞ ¼
X

mþ4n¼I

Gi
5ðmÞFi

5ðnÞ ð3Þ

The DRN aims to increase the receptive field of the convolution
kernel as much as possible without reducing the feature map’s res-
olution. We remove the fully connected layer and use it as a back-
bone to extract features, thus enlarging the size of the output to
1=8of the input image.

3.3. Attention module

The purpose of the attention module for affordance detection is
to focus on object-related features while eliminating irrelevant
backgrounds. Inspired by Fu et al. [37], we integrate two attention
mechanisms: a spatial attention module (SAM) and a channel
attention module(CAM). SAM is used to model long-range spatial
interdependencies in images, and CAM is designed to model chan-
nel interdependencies. With the output of these two attention
ages, ground-truth affordance maps, predicted affordance maps.



Fig. 2. Architectural overview of the proposed affordance detection method.
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modules, we use an element sum to perform feature fusion, which
improves feature representation. The specific configurations for
SAM and CAM can be found in the -following subsections.

3.3.1. Spatial attention module
Assuming that the input feature map, A 2 RC�H�W , comes from

the previous layer, where Cis the number of channels, and H �W
the feature–map size, we design the SAM structure to model
long-range dependency relations.

As shown in Fig. 3, we first feed A into a kernel size ð1� 1Þ con-
volution layer to generate three feature maps: B;G 2 RC�H�W and
D 2 RC�H�W . Then we use B and G to generate EðHþW�1Þ�W�H via an
affinity operation. We can obtain a vector Bu 2 RC , at each position
j in the spatial dimension of B. Meanwhile, we can obtain the set
wj 2 RðHþW�1Þ�C from G which are in the same row or column as
position u. wi;j is the i� th element of wj. The affinity operation
can be denoted as:

di;j ¼ Buw
T
i;j ð4Þ

where di;j 2 RðHþW�1Þ�ðW�HÞ is the degree of correlation between fea-
tures Bj and wi;j; i ¼ ½1; . . . ;H þW � 1�. Additionally, we apply a
matrix mutiplication between the transposed B and C. Subse-
quently, we perform a softmax operation to calculate the spatial
attention map E 2 RðHþW�1Þ�ðW�HÞ:

ej;i ¼ expðdijÞPHþW�1
i¼1 dij

ð5Þ

At each position jin the spatial dimension of D, we can obtain a
vector Dj 2 RC and a set uj 2 RðHþW�1Þ�C . The set uj is a collection of
feature vectors in D that are in the same row or column as position
j. We apply an aggregation operation to collect contextual
information:
Fig. 3. Structure of the spatial attention module.
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Fj ¼ a
XHþW�1

i¼1

ej;iui;j ð6Þ

where a is a hyperparameter and it is initialized as zero. The intro-
duced a can gradually learn to assign more weight to crisscross evi-
dence [36]. Finally, the input feature maps are added to get the
output map Yof SAM:

Yj ¼ Fj þ Aj ð7Þ
3.3.2. Channel attention module
The high-level channel maps in a trained CNN can be regarded

as a category-selective classifier. In the affordance detection, we
emphasize that the channel maps are also related, and some chan-
nels share similar semantic contexts. The motivation for using CAM
is to model channel interdependencies. As illustrated in Fig. 4, we
calculate channel attention map Q 2 RC�C from input feature maps
A 2 RC�H�W :

qj;i ¼
expðsijÞPN

i¼1sij
; where sij ¼ AT

i Aj ð8Þ

Simultaneously, we use reshaped input feature map Aand the
channel attention map to operate a matrix multiplication. Thus,
the output F 2 RC�H�Wcan be easily calculated:

Fj ¼ a
XN

i¼1

qj;iAi ð9Þ

where a can be learnable to assign weight. Finally, we can obtain
the output map of CAM:

Yj ¼ Fj þ Aj ð10Þ
Fig. 4. Structure of the channel attention module.
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3.4. Up-sampling layer

To get the high-resolution affordance maps from the encoder
network, we design an up-sampling layer, as inspired by Hu
et al. [35]. Fig. 2 depicts the architecture of our network with an
up-sampling layer. Suppose that the size of an input RGB image
is H �W , the number of color channels is three, and the purpose
of affordance detection is to label each pixel of the affordance
map with a category label. After feeding the image into the encoder
network, an h�w� cfeature map will be obtained at the final

layer, where h ¼ H=d;w ¼ W=d, and c ¼ d2L. d is the down-
sampling factor, and Lrepresents the label class of affordance
detection. Unlike other up-sampling methods, our up-sampling
layer is learnable and uses a pixel shuffling operator to arrange
an h�w� c feature map into an H �W � L output map. The oper-
ator uses convolution to divide the input h�w� c feature map

into d2 subparts of h�w. The last layer produces the output affor-
dance maps with one up-scaling filter for each subpart without
inserting extra values.

4. Experiments

To evaluate the proposed method, we conduct several experi-
ments on the UMD [3]. The experimental results demonstrate that
our method achieves good performance on the dataset. First, we
introduce the datasets and implementation details. Then, we
describe the different evaluation metrics of our experiment. We
additionally report a set of ablation experiments conducted to val-
idate the effectiveness of each model component. Finally, we per-
form more visualizations to illustrate our model.

4.1. Datasets and implementation details

The UMD [3] comprises 28,843 RGB-D images of a non-
cluttered subset and 868 RGB-D images of a cluttered subset. This
provides affordance labels for daily kitchen, workshop, and garden
objects. The dataset contains 17 object categories and seven affor-
dance classes which are summarized in Table 1. We randomly split
the dataset into 70% training data and 30% validation data.

For training, we followed the procedure described in [20], using
the PyTorch library [38] to train our model. The network was
trained using the Adam optimizer with a 0.001 learning rate. The
input images were center cropped to 240� 320 from the original
480� 640 to better fit the network. The widely-used cross-
entropy loss function L was applied to train our network:
Table 1
Description of the affordance labels on UMD.

Affordance
Label

Description Example

Grasp Indicates the location of manipulation of
tools.

Hammer,
cup

Cut Indicates cutting for separating object. Knife,
scissors

Scoop Indicates curved surface tools. Trowel,
spoon

Contain Indicates the ability of an object to hold
liquid.

Bowl, mug

Pound Indicates striking tools. Hammer,
mallet

Support Indicates flat parts. Shovel,
turner

Wrap-grasp Indicates the location of manipulation of
rounded tools.

Cup
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LðP;GÞ ¼ � 1
N

XN

i¼1

ðgilogðpiÞ þ ð1� giÞlogðl� piÞÞ ð11Þ

where pi 2 P; gi 2 G, P and G indicate the predicted map and
ground-truth affordance map. N represents the total number of pix-
els. The model was trained on an NVIDIA 2080Ti GPU, which is
trained from scratch until convergence with the loss no more
reduction.

4.2. Metrics

To evaluate the model, we adopted four metrics to present a
comprehensive and insightful performance analysis.

Intersection over union (IoU) is a general metric that can be
calculated for each category. Each kind is calculated, accumulated,
and then averaged to obtain a mean IoU (mIoU), which reflects the
global evaluation. Let P denote the predicted map and Gbe the
ground-truth affordance map:

IoU ¼ P \ G
P [ G

ð12Þ

Mean absolute error (MAE) is evaluated between the ground-
truth affordance map, G, and the predicted map, P. N is the total
number of pixels. The MAE measures the conformity between
the predicted map and the ground-truth map, and its value ranges
from zero to one:

MAE ¼ 1
N
jP � Gj ð13Þ

Area under the curve (AUC) uses the area beneath the receiver
operating characteristic (ROC) to consider the quality of the pre-
dicted map. AUC reflects the proportion of positive examples in
front of negative ones in the model. We divide the affordance
map, P, into 100 gray levels, and the threshold within the range
0 to 99. We calculate True Positive Rate (TPR) & False Positive
Rate(FPR) for each threshold and set FPR as the x-axis, and TPR
as the y-axis to form the ROC curve. The AUC is the area between
the ROC curve and the x-axis.

Average precision (AP) is computed from the precision-recall
(PR) curve. We divide the predicted map Pusing a fixed threshold
that ranges from 0 to 255. For each threshold, recall & precision
scores are computed and combined to form a PR curve to describe
the model performance. Meanwhile, AP can be calculated from the
PR Curve. It is the average value of the evenly spaced x-axis points
from zero to one on the PR Curve.

Weighted Fw
b proposed by Margolin et.al [39], is an extension of

the Fb measure. It is calculated as follows:

Fw
b ¼ ð1þ b2Þ PrecisionwRecallw

b2Precisionw þ Recallw
ð14Þ

where b2 measures the importance of Precisionw and Recallw.

4.3. Ablation study

We employ an attention mechanism atop the DRN to improve
the feature representation capability and use an up-sampling layer
to generate the high-resolution affordance map. To verify the per-
formance of the attention modules and the up-sampling layer in
our network, we evaluated each module on the non-cluttered
and cluttered subsets of the UMD. We chose DRN_D_22 with the
up-sampling layer as the baseline. To evaluate the effects of the
attention modules, we provided three variants: 1) baseline+CAM;
2) baseline+SAM; 3) baseline+CAM+SAM. In this process, we only
considered the relationship between the whole graph and the GT
graph, rather than measuring each category.



Fig. 5. PR curve on the non-cluttered subset and cluttered subset of UMD.

Fig. 6. ROC curve on the non-cluttered subset and cluttered subset of UMD.
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As shown in Figs. 5 and 6, AUC and AP cannot effectively eval-
uate the model. To analyze the effect of attention modules more
accurately, we present Table 2. Compared with the baseline, using
either SAM or CAM improves the results on the dataset. Employing
SAM yields a 0.8816 mIoU in the non-cluttered subset and a 0.8881
mIoU in the cluttered subset, which gains 9.25% and 12.08%
improvements, respectively. Meanwhile, employing the CAM indi-
vidually outperforms the baseline by 7.41% and 12.04% in mIoU.
The combination of SAM and CAM brings further mIoU improve-
ments of 0.9387 on the non-cluttered subset and 0.8905 on the
cluttered subset. By integrating CAM and SAM into the baseline,
the other metrics also improve considerably.

We also evaluated the effect of the up-sampling layer on the
model. In our experiment, we used bilinear up-sampling to build
the pixel-wise prediction map, but the training process is not con-
vergent, because the parameters of bilinear sampling [16] are not
learnable, resulting in a gradient explosion. Un-pooling [20] also
cannot be used in our network, because our DRN backbone does
not use max pooling. Thus, we replaced the up-sampling layer of
our network with a transpose convolution layer. We use mIoU as
the metric, and present each class IoU in the result, as illustrated
in Table 3. It can be seen that the results are significantly improved
using our up-sampling layer compared with the TC method. In par-
ticular, we notice that a limitation of the TC method is that it only
performs well with some categories having obvious features. For
example, the TC method performs well with the
w� grasp; contain, and pound classes (IoU ¼ 0:848;0:901;0:862,
respectively) on the non-cluttered subset. These are obvious
classes having large areas. Conversely, it does not perform well
with categories lacking obvious features, such as the
41
grasp; support, and scoopclasses (IoU ¼ 0:730;0:762;0:761, respec-
tively). This limitation does not appear in our method that includes
that cluttered subset, which demonstrates that our method can
guarantee a high-quality map of the low-resolution encoder fea-
ture maps to high-resolution affordance maps.
4.4. Comparison with state-of-the-art methods

We compared our method with extant methods on using the
UMD. For a fair comparison, we did not use post-processing (e.g.,
CRF), but we used the same evaluation metric, Fw

b .
In practice, we first merged the prediction affordances having

different masks into an image. We then converted the RGB image
into a gray image, turning the affordance labels into gray levels.
The Fw

b ultimately was used to calculate the accuracy of each
affordance.

Our architecture clearly yielded overall good performance on
the UMD. As shown in Table 4 and Table 5, our model obtains
0.941 accuracy on the non-cluttered subset of UMD, and 0.921
on the cluttered subset, which significantly outperforms existing
methods. In particular, the HMF and SRF [3] methods are based
on hand-designed features, and our model outperforms these by
38.4% and 48.1%, respectively, on the non-cluttered subset and,
67.1% and 75.6%, respectively, on the cluttered subset. We notice
that deep CNN can learn deep features from the dataset, signifi-
cantly improving its performance over methods based on hand-
designed features. Notably, we emphasize the comparison
between our method and AffordanceNet [8]. AffordanceNet first
adopts object detection to narrow the region of interest, and then
performs affordance detection. For fair comparison with Affor-
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danceNet, we used VGG-16 as the backbone and obtained an
improvement of 2.4%. Our method avoids the problems of missed
detection and false detection caused by object detection, and
improves the accuracy of predicting the affordance types of global
pixels. Our model using DRN as the backbone achieves good per-
formance on the non-cluttered subset, demonstrating that our
model can retain more details to improve accuracy over methods
using object detection.
4.5. Visualization

We conducted a set of attention visualizations on the final out-
put maps of the baseline model and ours, as shown in Fig. 7. Notice
that the output feature maps from the baseline model present little
attentiveness. Our model introduces the SAM and CAM, which
empowers the network to focus more on the region with tools.
The existing CNN method for affordance detection usually utilizes
object detection to narrow the region of interest. It then detects
affordances using semantic segmentation. The accuracy of these
methods is not only affected by affordance detection, but it is also
affected by object detection. We integrate the attention modules
into the detection architecture, making the model focus on interest
by assigning weights instead of using bounding boxes.
Table 2
Performance on UMD, using different attention modules on non-cluttered subset and clut

Models Non-cluttered subset (single objects)

mIoU MAE AUC AP F

Baseline 0.789 0.050 0.995 0.891 0.7
CAM 0.863 0.022 0.9970 0.925 0.8
SAM 0.882 0.026 0.997 0.911 0.9

CAM+SAM 0.938 0.012 0.998 0.972 0.9

Table 3
Comparison of our up-sampling layer and transpose convolution (TC).

Affordances Non-cluttered subset (single objects)

TC O

Background 0.987 0.
Grasp 0.730 0.

w-grasp 0.848 0.
Cut 0.800 0.

Contain 0.901 0.
Support 0.762 0.
Scoop 0.761 0.
Pound 0.862 0.
mIoU 0.831 0.

Table 4
Performance on UMD, comparing state-of-the-art methods on the non-cluttered subset of

Affordances Non-clut

HMF SRF DeepLab CN

Grasp 0.367 0.314 0.620 0.7
w-grasp 0.373 0.285 0.730 0.7

Cut 0.415 0.412 0.600 0.7
Contain 0.810 0.635 0.900 0.8
Support 0.643 0.429 0.600 0.7
Scoop 0.524 0.481 0.800 0.7
Pound 0.767 0.666 0.880 0.7
Average 0.557 0.460 0.733 0.7
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5. Conclusion and future work

Deep CNN has been widely used in the fields of computer vision
and robotics. However, factors such as memory and computation
time during training and testing must be considered. These factors
are related to the parameters with which the network needs to
learn. The number of parameters in our model is 16M, including
the pre-trained model and it is considerably smaller than other
methods. In practical applications, a light-weight network is very
important, because it can integrate a real-time system, according
to the pictures collected by the camera, including real-time detec-
tion of the required information.

Affordance detection has been an researched extensively in
recent years. Many works have been devoted to researching its
related problems. The key challenge of affordance detection is clas-
sifying the same affordance type against different appearances and
types having the same appearance. Existing CNN methods mainly
adopt object detection to narrow the region of required objects
with bounding boxes. Then, affordance detection is applied with
semantic segmentation. However, it proved beneficial to integrate
attention modules into our network. First, it does not require
object detection, freeing-up a significant amount of computing
resources. It can also model long-range dependency relations to
boost performance in an end-to-end manner. We trust that our
tered subset of UMD.

Cluttered subset (multiple objects)

w
b mIoU MAE AUC AP Fwb

63 0.767 0.093 0.893 0.853 0.822
45 0.887 0.095 0.962 0.811 0.833
11 0.888 0.083 0.988 0.896 0.875
41 0.891 0.089 0.993 0.859 0.921

Cluttered subset (multiple objects)

urs TC Ours

995 0.963 0.965
857 0.878 0.845
943 0.781 0.809
926 0.820 0.886
964 0.938 0.938
938 0.805 0.910
940 0.869 0.904
948 0.849 0.866
939 0.863 0.891

UMD.

tered subset (single objects)

N AffordanceNet Ours(VGG16) Ours(DRN)

19 0.731 0.784 0.904
69 0.814 0.822 0.955
37 0.762 0.761 0.924
17 0.833 0.840 0.954
80 0.821 0.844 0.963
44 0.793 0.862 0.927
94 0.836 0.847 0.956
66 0.799 0.823 0.941



Table 5
Performance on UMD, comparing state-of-the-art methods on the cluttered subset of UMD.

Affordances Cluttered subset (multiple objects)

HMF SRF Ours (VGG16) Ours (DRN)

Grasp 0.227 0.200 0.856 0.896
w-grasp 0.208 0.156 0.806 0.921

Cut 0.160 0.072 0.865 0.863
Contain 0.437 0.322 0.952 0.962
Support 0.297 0.098 0851 0.967
Scoop 0.165 0.114 0.912 0.893
Pound 0.257 0.072 0.886 0.944
Average 0.250 0.165 0.875 0.921

Fig. 7. Visualization results of attention modules on UMD.
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experiments will encourage researchers to explore affordance
detection in a multiplicity of directions.

In this paper, we proposed a novel deep CNN architecture for
affordance detection. The main motivation was to design an effi-
cient architecture to realize the labeling of each affordance type
in an RGB image. We used a DRN instead of a VGG or Resnet as a
backbone to extract features, because it retains more spatial infor-
mation and improves the ability of feature representation. More-
over, we integrated the attention mechanism into our
architecture to model long-range, multi-level dependency rela-
tions. We also verified that our attention modules are efficient
and that they improve performance on the dataset via an ablation
study. Moreover, we designed an up-sampling layer to map a low-
resolution feature map from the encoder network output to a high-
resolution affordance output. Different evaluation metrics have
shown that our method is efficient and highly accurate. Our
method on the UMD outperformed existing state-of-the-art
methods.

For the future, we plan to exploit the 2D affordance detection
framework to design 3D object affordance detection based on a
deep neural network. We are also interested in the application of
unsupervised methods of affordance detection.
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