
Neurocomputing 445 (2021) 61–71
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Binary thresholding defense against adversarial attacks
https://doi.org/10.1016/j.neucom.2021.03.036
0925-2312/� 2021 Published by Elsevier B.V.

⇑ Corresponding author.
E-mail address: feiyue.wang@ia.ac.cn (F.-Y. Wang).
Yutong Wang a,b, Wenwen Zhang a,c, Tianyu Shen a,b, Hui Yu d, Fei-Yue Wang a,⇑
a The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
c School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China
d School of Creative Technologies, University of Portsmouth, Portsmouth PO1 2DJ, UK

a r t i c l e i n f o
Article history:
Received 10 February 2021
Revised 9 March 2021
Accepted 11 March 2021
Available online 18 March 2021
Communicated by Zidong Wang

Keywords:
Binary thresholding
Defense
Adversarial training
Adversarial attack
a b s t r a c t

Convolutional neural networks are always vulnerable to adversarial attacks. In recent research, Projected
Gradient Descent (PGD) has been recognized as the most effective attack method, and adversarial train-
ing on adversarial examples generated by PGD attack is the most reliable defense method. However,
adversarial training requires a large amount of computation time. In this paper, we propose a fast, simple
and strong defense method that achieves the best speed-accuracy trade-off. We first compare the feature
maps of naturally trained model with adversarially trained model in same architecture, then we find the
key of adversarially trained model lies on the binary thresholding the convolutional layers perform.
Inspired by this, we perform binary thresholding to preprocess the input image and defend against
PGD attack. On MNIST, our defense achieves 99.0% accuracy on clean images and 91.2% on white-box
adversarial images. This performance is slightly better than adversarial training, and our method largely
saves the computation time for retraining. On Fashion-MNIST and CIFAR-10, we train a new model on
binarized images and use this model to defend against attack. Though its performance is not as good
as adversarial training, it gains the best speed-accuracy trade-off.

� 2021 Published by Elsevier B.V.
1. Introduction

In recent years, many breakthroughs have been made in the
field of deep learning [1–3]. Because deep learning outperforms
other machine learning methods and even human observers in
diverse computer vision [4–7] tasks, the applications of deep learn-
ing in many crucial situations such as autonomous driving [8,9],
face recognition [10,11] and medical image analysis [12–14] are
increasing. However, the security problem is not investigated until
2014. Since the adversarial attack proposed by Szetegy [15] in
2014, more and more recent work [16–19] has focused on this
field. For an clean image, it can be correctly classified by a Convo-
lutional Neural Network (CNN) [20,21]. Adversarial attack is to add
some malicious perturbation to this clean image, and produce an
adversarial example, which will be incorrectly classified by the
same classifier. But for human, this adversarial perturbation does
not affect their classification and they will correctly classify the
adversarial example. Defense methods [22–24] are proposed to
defend against these attacks and achieve correct predictions.
With the development of attack and defense methods, the main
issues remain unsettled. There is not a fast, simple and strong
defense method that can be deployed on any datasets with any
classification model. Although adversarial training is an effective
defense method which can be used on different datasets, it costs
too much computing resources to obtain a robust model. Other fast
defense methods [25,26] based on input transformation cannot be
applied to different datasets.

To develop a new defense method, we first investigate the
defense characteristics of adversarially trained model. We visualize
the feature maps of adversarially and naturally trained model in
same architecture on MNIST [27]. We find that different from nat-
urally trained model, adversarially trained model enhances the
semantic information and denoises the adversarial perturbation
during forward propagation. By visualizing the histogram of the
feature maps from adversarially trained model, we find that adver-
sarially trained model performs binary thresholding on input
images to achieve robustness.

Since the direct manipulation on model parameters is infeasi-
ble, we conduct binary thresholding on input image before feeding
it to a classifier, and find that this method could effectively defend
against adversarial attack on MNIST and achieve comparable per-
formance without modifying the training process. It achieves

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.03.036&domain=pdf
https://doi.org/10.1016/j.neucom.2021.03.036
mailto:feiyue.wang@ia.ac.cn
https://doi.org/10.1016/j.neucom.2021.03.036
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
99.0% accuracy on clean images, and 91.2% accuracy on white-box
adversarial images. This performance is slightly better than adver-
sarial training, and our method saves the computation time for
retraining. Besides, unlike adversarial training, our defense is more
robust to different strength of perturbation, especially larger pertu-
bations. Theoretically, for other digit datasets, simply performing
our binary thresholding defense during testing is effective.

For CIFAR-10 [28], though simply performing binary threshold-
ing on input images during testing could gain some robustness, it
could not meet our requirements. Further study find that unlike
in MNIST, the image in CIFAR-10 after binary thresholding is totally
different from the original one. And this results in a reduction on
accuracy. To overcome this problem, we train a new model on
binarized images and use this model to defend against attack.
The newly trained model has 81.3% accuracy on clean images,
and 40.5% accuracy on adversarial images. This performance is
about 7% lower than adversarial training, but we decrease the com-
putation time ninefold and achieve the best speed/ accuracy trade-
off on CIFAR-10. The overall pipeline of our defense method is
shown in Fig. 1.

The main contributions of this paper are threefold.

� First, by visualizing the feature maps of naturally and adversar-
ially trained model on MNIST, we find adversarially trained
model performs binary thresholding to denoise and resist the
adversarial perturbation.

� Second, inspired by this, without modifying the training pro-
cess, we simply perform binary thresholding on input images
during testing to defend against PGD attack on MNIST. This
defense method proves to be fast, simple and strong. And we
give a detailed description on how to obtain the optimal thresh-
old regardless of dataset.

� Third, because MNIST is a gray-scale digit dataset, after binary
thresholding the input image is just the same as the original
one. While CIFAR-10 is a color dataset, we cannot directly per-
form binary thresholding to gain robustness. We train a new
model on binarized images and use this model to defend against
attack, though the performance is not as good as adversarial
training, it gains the best speed-accuracy trade-off on CIFAR-10.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work of adversarial attack and defense methods,
including PGD attack and adversarial training in detail. Section 3
illustrates the defense characteristic of adversarially trained model
and based on this characteristic, we propose our binary threshold-
ing defense. Section 4 describes the experimental settings and
defense results. Section 5 draws a conclusion, lists the weaknesses
of our method and puts forward future work that boosts the devel-
opment of CNN robustness.
2. Related work

We first explain the related work of adversarial attacks and
defenses. Then we detail PGD attack and adversarial training,
which we will mention in the following sections.
2.1. White-box attack and black-box attack

When the network architecture and the parameters of target
model are known, we can conduct white-box attack based on this
target model. But if we do not know the network architecture and
the parameters of target model, we need to use a substitute and
perform attack based on this substitute. This is called black-box
attack. Black-box attack relies on the transferability of adversarial
examples between different models, which means an adversarial
62
example generated on one model could attack another model at
certain probability.

Generally, white-box attack is more powerful than black-box
attack. But in fact, it is always impossible to acquire the network
architecture and the parameters of target model. So we need to
conduct black-box attack as an alternative. For a defense
method, white-box and black-box performance are important
metrics. In this paper, we will use the accuracy under white-
box and black-box attack to verify the effectiveness of our
defense method.

2.2. Adversarial attacks

Given the architecture and parameters of the target model,
early gradient-based attack methods are developed to solve the
constrained optimization problem

max
r

Lðxþ r; y; hÞkrk1 6 �; ð1Þ

where L is the loss function, h is the model parameters, x is the clean
image, y is its ground-truth label, r is the adversarial perturbation
added to x and � is the allowed maximum perturbation. Contrary
to standard training process, where we search for h to minimize
the loss function and make the output of the network closer to y.
Here, we maximize the loss to make the output far away from y
thus it causes misclassification. Meanwhile, we need to limit the
maximum size of r, and make the adversarial perturbation invisible
for human observer.

Based on Eq. (1), Goodfellow et al. [29] first propose an efficient,
one-step method, named Fast Gradient Sign Method (FGSM) to
generate perturbation based on the gradient of loss function with
regard to the image pixel. Considering the large one-step method
can be coarse, Kurakin et al. [30] propose a finer optimization, Basic
Iterative Method (BIM), also known as Iterative FGSM (I-FGSM).
BIM performs FGSM for several iterations with smaller steps and
constrains the L1 norm in each iteration. To further improve attack
method, Madry et al. [31] propose PGD. Instead of starting at the
original input point, PGD starts at a random point in the allowed
L1 norm ball, and avoids local maximas. Among all theses first-
order attack methods, PGD is proved to be the strongest. In each
iteration the update is

xtþ1 ¼ Clipx;�ðxt þ asgnðrxLðx; y; hÞÞÞ; ð2Þ
where Clipx;�ðx0Þ function clips x0 in �-L1 neighborhood of x;a is the
step size that moves in each iteration, sgnð:Þ is the sign function,
and rxL is the gradient of the loss function with regard to image
pixel values. Note that besides the � restriction, we also need to
restrict the pixel value in the range of [0, 1] or [0, 255].

2.3. Defenses

To defend against adversarial attacks, many defense methods
are proposed to improve the robustness of neural networks. The
most intuitive and effective method is adversarial training
[15,29,31,32]. As a universal defense method, adversarial training
requires to discard the standard model, and retrain the network
on adversarially perturbed images until the network learns to clas-
sify them correctly. Essentially, it solves a min–max problem

min
h

max
r

Lðxþ r; y; hÞ
krk1 6 �;

ð3Þ

that is, we first optimize r to generate adversarial examples remain-
ing h unchanged. Then, we optimize h using the adversarial
examples generated in the first step. Usually, we use PGD as the



Training:

(a) MNIST

Testing:

model

PGD adversary binarization model Prediction

(b) CIFAR-10

model
binarization

binarization modelPGD adversary

Training:

Testing: Prediction

Fig. 1. Block diagram describing the differences between the defense pipeline on MNIST and CIFAR-10. For MNIST, we train the network on clean images (a). For CIFAR-10, we
train the network on binarized images (b); and for both datasets, we test the networks on binarized adversarial images.

Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
white-box attacker for adversarial training in the first step. Since a
n-step PGD needs n back-propogations, the total amount of compu-
tation for adversarial training is approximately n� bigger than stan-
dard training. Also, it usually needs more training epochs to
converge. Though the defense performance is pretty good, it needs
substantial time to retrain the model. Especially when training on a
large-scale dataset such as ImageNet [33], the computation time
can be exploded. For an experimental environments where GPUs
are inadequate, the defense cannot be implemented at all.

To overcome the weakness of adversarial training, there are
other defenses working on simple image preprocess to defend
against adversarial examples. Their advantages are threefold. First,
they requires very few additional computations. Second, they can
be deployed with any classification model. Third, they do not mod-
ify the classifier architecture or training process. Guo et al. [25]
propose five image transformation methods to counter adversarial
examples. These transformations include image cropping and
rescaling [34], bit-depth reduction [35], JPEG compression [36],
total variance minimization [37] and image quilting [38]. They
combine different input transformations and effectively defend
against attacks. They reduce images to 3 bits to perform bit-
depth reduction, set quality level 75 (out of 100) to perform JPEG
compression without any clues about how to obtain these param-
eters. Xie et al. [26] use random resize and random padding to
achieve robustness. They resize the input shape from
299� 299� 3 to rnd� rnd� 3, where rnd is an integer randomly
sampled from the range of [299, 331). Then they randomly pad
the resized image to the shape of 331� 331� 3 empirically. They
do not give a clear description about how to obtain the parameter
either. And for sure, if the dataset is changed, these parameters are
ineffective.

We propose a defense method that nearly avoids all these
weaknesses and achieves the best speed-accuracy trade-off. We
perform a simple binary thresholding with very few additional
computations, and give a detailed description on how to obtain
the optimal threshold in our defense regardless of dataset. It also
can be deployed on any datasets with any classification model.
63
3. Proposed method

3.1. Denoising operations in adversarially trained model

To explore the differences between adversarially trained and
naturally trained model, we feed a clean test image and its adver-
sarial counterpart to these two models and visualize their feature
maps after the first convolutional layer, as in [39]. The naturally
trained model has more powerful adversarial examples, as verified
in [31]. So based on a clean image in MNIST, as shown in Fig. 2a, we
perform PGD attack on the naturally trained model to produce an
adversarial example, as shown in Fig. 2b. The ground-truth label
for the image is ‘7’, but the naturally trained model misclassifies
the adversarial image as ‘9’, while the adversarially trained model
correctly classifies the adversarial image.

The feature maps of the adversarially trained model on clean
and adversarial image after the first convolutional layer are shown
in Fig. 3. The feature maps after the first convolutional layer, ReLU
layer, and max-pooling layer are shown in Fig. 4. We can see that
the denoising operation occurs after the ReLU layer, and removes
a significant chunk of the adversarial perturbation. The convolu-
tional layer and ReLU can be formulated as

ReLUðwTxþ bÞ ð4Þ

where ReLUðxÞ ¼ maxð0; xÞ. This can filter pixels with value less
than
� wb

kwk2
ð5Þ

Feature maps after the second convolutional layer have blurry out-
lines. It is hard for human observer to determine if denoising oper-
ation is performed or not. So we select to investigate the feature
maps after the first convolutional layer rather than the feature maps
after the second convolutional layer.

The feature maps of the naturally trained model after the first
convolutional layer, ReLU layer, and max-pooling layer, are shown



Fig. 2. The original clean image (a) and its adversarial counterpart (b). The binarized clean (c) and adversarial image (d). The ground-truth label is ‘7’. While the naturally
trained model could correctly classify (a) as ‘7’, it misclassifies (b) as ‘9’. (c) and (d) look very similar, and they are roughly identical to (a). These two binarized images do not
cause misclassification any more.

Fig. 3. The feature maps of the adversarially trained model on clean (a) and adversarial image (b) after the first convolutional layer. The adversarial perturbation in (b) is not
removed.

Fig. 4. The feature maps of the adversarially trained model on clean (a) and adversarial image (b) after the first convolutional layer, ReLU layer, and max-pooling layer. Only
three channels have semantic activations on input, and these channels enhance the semantic information and resist the adversarial perturbation.

Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
in Fig. 5. Compared with the naturally trained model, the feature
maps of the adversarially trained model have clearer outlines
and are more resistant to adversarial perturbation. It means the
adversarially trained model enhances the semantic information
and denoises the adversarial perturbation, while the naturally
trained model amplifies the perturbation.

3.2. Binary thresholding in adversarially trained model

As shown in Fig. 4, only three channels play important roles in
forward propagation and denoise the adversarial perturbation. We
find the first convolutional and ReLU layer jointly perform as a
threshold filter. To validate this operation, we visualize the his-
64
togram of the feature maps from the same channel in both models
on clean and adversarial example. Here, we select the most acti-
vated channel to visualize. Since in the adversarially trained model,
only three channels have semantic outputs regardless of input
class, as shown in Fig. 4. Other channels have zero activations on
both clean and adversarial image, and we cannot find if denoising
is performed or not. Moreover, the strongest activation is always
used to show the patterns learned by the network. It is generally
considered that the strongest activation has the clearest informa-
tion to decide the class of the input[40,41].

The histogram of the feature maps from both models are shown
in Fig. 6. For the adversarially trained model, the most activated
channels on clean and adversarial image are the same. But for



Fig. 5. The feature maps of the naturally trained model on clean (a) and adversarial image (b) after the first convolutional layer, ReLU layer, and max-pooling layer. The
semantic information in (b) is severely obscured by adversarial perturbation.

Fig. 6. The histogram of the feature maps from the same channel in the naturally trained model on clean (a) and adversarial image (b). The histogram of the feature maps
from the same channel in the adversarially trained model on clean (c) and adversarial image (d). For the naturally trained model, the distributions of the feature maps on
clean (a) and adversarial image (b) are totally different, mainly because of the adversarial perturbation added to the clean image, and this results in different predictions for
these two images. For the adversarially trained model, the distributions of the feature maps on clean (c) and adversarial image (d) are roughly the same, surprisingly
unaffected by perturbation, and the classifier could correctly classify both images.

Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
the naturally trained model, the most activated channels on clean
and adversarial image are different. As the naturally trained model
could not correctly classify the adversarial image, we select to visu-
alize the most activated channel on the clean image. For the natu-
rally trained model, the distributions of the feature maps on clean
and adversarial image are totally different, mainly because of the
adversarial perturbation added to the clean image, and this results
in different predictions for these two images. For the adversarially
trained model, the distributions of the feature maps on clean and
adversarial image are roughly the same, surprisingly unaffected
by perturbation, and the classifier could correctly classify both
images. And the feature maps are binary images. According to this,
we deem the adversarially trained model performs binary thresh-
olding on input images to achieve robustness.

3.3. Performing binary thresholding on input images

Since we cannot directly manipulate the model parameters to
perform threshold filtering, we can achieve this before the image
fed into the network. To do so, we need to specify the threshold
value, and we assign 0 to the pixels whose value less than the
threshold, 1 to the pixels whose value more than the threshold

dstðx; y; cÞ ¼ 1; if srcðx; y; cÞ > thresh

0; otherwise

�
ð6Þ

in which srcðx; y; cÞ is the pixel value at the position of ðx; yÞ in c
color channel before binarization, dstðx; y; cÞ is the pixel value after
binarization and thresh is the threshold value.

We should note that since each input image has distinct pixel
distribution, the optimal threshold for each image is different. If
we assign the same threshold for each image in the test set, that
65
could lead to a decline of defense performance due to the unfit
threshold. However, we cannot produce the optimal threshold for
each image by line search, since the class of the image in test set
is unknown.

Since we cannot obtain the label of test set, and the training set
and test set are from a same distribution, we search the optimal
value on training set. We put forward two strategies to obtain
the optimal threshold value. The first strategy is we use a fixed
threshold value to conduct binary thresholding over test set. Here,
to find the optimal threshold, we first generate adversarial exam-
ples over the training set. Then we search the optimal threshold
in the range of [0, 1] and obtain the defense performance on these
adversarial examples. The best defense performance corresponds
to the optimal threshold value, as shown in Fig. 8a. Similarly, the
second strategy is we use a fixed percentile value over entire test
set and compute the corresponding threshold value for each image.
As the fixed threshold strategy does, we line search the optimal
percentile in the range of [0, 1] over adversarial training dataset,
as shown in Fig. 8b. To implement this, we do not need to generate
adversarial images each time for different threshold value. To save
the computation time of generating adversarial images, we only
generate adversarial images once, and then apply different thresh-
old to evaluate the performance.

For the fixed threshold strategy, at the optimal threshold 0.427,
the accuracy on clean test images is 99.0%, and the accuracy on
adversarial test images is 91.2%. For the fixed percentile strategy,
at the optimal percentile 0.79, the accuracy on clean test images
is 97.9%, and the accuracy on adversarial test images is 87.0%.
The performance of optimal threshold is slightly better than opti-
mal percentile. For both strategies, the accuracy on adversarial
images starts from 0 and increases to the maximum and then



Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
decreases. The accuracy on clean images remains unchanged and
decreases sharply in the end. In addition, for the fixed threshold
strategy, in the range of around [0.3, 0.7], any threshold value
could achieve pretty good defense performance. As for the fixed
percentile strategy, only at around 0.8, the percentile could achieve
good defense performance. And once the percentile is larger or
smaller than 0.8, the performance drops quickly. So we choose to
use the fixed threshhold to perform binary thresholding.

To validate the effectiveness of our strategy, we also search over
test set to compare the results. We find that the optimal threshold
value is 0.4 for test set. Using this threshold, the accuracy on clean
images is 99.0%, and the accuracy on adversarial images is 90.1%.
Considering the randomness of adversarial accuracy, the perfor-
mance of optimal threshold over training set and over test set is
identical. We can use the optimal threshold over training set to
perform binary thresholding on test images, without significant
performance decline and prior knowledge about the test set.

Though this fixed threshold strategy does not obtain the opti-
mal defense method, it achieves compatible defense performance
on test set, as shown in Table 1. Compared with adversarial train-
ing, our defense achieves better performance on clean images and
on adversarial images. Note that we not only perform white-box
attack on our defense, but also perform black-box attack. As we
know, adversarial examples transfer across different models,
which means an adversarial example generated from a model
could also attack a different model [42–44]. As mentioned in
[31], adversarial examples generated by naturally trained model
are more powerful than generated by adversarially trained model.
To conduct black-box attack on both our defense method and
adversarial training, we train a new network using the same archi-
tecture and setups as the naturally trained model with indepen-
dent initialization. The accuracy of the new naturally trained
model on clean images is 99.2%, and the accuracy on adversarial
examples is 0.0%, just the same as the naturally trained model.
As we can see, the black-box attack successfully attacks the natu-
rally trained model, its accuracy on black-box attack is 0.0%. Both
our defense and adversarial training defend against the black-box
attack, and achieve 95.6% and 96.1% accuracy, respectively. Our
defense performance is just slightly lower than adversarial
training.

If we cannot obtain the whole training set, we could also select
a pretty good threshold for test set. We visualize the histogram of
clean input image and its adversarial counterpart before and after
binary thresholding, as shown in Fig. 7. As we can see, before bina-
rization, the clean image is a binary image. Unlike the clean image,
in the adversarial image, many pixels fall in the range of [0, 0.3],
especially at around 0.3. This corresponds to the maximum pertur-
bation � ¼ 0:3. And once we set the threshold value slightly larger
than 0.3, we could gain robustness on the adversarial image and
make the distribution of adversarial image as in Fig. 6d. The clean
image and its adversarial counterpart after binary thresholding is
shown in Fig. 2c and d, as for human, they are just the same; as
for classifier, both images could be correctly classified.

As mentioned above, if we search the optimal threshold on
training set, we only need to generate adversarial examples on
training set once, evaluate the defense performance on different
threshold and find the optimal threshold. We do not need to
retrain the model, as shown in Fig. 1(a).

3.4. Training on binarized images

While our binary thresholding defense is considerably effective
on MNIST, when it is exploited on CIFAR-10, it results in poor per-
formance. Intuitively, we can foresee this problem. MNIST is a
gray-scale digit dataset, while CIFAR-10 is a color dataset. In
MNIST, after binary thresholding operation, the image is just the
66
same as the original one, as shown in Fig. 2c and d. So binary
thresholding is directly useful for MNIST.

But for CIFAR-10, after binary thresholding operation, the input
image is quite different from the original one, as shown in Fig. 1b.
Note that, for gray datasets like MNIST, we use one optimal thresh-
old for the single channel. For RGB datasets like CIFAR-10, we also
use one optimal threshold for the three channels. Even if we use
the optimal threshold of 121, the accuracy on clean test set is
38.8%, and the accuracy on adversarial test set is 28.1%. Though this
indicates that our method has defensive ability, the defense perfor-
mance is not good enough compared to adversarial training. As
shown in Table 3, for adversarial training on CIFAR-10, the accu-
racy on clean test set is 87.3%, and the accuracy on adversarial test
set is 47.2%.

To overcome this problem, we consider training a newmodel on
binarized images and use this model to perform defense, as shown
in Fig. 1(b). We select the optimal threshold 121 and use this
threshold to perform binarization over training dataset. Using the
same architecture and settings, we train a new model on these
binarized images. At test time, we perform PGD attack on this
model, and evaluate the performance of the new model on bina-
rized images. We find that the accuracy on clean test set is
81.3%, and the accuracy on adversarial test set is 40.5%, as shown
in Table 3. The performance is about 7% lower than adversarial
training. As in MNIST, to conduct black-box attack, we train a
new network using the same architecture and setups as the natu-
rally trained model with independent initialization. The accuracy
of the new naturally trained model on clean images is 95.0%, and
the accuracy on adversarial examples is 0.0%, just the same as
the naturally trained model. As we can see, the black-box attack
successfully attacks the naturally trained model, and the accuracy
on black-box attack is 16.1%. Both our defense and adversarial
training defend against the black-box attack, and achieve 72.8%
and 85.9% accuracy, respectively. Our defense performance is 13%
lower than adversarial training. But we decrease the computation
time ninefold and achieve the best speed/ accuracy trade-off on
CIFAR-10.

The reason why the performance of our method is lower than
adversarial training may be that, CIFAR-10 is not a binary dataset.
The images in MNIST almost like binary images, and the majority
of the pixel value is 0 and 1. After binary thresholding, the adver-
sarial perturbation about 0.3 can be removed completely. But for
CIFAR-10, the images are not binary images, and the pixel values
spread over the range of [0, 255]. Simply performing binary thresh-
olding may obscure some important features and cannot remove
all the adversarial perturbation.

3.5. A high level understanding of our defense

As described in [31], the clean data points can be easily sepa-
rated by a naturally trained model with a simple decision bound-
ary. As for adversarial examples which are close to the decision
boundary, the naturally trained model cannot separate them cor-
rectly. So, to separate them carefully, adversarial training needs
to learn a complicated decision boundary and will need a larger
capacity network and much more training time. On the contrary,
we do not pursue the accurate complicated decision boundary,
we map the adversarial examples to data points where are far
away from the simple boundary and can be correctly separated.

In this way, our defense is similar to Defense-GAN [45] and Pix-
elDefend [46] in essence. Song et al. devise PixelDefend, using a
PixelCNN generative model [47,48] to project potential adversarial
example back onto the regions of training data before feeding it
into a classifier. Samangouei et al. propose Defense-GAN, leverag-
ing a Generative Adversarial Network (GAN) [49,50] to project
samples onto the range of the generator before classifying them.



Fig. 8. The accuracy on clean and adversarial test set with different threshold value (a). The accuracy on clean and adversarial training set with different percentile (b).

Fig. 7. The histogram of the original clean (a) and adversarial image (b). The histogram of the clean (c) and adversarial image (d) after binarization. Before binarization, the
distributions of the clean (a) and adversarial image (b) are totally different, mainly because of the adversarial perturbation added to the clean image, and this results in
different predictions for these two images. After binarization, the distributions of the clean (c) and adversarial image (d) are roughly the same, and the classifier could
correctly classify both images.

Table 1
MNIST: Speed/ accuracy trade-off for the naturally trained model, the adversarially trained model and the naturally trained model with our defense on clean test set, white-box
and black-box PGD adversarial test set (BT denotes binary thresholding).

Model Natural White-box PGD Black-box PGD Training time (FPS) Inference time (FPS)

Standard training 99.2 0.0 0.0 23,000 86,410
Standard training w BT 99.0 91.2 95.6 23,000 83,500
Adversarial training 98.5 90.3 96.1 597 86,410
Adversarial training w BT 98.1 93.7 96.3 597 83,500

1 https://github.com/MadryLab/mnist_challenge
2 https://github.com/MadryLab/cifar10_challenge

Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
These two methods are very similar, except they use different gen-
erative models. Though these defenses are shown to be feasible
mechanism against adversarial attacks, it is still a challenge to train
and tune generative model.

Compared with adversarial training, PixelDefend and Defense-
GAN, we only need to conduct an extra binary thresholding and
thus save a lot of computations at both training and inference time.
At last, we need to emphasize the main advantages of our defense
method. 1) Our method achieves compatible defense performance
with adversarial training. 2) We perform a simple binary thresh-
olding with very few additional computations during training
and testing, and give a detailed description on how to obtain the
optimal threshold in our defense regardless of dataset. 3) Our
method can be deployed with any classification model on any
dataset.

4. Experiments and results

4.1. Experimental settings

Three classification datasets are used in our experiments.
MNIST has 60,000 training images and 10,000 test images. Each
image is a 28� 28 gray-scale image having a label from 1 of 10
67
classes. Fashion-MNIST [51] is just like MNIST. CIFAR-10 consists
of 60,000 images, where 50,000 used for training and 10,000 for
testing, and each image is a 32� 32 color image with a label from
1 of 10 classes.

For MNIST, we use the same experimental settings as in [31]1

based on TensorFlow [52]. We use two convolutional layers with
32 and 64 filters in 5 � 5 size, each followed by a ReLU and a
2 � 2 max-pooling, and a fully connected layer of size 1024 to build
the network. The naturally trained model is trained on clean images
for 25 epochs, and the adversarially trained model is trained with
PGD-made adversarial images for 100 epochs. The learning rate is
10�4, and the batch size is 50. For PGD-made adversarial images used
for training and testing, we run n ¼ 40 iterations with a step size of
a ¼ 0:01, and the maximum perturbations for each pixel is � ¼ 0:3.
For Fashion-MNIST, we use the same experimental settings as in
MNIST, except we train the binarized model for 5 epochs.

For CIFAR-10, we use the same experimental settings as in
[31].2 We use a wide residual network [53] WRN-30-10 architecture,
which denotes a residual network with 30 layers and 10 times wider
than original residual network. Both the naturally and the adversar-

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge


Table 2
Fashion-MNIST: Speed/ accuracy trade-off for the naturally trained model, the adversarially trained model and the naturally trained model with our defense on clean test set,
white-box and black-box PGD adversarial test set (BT denotes binary thresholding).

Model Natural White-box PGD Black-box PGD Training time (FPS) Inference time (FPS)

Standard training 90.5 0.0 0.0 22,570 84,590
Standard training w BT 82.6 36.9 57.3 22,570 85,720
Binary training 86.2 47.0 67.5 21,600 85,720
Adversarial training 70.8 60.7 74.8 569 84,590
Adversarial training w BT 76.0 62.8 74.3 569 85,720

Table 3
CIFAR-10: Speed/ accuracy trade-off for the naturally trained model, the adversarially trained model and the naturally trained model with our defense on clean test set, white-box
and black-box PGD adversarial test set (BT denotes binary thresholding).

Model Natural White-box PGD Black-box PGD Training time (FPS) Inference time (FPS)

Standard training 95.0% 0.0% 16.1% 282 851
Binary training 81.3% 40.5% 72.8% 278 840
Adversarial training 87.3% 47.2% 85.9% 32 851

Fig. 9. Comparison of the convergence rate of our defense method and adversarial training on MNIST. (a) shows the accuracy on clean test set, while (b) shows the accuracy
on white-box PGD test set.

Fig. 10. Performance of our defense method against PGD adversaries of different
strength on MNIST. The adversarially trained model is trained against � ¼ 0:3. We
observe that for � smaller than 0.3, the adversarially trained model achieves equal
accuracy to our defense method. But for � more than 0.3, the performance of
adversarial training drops sharply, while our defense remains stable.

Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
ially trained model is trained for 70,000 iterations. The batch size is
128. The initial learning rate is 0:1, and we decrease it by 10� at the
40, 000 and 60, 000 iteation. For PGD, we use 7 steps of size 2, and a
total � ¼ 8.

All of our experiments run on an NVIDIA GeForce GTX 1080Ti. It
is important to note that because of the random starting point in
PGD, there is a randomness in mAP drop, i.e., the results of each
attack are slightly different (generally �1%). So for attack perfor-
68
mance, we perform PGD three times and take the average as the
final result.
4.2. Defense results

For MNIST, the defense results are shown in Table 1. The natu-
rally trained model achieves 99.2% accuracy on clean test set, and
0% accuracy on adversarial test set at 23,000 FPS for training. The
adversarially trained model achieves 98.5% accuracy on clean test
set, and 90.3% accuracy on adversarial test set at 597 FPS for train-
ing. The training speed of standard training is roughly 40 times fas-
ter than adversarial training, and this corresponds to the PGD
iteration number. For our defense method, we use the optimal
threshold 0.427. The accuracy on clean test images is 99.0%, and
the accuracy on adversarial test images is 91.2%. The accuracy on
black-box attack is 95.6%, slightly lower than adversarial training.
The overhead of our method is about 40� less than adversarial
training, and our defense can be conducted online with any classi-
fier without offline retraining process. The testing speed is roughly
the same as adversarial training. We also find performing binary
thresholding during evaluation help improve the robustness of
adversarially trained model.

For fashion-MNIST, the defense results are shown in Table 2.
The naturally trained model achieves 90.5% accuracy on clean test
set, and 0% accuracy on adversarial test set. Performing binary
thresholding during evaluation increases 36.9% accuracy of natu-
rally trained model on adversarial test set. It also increases 2%
accuracy of adversarially trained model on adversarial test set,



Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
and increases 5% accuracy on clean test set. We also train a new
model on binarized clean images with the optimal threshold
0.325. The model achieves 86.2% accuracy on clean images and
47.0% on adversarial examples at 21,600 FPS for training. The over-
head of our method is about 40� less than adversarial training.

For CIFAR-10, the defense results are shown in Table 3. We train
a new model on binarized clean images with the optimal threshold
121. Our defense achieves 81.3% accuracy on clean images and
40.5% on adversarial examples at 278 FPS for training. Adversarial
training achieves 87.3% accuracy on clean images and 47.2% on
adversarial examples at 32 FPS for training. Our performance is
7% lower than adversarial training, but we decrease the computa-
tion time ninefold and achieve the best speed/ accuracy trade-off
on CIFAR-10.

4.3. Convergence rate

We compare the convergence rate of our defense method and
adversarial training on MNIST, as shown in Fig. 9. Our method con-
verges much faster than adversarial training both on clean and
adversarial test set. Moreover, the training time of each batch for
adversarial training is 40� longer than our method.

4.4. Resistance for different values of �

Since we perform binary thresholding, we speculate our
method could resist different values of � when � is smaller than
the threshold. On MNIST, we use 100 steps with a step size of
2:5 � �=100 to make sure that we could reach the boundary of the
�-ball from any starting point within it. We compare the robust-
ness of our defense method with adversarial training. Note that
the adversarially trained model is trained against attacks with
the maximum perturbation of � ¼ 0:3. And the values of � is in
the range of [0, 0.42] as in [31], since much larger � will make
the perturbation obvious enough to cause misclassification by
humans.

As shown in Fig. 10, for � smaller than 0.3, the adversarially
trained model achieves equal accuracy to our defense method.
But for � more than 0.3, the performance of adversarial training
drops sharply, while our defense remains stable.
5. Conclusion and future work

In this paper, we propose a fast, simple and strong defense
method that achieves the best speed-accuracy trade-off. In MNIST,
we visualize the feature maps of the adversarially and naturally
trained model on clean image and its adversarial counterpart,
and find that the adversarially trained model performs binary
thresholding to gain robustness. Inspired by this, we perform a
simple binary thresholding on input images before feeding them
into the classifier to defend against PGD attack, and give a detailed
description on how to obtain the optimal threshold in our defense
regardless of dataset. We can obtain robustness just by binarizing
the images during testing. For Fashion-MNIST and CIFAR-10, we
need to use the binarized images to retrain a model and use the
new model to obtain robustness.

There are also some shortcomings of our defense method. First,
as shown in Table 3, the defense performance on CIFAR-10 can be
improved. We also plan to perform our defense on ImageNet. Note
that our defense method is based on L1 norm attack, and is not
applicable to L1 or L2 norm attack. Since the L1 and L2 norm attack
could significantly change the pixel value, our threshold filter will
fail in this situation. So in the future, we will investigate more gen-
eral defense method that can defend against more kinds of attack
with better performance.
69
CRediT authorship contribution statement

Yutong Wang: Investigation, Conceptualization, Methodology,
Software, Formal analysis, Visualization, Writing - original draft,
Writing - review & editing. Wenwen Zhang: Conceptualization,
Methodology, Validation, Formal analysis. Tianyu Shen: Conceptu-
alization, Methodology, Validation, Formal analysis. Hui Yu:
Resources, Conceptualization. Fei-Yue Wang: Resources,
Supervision.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] Y. Ming, X. Meng, C. Fan, H. Yu, Deep learning for monocular depth estimation:
A review, Neurocomputing 438 (2021) 14–33, https://doi.org/10.1016/j.
neucom.2020.12.089.

[2] G. Sokar, D.C. Mocanu, M. Pechenizkiy, Spacenet: Make free space for continual
learning, Neurocomputing 439 (2021) 1–11, https://doi.org/10.1016/j.
neucom.2021.01.078.

[3] P. Singh, P. Mazumder, M.A. Karim, V.P. Namboodiri, Calibrating feature maps
for deep cnns, Neurocomputing 438 (2021) 235–247, https://doi.org/10.1016/j.
neucom.2020.12.119.

[4] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Communications of the ACM 60 (6) (2017) 84–
90, https://doi.org/10.1145/3065386.

[5] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026–1034, https://
doi.org/10.1109/ICCV.2015.123.

[6] X. Li, F.-Y. Wang, Parallel visual perception for intelligent driving: basic
concept, framework and application, Journal of Image and Graphics 26 (1)
(2021) 67–81, https://doi.org/10.11834/jig.200402.

[7] H. Zhang, X. Li, F.-Y. Wang, The basic framework and key algorithms of parallel
vision, Journal of Image and Graphics 26 (1) (2021) 82–92, https://doi.org/
10.11834/jig.200400.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al., End to end learning for self-
driving cars, arXiv preprint arXiv:1604.07316 (2016)..

[9] J. Wu, R. Ji, J. Liu, M. Xu, J. Zheng, L. Shao, Q. Tian, Real-time semantic
segmentation via sequential knowledge distillation, Neurocomputing 439
(2021) 134–145, https://doi.org/10.1016/j.neucom.2021.01.086.

[10] O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition (2015)..
[11] F. Schroff, D. Kalenichenko, J. Philbin, Facenet, A unified embedding for face

recognition and clustering, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 815–823, https://doi.
org/10.1109/cvpr.2015.7298682.

[12] T. Shen, C. Gou, F.-Y. Wang, Z. He, W. Chen, Learning from adversarial medical
images for x-ray breast mass segmentation, Computer Methods and Programs
in Biomedicine 180 (2019), https://doi.org/10.1016/j.cmpb.2019.105012
105012.

[13] T. Shen, J. Wang, C. Gou, F.Y. Wang, Hierarchical fused model with deep
learning and type-2 fuzzy learning for breast cancer diagnosis, IEEE
Transactions on Fuzzy Systems 28 (12) (2020) 3204–3218, https://doi.org/
10.1109/TFUZZ.2020.3013681.

[14] T. Shen, C. Gou, J. Wang, F.Y. Wang, Simultaneous segmentation and
classification of mass region from mammograms using a mixed-supervision
guided deep model, IEEE Signal Processing Letters 27 (2020) 196–200, https://
doi.org/10.1109/LSP.2019.2963151.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R.
Fergus, Intriguing properties of neural networks, in: Proceedings of the
International Conference on Learning Representations, 2014.

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, Deepfool: a simple and accurate
method to fool deep neural networks, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2574–2582, https://
doi.org/10.1109/CVPR.2016.282.

[17] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks,
in, in: Proceedings of the IEEE Symposium on Security and Privacy, 2017, pp.
39–57, https://doi.org/10.1109/SP.2017.49.

[18] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The
limitations of deep learning in adversarial settings, Proceedings of the IEEE
European Symposium on Security and Privacy (2016) 372–387, https://doi.
org/10.1109/EuroSP.2016.36.

[19] Y. Wang, K. Wang, Z. Zhu, F.-Y. Wang, Adversarial attacks on faster r-cnn object
detector, Neurocomputing 382 (2020) 87–95, https://doi.org/10.1016/j.
neucom.2019.11.051.

https://doi.org/10.1016/j.neucom.2020.12.089
https://doi.org/10.1016/j.neucom.2020.12.089
https://doi.org/10.1016/j.neucom.2021.01.078
https://doi.org/10.1016/j.neucom.2021.01.078
https://doi.org/10.1016/j.neucom.2020.12.119
https://doi.org/10.1016/j.neucom.2020.12.119
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.11834/jig.200402
https://doi.org/10.11834/jig.200400
https://doi.org/10.11834/jig.200400
https://doi.org/10.1016/j.neucom.2021.01.086
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1016/j.cmpb.2019.105012
https://doi.org/10.1109/TFUZZ.2020.3013681
https://doi.org/10.1109/TFUZZ.2020.3013681
https://doi.org/10.1109/LSP.2019.2963151
https://doi.org/10.1109/LSP.2019.2963151
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0075
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0075
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0075
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0075
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1016/j.neucom.2019.11.051
https://doi.org/10.1016/j.neucom.2019.11.051


Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
[20] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778, https://doi.org/10.1109/CVPR.2016.90.

[21] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014)..

[22] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami, Distillation as a defense to
adversarial perturbations against deep neural networks, in: Proceedings of the
IEEE Symposium on Security and Privacy, 2016, pp. 582–597, https://doi.org/
10.1109/SP.2016.41.

[23] D. Hendrycks, K. Gimpel, Early methods for detecting adversarial images, arXiv
preprint arXiv:1608.00530 (2016)..

[24] D. Meng, H. Chen, Magnet: a two-pronged defense against adversarial
examples, in, in: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 135–147, https://doi.org/
10.1145/3133956.3134057.

[25] C. Guo, M. Rana, M. Cisse, L. Van Der Maaten, Countering adversarial images
using input transformations, in, in: Proceedings of the International
Conference on Learning Representations, 2018.

[26] C. Xie, J. Wang, Z. Zhang, Z. Ren, A. Yuille, Mitigating adversarial effects
through randomization, in: Proceedings of the International Conference on
Learning Representations, 2018.

[27] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–2324,
https://doi.org/10.1109/5.726791.

[28] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny
images (2009)..

[29] I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, in: Proceedings of the International Conference on Learning
Representations, 2015.

[30] A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical
world, in: Proceedings of the International Conference on Learning
Representations Workshop, 2017.

[31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning
models resistant to adversarial attacks, in: Proceedings of the International
Conference on Learning Representations, 2018.

[32] C. Xie, Y. Wu, L. v. d. Maaten, A.L. Yuille, K. He, Feature denoising for improving
adversarial robustness, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 501–509. doi:10.1109/
CVPR.2019.00059..

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual
recognition challenge, International Journal of Computer Vision (2015),
https://doi.org/10.1007/s11263-015-0816-y.

[34] A. Graese, A. Rozsa, T.E. Boult, Assessing threat of adversarial examples on
deep neural networks, in: Proceedings of the IEEE International Conference on
Machine Learning and Applications, 2016, pp. 69–74, https://doi.org/10.1109/
ICMLA.2016.44.

[35] W. Xu, D. Evans, Y. Qi, Feature squeezing: Detecting adversarial examples in
deep neural networks, in: Proceedings of the Network and Distributed System
Security Symposium, 2018.

[36] G.K. Dziugaite, Z. Ghahramani, D.M. Roy, A study of the effect of jpg
compression on adversarial images, arXiv preprint arXiv:1608.00853 (2016)..

[37] L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal
algorithms, Physica D: Nonlinear Phenomena 60 (1–4) (1992) 259–268,
https://doi.org/10.1016/0167-2789(92)90242-F.

[38] A.A. Efros, W.T. Freeman, Image quilting for texture synthesis and transfer, in:
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, 2001, pp. 341–346.

[39] Y. Wang, F.-Y. Wang, Finding patterns in adversarial training, Chinese
Automation Congress 2020 (2020) 4130–4134.

[40] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks,
European Conference on Computer Vision (2014) 818–833, https://doi.org/
10.1145/3065386.

[41] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: A
deep convolutional activation feature for generic visual recognition, in:
International Conference on Machine Learning, 2014, pp. 647–655..

[42] N. Papernot, P. McDaniel, I. Goodfellow, Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples, arXiv
preprint arXiv:1605.07277 (2016)..

[43] Y. Liu, X. Chen, C. Liu, D. Song, Delving into transferable adversarial examples
and black-box attacks, in: Proceedings of the International Conference on
Learning Representations, 2017.

[44] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel, The space of
transferable adversarial examples, arXiv preprint arXiv:1704.03453 (2017)..

[45] P. Samangouei, M. Kabkab, R. Chellappa, Defense-gan, Protecting classifiers
against adversarial attacks using generative models, in: Proceedings of the
International Conference on Learning Representations, 2018.

[46] Y. Song, T. Kim, S. Nowozin, S. Ermon, N. Kushman, Pixeldefend, Leveraging
generative models to understand and defend against adversarial examples, in:
Proceedings of the International Conference on Learning Representations,
2018.

[47] A. v. d. Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural
networks, arXiv preprint arXiv:1601.06759 (2016)..
70
[48] T. Salimans, A. Karpathy, X. Chen, D.P. Kingma, Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications,
arXiv preprint arXiv:1701.05517 (2017)..

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural
Information Processing Systems, vol. 27, 2014, pp. 2672–2680..

[50] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial
networks, in: Proceedings of the International Conference on Machine
Learning, 2017, pp. 214–223.

[51] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747
(2017)..

[52] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, arXiv preprint arXiv:1603.04467 (2016)..

[53] S. Zagoruyko, N. Komodakis, Wide residual networks, arXiv preprint
arXiv:1605.07146 (2016)..

Yutong Wang received her bachelor degree from Har-
bin Engineering University in 2016. She is currently a
Ph.D. student in University of Chinese Academy of Sci-
ences as well as The State Key Laboratory for Manage-
ment and Control of Complex Systems, Institute of
Automation, Chinese Academy of Sciences. Her research
interests include computer vision and object detection.
Wenwen Zhang received his bachelor degree in soft-
ware engineering from Xi’an Jiaotong University, Xi’an,
China, in 2014. He is currently a Ph.D. student in the
School of Software Engineering, Xi’an Jiaotong Univer-
sity as well as the State Key Laboratory for Management
and Control of Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences. His research inter-
ests include computer vision and deep learning.
Tianyu Shen received the bachelor of engineering and
bachelor of management degree from the Xi’an Jiaotong
University, Xi’an, China, in 2016. She is currently a Ph.D.
candidate at the State Key Laboratory for Management
and Control of Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences as well as University
of Chinese Academy of Sciences. Her research interests
include computer vision and machine learning.
Hui Yu (SM’15) is a Professor with the University of
Portsmouth, UK. His research interests include methods
and practical development in vision, machine learning
and AI with applications to human-machine interaction,
virtual and augmented reality, robotics and geometric
processing of facial expression. He serves as an Associ-
ate Editor of IEEE Transactions on Human-Machine
Systems and IEEE/CAA Journal of Automatica Sinica.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1145/3133956.3134057
https://doi.org/10.1145/3133956.3134057
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0125
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0125
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0125
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0125
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0130
https://doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0145
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0155
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0155
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0155
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0155
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/ICMLA.2016.44
https://doi.org/10.1109/ICMLA.2016.44
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0175
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0175
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0175
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0175
https://doi.org/10.1016/0167-2789(92)90242-F
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0190
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0190
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0190
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0190
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0195
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0195
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0215
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0215
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0215
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0215
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0225
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0225
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0225
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0225
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0230
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0230
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0230
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0230
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0230
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0250
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0250
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0250
http://refhub.elsevier.com/S0925-2312(21)00404-5/h0250


Y. Wang, W. Zhang, T. Shen et al. Neurocomputing 445 (2021) 61–71
Fei-Yue Wang (S’87-M’89-SM’94-F’03) received his Ph.
D. degree in computer and systems engineering from
the Rensselaer Polytechnic Institute, Troy, NY, USA, in
1990. He joined The University of Arizona in 1990 and
became a Professor and the Director of the Robotics and
Automation Laboratory and the Program in Advanced
Research for Complex Systems. In 1999, he founded the
Intelligent Control and Systems Engineering Center at
the Institute of Automation, Chinese Academy of Sci-
ences (CAS), Beijing, China, under the support of the
Outstanding Chinese Talents Program from the State
Planning Council, and in 2002, was appointed as the

Director of the Key Laboratory of Complex Systems and Intelligence Science, CAS. In
2011, he became the State Specially Appointed Expert and the Director of the State

Key Laboratory for Management and Control of Complex Systems. His current
research focuses on methods and applications for parallel intelligence, social
computing, and knowledge automation. He is a fellow of INCOSE, IFAC, ASME, and
AAAS. In 2007, he received the National Prize in Natural Sciences of China and
became an Outstanding Scientist of ACM for his work in intelligent control and
71
social computing. He received the IEEE ITS Outstanding Application and Research
Awards in 2009 and 2011, respectively. In 2014, he received the IEEE SMC Society
Norbert Wiener Award. Since 1997, he has been serving as the General or Program
Chair of over 30 IEEE, INFORMS, IFAC, ACM, and ASME conferences. He was the
President of the IEEE ITS Society from 2005 to 2007, the Chinese Association for
Science and Technology, USA, in 2005, the American Zhu Kezhen Education Foun-
dation from 2007 to 2008, the Vice President of the ACM China Council from 2010 to
2011, the Vice President and the Secretary General of the Chinese Association of
Automation from 2008-2018. He was the Founding Editor-in-Chief (EiC) of the
International Journal of Intelligent Control and Systems from 1995 to 2000, the IEEE
ITS Magazine from 2006 to 2007, the IEEE/CAA JOURNAL OF AUTOMATICA SINICA
from 2014-2017, and the China’s Journal of Command and Control from 2015-2020.
He was the EiC of the IEEE Intelligent Systems from 2009 to 2012, the IEEE
TRANSACTIONS ON Intelligent Transportation Systems from 2009 to 2016, and is
the EiC of the IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS since
2017, and the Founding EiC of China’s Journal of Intelligent Science and Technology
since 2019. Currently, he is the President of CAA’s Supervision Council, IEEE Council
on RFID, and Vice President of IEEE Systems, Man, and Cybernetics Society.


	Binary thresholding defense against adversarial attacks
	1 Introduction
	2 Related work
	2.1 White-box attack and black-box attack
	2.2 Adversarial attacks
	2.3 Defenses

	3 Proposed method
	3.1 Denoising operations in adversarially trained model
	3.2 Binary thresholding in adversarially trained model
	3.3 Performing binary thresholding on input images
	3.4 Training on binarized images
	3.5 A high level understanding of our defense

	4 Experiments and results
	4.1 Experimental settings
	4.2 Defense results
	4.3 Convergence rate
	4.4 Resistance for different values of [$] \epsilon [$]

	5 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


